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Abstract—The work considers a one-dimensional time series  

protocol packet intensity, measured on the city backbone 

network. The intensity of the series is uneven. Scattering 

diagrams are constructed. The Dickie Fuller test and 

Kwiatkowski-Phillips Perron-Shin-Schmitt test were applied to 

determine the initial series to the class of stationary or non-

stationary series. Both tests confirmed the involvement of the 

original series in the class of differential stationary. Based on the 

Dickie Fuller test and Private autocorrelation function graphs, 

the Integrated Moving Average Autoregression Model model is 

created. The results of forecasting network traffic showed the 

adequacy of the selected model. 
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I. INTRODUCTION 

HE further evolution of the interconnected worldwide 

communication network based on packet technology has 

caused a sharp increase in the amount of data associated with 

information flows from various human activities. 

The ever-increasing amount of information passed through 

creates a certain complexity for the underlying data 

transmission network in its processing. On the other hand, 

modern society requires high transmission speeds of processed 

information.  

Resources of a functioning multiservice network allow you 

to quickly respond to market changes, quickly collect and 

deliver the necessary information to consumers, and be 

updated in a timely manner in accordance with new 

applications. 

As users generate ever-increasing data, forecasting network 

traffic (data volume) remains an urgent task. Forecast data 

provide the necessary information to solve the problem of 

managing information flows in the network. Modeling time 

series is one way to predict them. 

A special property of the time series is that it is a sequence of 

numerical indicators ordered in time, which characterize the 

level of state and changes in the phenomenon under study. The 

time series studied in this work is the packet intensity 
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measured at constant time intervals. This is one-dimensional 

distribution function.  

Time series models explain the behavior of a variable that 

changes over time, based only on its previous values. 

Depending on the presence of certain factors, the time series 

can be stationary and non-stationary. 

The levels of stationary series are formed under the influence 

of random factors that act in different directions and with 

different intensities. The non-stationary series always has a 

tendency, which is characterized by nonrandom factors in the 

processes represented by this time series. A time series is 

called non-stationary if its characteristics (average value, 

variance and autocorrelation function) depend on time.  

II. NETWORK TRAFFIC FORECASTING 

The series under investigation displays the number of UDP 

(User Datagram Protocol) packets per every 10 seconds. 

Realistically captured data on the backbone of a multiservice 

network, as a result of traffic tracking for 5 hours, since this is 

a self-similar traffic. As a result, 287 packets were received. 

With the help of the Wire Shark program, only UDP packets 

were removed from the network traffic. This series has 1800 

levels. This is a main network traffic (Figure 1). 

 

 

Fig. 1. Time Series Plot  

Various methods can be used to recognize the stationarity or 

non-stationarity of a time series: visual analysis of a graphical 

representation of the time series for the presence of a trend and 

a periodic component, the average method, analysis of the time 

series for the presence of autocorrelation, etc. 

Visual analysis of the graphical representation of the time 

series shows that the series has uneven intensity (the scatter of 

observations increases and decreases with time), there are 

ripples in traffic intensity with significant dispersion, there are 

groups in “packs” in some places, or there are dispersed 

sections in other time intervals where there are no or few 

incoming packets. The time series model assumes the 
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relationship between the current and previous observations. 

Previous observation of the time series is called a lag. The 

scattering diagram shows the relationship between observation 

and lag (Figure 2), which shows that the resulting distribution 

is not distributed in all four quadrants [1]. 

 

Fig. 2. Scatter diagram of the original series 

A uniform distribution of points in all four quadrants would 

mean independence of neighboring values. The studied data 

are mainly limited to two quadrants. In this scatterplot diagram 

( )1i if f f+ = , the slope (bond direction) and the width (bond 

strength) of an imaginary ellipse are of interest, as it reflects 

the tightness of the linear relationship between the two 

measured correlation coefficients. For most intervals, the 

packet intensities are similar. This suggests that a positive 

correlation is possible here. Based on the above, it follows that 

the investigated series is non-stationary. Let’s construct a 

scatter plot of the increments of this series. The transition to 

increments makes the time series more stationary. To convert 

the original non-stationary series to stationary, we perform 

differentiation (taking the finite differences of the values of the 

series) according to the formula: 

 ( ) ( ) ( )1Y t X t X t= + − . (1) 

Figure 3 shows the increments scatter diagram, which differs 

from the diagram of the initial series and represents a 

distribution whose points are distributed in all four quadrants, 

which means the relative independence of neighboring values 

and these values are collected with a certain dispersion around 

the zero mathematical expectation. 

 

 

Fig. 3. Scatter plot of increments series 

Figure 4 shows a scatter plot of increments that are randomly 

shuffled. In this case, the obtained scatter diagram differs from 

the scattering diagram of the increments of the original series 

in that the points are more evenly distributed in all four 

quadrants in comparison with the scattering diagram of the 

increments, where the points are, as it were, slightly larger in 

the second and fourth quadrants.  

To check for the presence of unit roots in the original time 

series, we will use the Dickie Fuller  -test of the Python 

program. 

We will use unit root tests to evaluate stationarity. The 

concept of "unit root" is an indicator that determines the nature 

of fluctuations in the system. The system of linear difference 

equations of the Nth order has N roots. If the absolute value of 

any of them is greater than 1, the system is approaching 

"explosion", at least until it meets some constraints, because of 

which it ceases to be linear. If all roots are less than 1 in 

absolute value, the system will inevitably strive for its initial 

equilibrium after any temporary deviations. A root equal to 1 

in absolute value, or a unit root, will cause a stable shift in the 

system, and a series of violations can cause an infinite 

deviation from the original position. A large number of 

methods have been developed to statistically check the 

presence of a unit root. 

 

 
Fig. 4. Scatter plot of a series of shuffled increments in random order 

We will use unit root tests to evaluate stationarity. The 

concept of "unit root" is an indicator that determines the nature 

of fluctuations in the system. The system of linear difference 

equations of the Nth order has N roots. If the absolute value of 

any of them is greater than 1, the system is approaching 

"explosion", at least until it meets some constraints, because of 

which it ceases to be linear. If all roots are less than 1 in 

absolute value, the system will inevitably strive for its initial 

equilibrium after any temporary deviations. A root equal to 1 

in absolute value, or a unit root, will cause a stable shift in the 

system, and a series of violations can cause an infinite 

deviation from the original position. A large number of 

methods have been developed to statistically check the 

presence of a unit root. 

In [2], it is described that the ADF-test (Dickey-Fuller test) 

checks for the presence of a unit root in order to identify the 

type of stationarity / non-stationarity of a series. Moreover, the 

null hypothesis H0 corresponds to a series of type DS, and the 

alternative hypothesis corresponds to a series of type TS. The 

authors of the test are American statisticians David Alan 

Dickey and Wayne Arthur Fuller. This test was proposed by 

them in 1979. The essence of the ADF-test is as follows: if a 

unit root was obtained in the verification in the autoregressive 
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model of a time series, this means the integration of the time 

series. 

In this case, the following hypothesis is used: 

- H0 1 =  - the series is non-stationary: it contains a unit 

root, belongs to DS-series and is described by a random 

walk process. 

- H1: 1   - the row is stationary – it does not contain a 

unit root and it is described by a stationary first-order 

autoregressive process. 

In the Python program in the statsmodels module, which 

provides classes and functions for evaluating many different 

statistical models and conducts statistical tests, there is an 

adfuller() function for studying statistical data, the time series 

of the UDP protocol is examined for the presence of unit-roots. 

The source code for the stationarity estimation program in the 

Python program is shown in Figure 5. 

 

 

Fig. 5. Source code of the program 

As a result, the assumption that the series is non-stationary 

was confirmed. The tables of the Dickey-Fuller test are 

calculated for significance levels of 1%, 5%, 10% with the 

corresponding empirical values, while the calculated value 

is -1.658 and all critical values are less than the reference ones, 

namely: –3.434; –2.863 and –2.5676, it indicates that it is 

impossible to reject the hypothesis that the time series under 

study has the character of random walk (Figure 6). 

 

 
Fig. 6. The result of the test 

Vershinina [3] describes that for reliability of results it is 

common to use not one, but several tests when series are 

analyzed for their belonging to the class of stationary or non-

stationary ones. 

The KPSS test (Kwiatkowski – Phillips – Schmidt – Shin) 

was developed in 1992, it is based on linear regression and 

contains three components[4]: 

- deterministic trend ( t ); 

- random walk ( tc ); 

- null hypothesis (H0);  

- alternative hypothesis (Ha); 

- stationary error ( 1tu ). 

 1t t ty c t u= + + , (1) 

 1 2t t tc c u−= + , (2) 

 , (3) 

 
2

0 : 0H  = , (4) 

 
2: 0aH   , (5) 

The KPSS test has Null Hypothesis: y1 is trend stationary 

(the series belongs to the TS series), and the alternative 

hypothesis is the non-stationary series (presence). 

Table 1 shows the KPSS test parameters when checking the 

initial series in the Matlab program, and table 2 shows the test 

results. 
TABLE I  

TEST PARAMETERS 

 Lags Include Trend Significance Level 

1 0 true 0,05 

2 0 false 0,05 

3 1 false 0,05 
4 2 false 0,05 

5 1 false 0,05 

 
TABLE II 

TEST RESULTS 

 Null 

Rejected 

P-Value Test 

Statistic 

Critical 

Value 

1 true 0,01 16,4938 0,146 

2 true 0,01 80,0526 0,463 

3 true 0,01 41,0774 0,463 

4 true 0,01 27,8283 0,463 

5 true 0,01 41,0774 0,463 

 

In this case, the null hypothesis is rejected, since the value 

of the statistics of the KPSS test is more than the critical value 

– the series is non-stationary [4]. 

Since both tests rated the time series as non-stationary, 

therefore, it is really not stationary. The levels of stationary 

series are formed under the influence of random factors, acting 

in different directions and with different intensity. In 1938 

Wold proved, that any stationary, in a broad sense, random 

process can be represented as a linear combination of white 

noises [5,6].  

Figure 7 shows the integrated first-order series obtained by 

taking the first difference of the original series and the series 

with a biased period equal to one (differentiation). There is no 

trend in this series. 

All methods of forecasting time series, in general, are 

divided, depending on the definition of the parameters of the 

approximating function by past values, into classes: local and 

global. 

At the same time, it is noted that global methods have 

received priority development and use. They are based on 

statistical analysis - this is the use of linear models - 

autoregressive, moving average, ARMA, etc. Local methods 

are based on the local approximation of LA. As a result of the 

development of the theory of nonlinear dynamics, new 

methods were developed (SSA, LA and SSA-LA). 

Nonlinear statistical models have also been developed, which 

are subdivided into two groups: parametric and nonparametric. 

Parametric methods make large assumptions about the 

mapping of input variables to output variable and, in turn, are 

faster to train, require less data, but may not be as powerful. 
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Nonparametric methods make little or no assumptions about 

the objective function and, in turn, require much more data, are 

slower to train and have higher model complexity, but can lead 

to more powerful models. 

The main methods for forecasting a non-stationary time 

series include: 

- statistical methods; 

- new methods based on artificial intelligence (AI). 

Among the statistical approaches, the ARIMA method 

allows one to describe non-stationary time series, which are 

reduced to stationary series by taking differences of a certain 

order from the original time series. 

Box-JenKins (BJ) forecasting method or Autoregressive 

integrated moving average ARIMA (p, d, q) forecasting 

method is an extension of ARMA model for not-stationary 

time series, which can be made stationary by taking 

differences of some order from the initial time series. One can 

consider ARIMA as “filter” trying separate a signal from 

nosie, and then signal extrapolates to obtain forecasts in future. 

ARIMA model is based on actual data and has three parts of 

the model [7, 8, 9]: 

 

  

Fig. 7. Time Series Plot Diff 

- AR is the part of the time series model that describes 

autoregression, in which the values of the series at the moment 

can be expressed as a linear combination of previous values of 

the same series and a random error with the “white noise” 

property (parameter p is used); 

 - I - part of the time series model that describes the order of 

differentiation of the series (the parameter d is used, which is 1 

based on the above data); 

- MA is the part of the time series model that describes the 

current value of the series and is presented as a linear 

combination of the current and past error values, 

corresponding in its properties to “white noise” (parameter q is 

used). 

To select the parameters p and q, we will use the 

autocorrelation function (ACF) and the private autocorrelation 

function (PACF) to understand the models AR (p) and MA (q). 

In contrast to ACF, the PACF does not take into account the 

influence of intermediate lags in the calculation of particular 

correlation coefficients. Therefore, ChAKF gives a more 

“clean Figure” of the dependence of the series on the lag.  

When modeling a time series, it is usually considered as a 

random process (stochastic), as a statistical phenomenon that 

develops in time according to the laws of probability theory. 

As research tools, the Econometric Toolbox application was 

used to simulate the process using statistical methods, the MS 

Excel program for scatter diagrams and the Python and 

Econometric Toolbox programs were applied to the original 

series to identify the nonstationarity properties of the series. 

Time series models explain the behavior of a variable over 

time based only on its previous values. Moreover, depending 

on the presence of certain factors, the time series can be 

stationary and non-stationary. 

To confirm the nonstationarity of the initial time series, we 

additionally use the KPSS test, which can detect in the process 

the presence of a random walk, which will lead to systematic 

deviations from the trend in some parts of the series. 

Among the statistical approaches, the ARIMA method 

allows one to describe non-stationary time series, which are 

reduced to stationary series by taking differences of a certain 

order from the original time series. 

The component of the moving average MA {2} has PValue 

less than the significance level of 0.05 (5.7169e-67 <0.05), 

then we can conclude that the coefficient MA {2} of the 

moving average is statistically significant and should be used. 

AIC (Akaike Information Criterion) and BIC (Bayesian 

Information Criterion) take into account the degree of model 

fit, not some trade-off between model accuracy and 

complexity. In this case, the model fitting procedure is based 

on finding parameters that minimize the AIC and BIC, which 

can help to reduce the fit in complex models. This procedure 

for finding parameters was proposed by Michael Halls-Moore. 

AIC was proposed by Akaike in 1974 and BIC by Schwartz in 

1978. The AIC is based on a generalization of the maximum 

likelihood principle and, as a result, assumes that the random 

disturbance is Gaussian. 

Analysis of the structure of the actually measured time 

series and its forecasting show the complexity of the structure 

of the series, but still there is a possibility of its statistical 

analysis using the ARIMA method (0,1,2). 

 

 

Fig. 8. Sample autocorrelation function Diff 
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Fig. 9. Sample partial autocorrelation function Diff 

The ARIMA method has a very clear mathematical and 

statistical basis, which makes it one of the most scientifically 

based models of the entire set of models for forecasting trends 

in time series. 

The only gap is that there are few works devoted to this 

problem in our country. To date, several articles have been 

published in Kazakhstan in the field of forecasting tuberculosis 

and in the field of economics. 

Analyzing the ACF and PACF plots of the first-order 

difference (Figs. 8 and 9), it can be said that according to the 

autoregression (AR) process, the levels of the ACF series fade 

out quickly, and the PACF levels gradually fade out. If there 

was an autoregressive process, the ACF would fade out slowly. 

For the moving average (MA) process, ACF decays sharply 

after two lags (the last significant lag is shown by parameter 

q), and the PACF function gradually fades. 

The result is an integrated model with parameter q = 2 – 

ARIMA (0,1,2) Model (Gaussian Distribution) (ARIMA_y12) 

Autoregressive integrated moving average model of time 

series y1 with the following equation: 

 ( ) ( )21 21 1t tL y L L  − = + +  (6) 

Model estimation is shown in Tables 3 and 4. 

A combined graph of the initial series and forecast data is 

shown in Figure 10 and shows that the model is correctly 

selected. Figure 11 shows a graph of balances. 

  

Fig. 10. Plot the fit of model ARIMA_y12 time series y1 

 

Fig. 11. Plot of the residuals of model ARIMA 

TABLE III 

ESTIMATION RESULTS 

Parameter Value Standard 

Error 

TStatistic PValue 

Constant 0 0   
MA{1} -0,3452 0,016298 -21,1803 1,4509e-99 

MA{2} -0,32033 0,018528 -17,2888 5,7169e-67 

Variance 698,8574 10,5872 66,0097 0 

 
TABLE IV 

ESTIMATION RESULTS 

Parameter Value 

Akaike Information Criterion 14715,9358 

Bayesian Information Criterion 14732,0047 

 

The remains of the series have a normal distribution with an 

average value close to zero. Given all of the above, we can say 

that the resulting ARIMA forecast model (taking into account 

confidence intervals) is adequate [10]. 

 

 

Fig. 12. Forecast of the number of packages on the ARIMA model(0,1,2) 

CONCLUSIONS 

This study of measured real traffic will be a common 

contribution to the development of telecommunications 

science in the Republic of Kazakhstan. This material can be 

useful in the field of radio engineering electronics and 

telecommunications. Since 2007, a new generation NGN 

network (Next Generation Network) based on IP (Internet 



324 T. SERIKOV, A. ZHETPISBAYEVA, А. АKHMEDIYAROVA, S. MIRZAKULOVA, A. KISMANOVA, A. TOLEGENOVA, W. WÓJCIK 

 

 

Protocol) has been operating in the Republic of Kazakhstan. 

As for the present work, it is based on the classical ARIMA 

method for predicting future values of empirical data in the 

field of telecommunications. The purpose of this work is to 

predict the subsequent levels of the series for managing 

information flows in the network in order to avoid congestion 

and losses. 

Visual analysis of the investigated time series showed that it 

has an uneven intensity with pulsation, has groupings in 

"packs" in some places or has discharged areas in other time 

intervals, where there are no or few incoming packets. 

The scatter plot of the time series demonstrates the scatter of 

points in the form of an elongated cloud, limited mainly by one 

quadrant, which indicates the correlation of points and the 

assumption of non-stationarity of the series. Non-stationary 

time series are characterized by the presence of a trend, 

systematic changes in variance, changing interdependencies 

between the elements of the time series. As for the scattering 

diagram of the increments of this series, the points in it are 

distributed in all four quadrants with a relatively high density 

of points near zero, which means the relative independence of 

neighboring values with the absence of a strong linear 

correlation between the levels of the series of increments. 

The original time series was examined by two unit root 

tests: ADF (Augmented Dickey-Fuller test) and KPSS 

(Kwiatkowski - Phillips - Schmidt - Shin), which confirmed 

the involvement of the original series in the class of 

differential stationary series DS (Difference stationary). The 

test result confirmed that the series under study is not 

stationary. 

To predict the time series, the ARIMA method 

(autoregressive integrated moving average) was used, which 

allows you to make reliable short-term forecasts with a 

minimum number of parameters. The essence of this method 

lies in the fact that linear methods can be used to reduce a non-

stationary series to a stationary one. 

Flexible mathematical and statistical and at the same time 

relatively simple ARIMA model made it possible to select a 

prediction model for current data based on previous values, 

which is most suitable for measured data in a real network of 

packet rates. 

A forecast model for the ARIMA (0,1,2) time series has 

been created, in which the PACF (partial autocorrelation 

function) has a sinusoidal shape (decays exponentially), and 

the ACF (autocorrelation function) differs significantly from 

zero for the lag q = 2. Results of predicting network traffic 

showed the adequacy of the chosen model. 

Analysis of works related to the ARIMA method shows that 

the number of works on predicting empirical data in the field 

of telecommunications is very small (this work is one of the 

first in Kazakhstan) and there are several in the CIS countries. 

Basically, the works describe either the analysis of 

mathematical models ARIMA, or recommendations for the 

implementation of forecasting. The perspective of this research 

is the experience of researching real data taken on a real 

network. This study revealed the possibility of predicting non-

stationary time series by a statistical method, which can be 

useful for university students. Moreover, using this method 

with a minimum number of parameters, a model for predicting 

a nonlinear series by linear methods was chosen. 

This study will help the researcher to reveal that the 

structure of real data transmitted in the telecommunication 

network is complex and the ADF test is not enough to assess 

the lack of stationarity, but it needs to be confirmed using 

another unit root test. There are not many researchers looking 

at real data. Thus, a new experience has been obtained in 

studying real time series in the Republic of Kazakhstan. 

Important statement: In this research work, tests for 

stationarity of a unit root were applied for the first time and the 

ARIMA method was applied for the first time in the field of 

telecommunications in the Republic of Kazakhstan, and it is 

important in comparison with the existing literature in the 

Republic of Kazakhstan and is a completed prototype for 

society as a whole.The original time series was examined by 

two unit root tests: ADF and KPSS. The results of the tests 

confirmed that the test series is not stationary. The ARIMA 

time series forecast model(0,1,2) was created.  

Analysis of the obtained results of network traffic 

forecasting shows that the obtained forecast values are close to 

the original statistical data. 
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