
Statechart-based Controllers Synthesis
in FPGA Structures with Embedded Array Blocks

Grzegorz abiak, Grzegorz Borowik

Abstract—Statechart diagrams, in general, are visual formal-
ism for description of complex systems behaiour. Digital con-
trollers, which act as reactive systems, can be very conveniently
modeled with statecharts and ef ciently synthesized in modern
programmable devices. The paper presents in details syntax
and semantics of statecharts and new implementation scheme.
The issue of statecharts synthesis is not still ultimately solved.
Main feature of the presented approach is the transformation of
statechart diagrams into Finite State Machine, and through KISS
format, functional decomposition and mapping into Embedded
Memory Blocks. Embedded Memory are part of the modern
programmable devices.

Keywords—digital controller, statechart, FSM, decomposition,
FPGA, symbolic methods, embedded memory.

I. INTRODUCTION

D IGITAL controller design is a process which begins
with informal description behavior and nishes with

implementation in electronic devices [1]. First step of the
process is to transform informal speci cation into formal one.
This step is the most dif cult, hence many formalisms have
emerged, from very simple to very sophisticated ones, where
statechart diagrams seem to be most ef cient. Implementation
process in modern programmable devices, especially equipped
with Embedded Arrays Block or Con gure Logic Blocks,
requires using dedicated new methods [2], [3]. The traditional
ones, like Espresso, are inef cient, sometimes giving results
worse than without minimization. Presented in the paper new
algorithm uses functional decomposition.
Digital controller acts like a reactive system. Such controller

can be designed as traditional FSM, but this approach exhibits
state explosion problem. Mainly, in case of modeled behavior,
which features concurrency, number of states of the FSM
grows exponentially. To cope with this inconvenience designer
can use Petri net model, which directly allows to describe
concurrency. State explosion is not the only problem in mod-
eling complex behavior. Abundance of states, events, transi-
tion and parallel dependencies, makes that diagram become
unclear. Then, good engineer practice is to divide modeled
complex behavior into simpler sub-behaviors, according to
classic paradigm: divide and conquer. Proceeding in this way,

This work has been supported by the European Union in the framework
of European Social Fund through the Warsaw University of Technology
Development Programme and by Ministry of Science and Higher Education
nancial grant no. N517 003 32/0583.
G. abiak is with the Computer Eng. & Electronics Dept., Univer-

sity of Zielona Góra, Podgórna 50, 65-246 Zielona Góra, Poland (e-mail:
G.Labiak@iie.uz.zgora.pl).
G. Borowik is with the Institute of Telecommunications, Warsaw Uni-

versity of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland (e-mail:
G.Borowik@tele.pw.edu.pl).

designer treats the modeled behavior like a tree of hierarchi-
cally connected sub-behaviors. This approach is supported by
statechart diagrams.
The statechart diagrams were developed as a visual for-

malism for complex systems [4]. It is a state-based graphical
notation which can be perceived as an extension of state
transition graph of traditional nite state machine. In compar-
ison to FSM they are enhanced with concurrency, hierarchy
and broadcasting mechanism. At present time statecharts, also
called state machines, are mainly used in UML technology [5],
where are employed in behavior modeling of program objects
(in sense of C++ or Java language).
The issue of hardware synthesis of statecharts is not

solved ultimately. There are many implementation schemes,
depending on target technology. Historically, rst methodology
published by [6], consists in transformation of statechart into
set of hierarchically linked FSMs. Next, these FSMs can
be implemented traditionally. Other approach is presented
by [7] and is targeted at PLA structures, where main idea
is to code craftily statechart con gurations. The drawback
of this method is that diagram can model only transitions
between simple states. In 1999 [8] enhanced Drusinsky coding
scheme by introducing so called pre x-encoding. Common
drawbacks of the presented methods are lack of support for
history attribute and broadcast mechanism. It is worth to
mention other implementation methods such as using HDLs
[9] or presented by [10] which is based on ASIP (Application
Speci c Instruction Processor).
The proposed Authors’ design method, developed partly in

HiCoS system [11], directly transforms behaviour speci ed
with statecharts into Register Transfer Level, where register
le codes global state. The transformation is realized as one-
hot mapping [12], this means that one state corresponds to
one ip- op. Next, by means of symbolic methods [13], the
RTL-like description is transformed into FSM form, which
can be implemented in embedded array blocks in modern
programmable devices [14], [15].
The rest of the paper is organized as follows. Section 2

presents syntax of statecharts, where main feature is modular-
ity (ie the transitions cannot cross states borders). Section 3
describes an industry plant which is controlled by statechart-
based controller. This more complicated example, where some
syntax and semantics issues are presented in detail, is at the
same time a bench mark. Section 4 presents semantics of
dynamic behavior, mainly response of statechart-based digital
circuit to an external and internal events. Section 5 describes
digital synthesis of statechart-based controllers realized by
means of ip- ops and Boolean functions. Section 6 presents

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2010, VOL. 56, NO. 1, PP. 13-24
Manuscript received February 02, 2010; revised March, 2010.

10.2478/v10177-010-0002-7

the transformation of statecharts into FSM described in KISS
format. Section 7 describes the idea of ROM-based synthesis
algorithm and mapping into Embedded Memory blocks, and
section 8 presents experiments results.

II. SYNTAX OF STATECHARTS

The statechart diagrams [4] have been devised in order
to improve the specification of reactive systems of complex
behavior. It is a state-based graphical notation which enhances
the traditional finite automata with concurrency, hierarchy
and broadcast mechanism. States are connected by arcs with
predicates. A complex state can be assigned a group of states
(simply or complex), thus creating hierarchy relationships.
States can be in a concurrency relationship. An activity can
be removed from subordinated states in the exception style
through firing transition from their ancestor. The presence of
the final state (in the diagram bull’s eye) prevents exception
transitions, unless the final state is active.

The big problem with statecharts is syntax and semantics.
A variety of application domains caused that many authors
proposed their own syntax and semantics [16], sometimes
differing significantly. Syntax and semantics presented in this
paper are intended for specifying the behaviour of binary
digital controllers which would satisfy as much as possible
the UML statndard. The selection of language characteristics
was made based on application domain and the technological
constrains of programmable logic devices.

t2: b

H

s1

t1: a+c

s4 s2

t4: a∗!b

t5: c∗!b / {b}

s11 s12

t3: a∗c

s6
s7

exit / a

do / c

s3 s5
entry / b

t6: b

do / d

{ }dcbaE z ,,,= { }aX = { }dY =

Fig. 1. Example of Statechart diagram.

As a result of those considerations it was assumed that
syntax of statecharts HiCoS is to be intended for untimed
control systems which operate on binary values. Hence, our
statecharts feature hierarchy and concurrency, simple state,
composite state, end state, discrete events, actions assigned
to state (entry, do, exit), simple transitions, history attribute
and logic predicates imposed on transitions, whereas cross-
border transitions are forbidden. Another very essential issue
is to allow the use of feedbacks, it means that events generated
in a circuit can affect its behavior. The role of an end state

is to prevent removing away an activity from a sequential
automaton before the end state became active. Such elements
as factored transition paths and time were rejected. Other
syntax characteristic like cross-level and composite transitions,
synch states have been shifted to the farther stage of the
research. An example of statechart is depicted in figure 1,
where eventa ∈ X is an input to the system and eventb ∈ Y
is an output. Eventsb andc are of local scope.

III. C HEMICAL REACTOR – CASE STUDY

The industrial reactor, for the first time presented in [17]
is a part of hydraulic-mechanical plant, whose functioning
is governed by a discrete controller (Fig. 2). The reactor
measures out two substances, mixes them together and pours
the product into the wagon which transports the outcome to
its destination station.

A. Reactor Working Description

The detailed working of the reactor is as follows. Initially
the reacting substances are kept in containers SV1 and SV2.
The emptied wagon waits in its initial position on the right.
After the signalx0 a technological cycle starts: valvesy1
and y2 are opened and scales MV1 and MV2 are poured in,
and wagon starts moving to the left (signaly9). The pouring
of the substrates lasts until sensorsx1 and x3 in the scales
indicate exceeding upper limits. After both sensors indicate
exceeding upper limits valvesy3 andy4 emptying scales MV1
and MV2 become on simultaneously and the main reaction
process starts. The agitator A is ready to switch on. After the
substance in reactor main container R is over the sensorx5, the
agitator becomes on. When the substance is beneath again, the
agitator becomes off and ready to start again. While emptying
scales and pouring main container R, the wagon is moving to
its position on the left. Next, when scales MV1 and MV2 are
emptied (which is indicated by sensorsx2 andx4) and in the
meantime the wagon has reached its left position (sensorx7),
the main container valvey5 is opened and the container is
emptied till the level of substance drops below the reading of
the sensorx6. Next the wagon starts moving right (signaly8).
When the wagon reaches the far right position (sensorx9), the
wagon is emptied (valvey6). The end of emptying is signaled
by x9 sensor, and after that the technological cycle is finished
and the whole plant is ready to start again.

B. Statechart Diagram

Fully modular statechart diagram is a diagram whose com-
pound component behaviors are only defined by its sub-
components. This generally means, that the transitions cross-
ing the state borders are forbidden and broadcast events are
also forbidden. The benefits of full modularity are clarity of the
diagram and a more efficient verification. This stems from the
fact that the dynamic properties of the complex behavior can
be obtained from already verified properties of its component
sub-behaviors.

Figure 3 presents statechart diagram of the controller. In this
case it is good to model some of its component sub-behaviors,

G. ŁABIAK, G. BOROWIK14

y3 y4

y5

y2y1

x1
x2

x0

A

R

SV1 SV2

x9

x3
x4

x5

x6
y7

y9 y8

x7 x8

y6

SV3

WC

W

MV1 MV2

Fig. 2. Chemical reactor with wagon – Schematic diagram

namely the agitator control (simple statesWaiting and Stir-
ring), agents dispensing to main reactor container (consisting
of one stateEmptyingReactorand two completely parallel
processes: statesEmptyinMV1, EndStateand EmptyingMV2,
EndState) and wagon motion to the left (statesWagonLeft
andWagonWaiting). These three concurrent processes neither
start nor finish at the same time. They are started with
transitiont1 andt4 and finished witht10 andt11. This means
that they overlap and must be synchronized with these four
transitions. This is realized by means of variablez1, which
is being broadcast in stateWagonWaitingand is a predicate
on transition t10. This behavior cannot be modeled fully
modularly, internal variablez1 must synchronize the three
processes and the presence of the variable slightly disturbs
modularity.

IV. SEMANTICS

A digital controller specified with a Statechart and realized
as an electronic circuit is meant to work in an environment
which prompts the controller by means of events. It is assumed
that every event (incoming, outgoing and internal) is bound
with a discrete time domain. The controller is reacting to the
set of accessible events in the system through firing a set of
enabled transitions called a microstep. Because of feedback,
execution of a microstep entails generating farther events and
causes firing subsequent microsteps [18]. Events triggered
during a current microstep do not influence transitions being
realized, but are only allowed to affect behavior of a controller
in the next tick of discrete time, that is, in the next microstep.
A sequence of subsequently generated microsteps is called a
step and additionally it is assumed that during a step no events
can come from the outside world. A step is said to be finished
when there are no enabled transitions. Figure 4 depicts a step
which consists of two simple microsteps. After the step is
finished the system is in stateSTOP. Summarizing, dynamic
characteristics of hardware implementation are as follows:

• system is synchronous,
• system reacts to the set of available events through

transition executions,
• generated events are accessible to the system during next

tick of the clock.

FillingMV1

do / y1

t2: x1

Preparations

FillingMV2

do / y2

t3: x3

WagonLeft

do / y9

EmptyingMV1

do / y3

t7: !x2

EmptyingScales

EptyingMV2

do / y4

t8: !x4

EmptyingReactor

do / y5

t10: z1

Stirring

do / y7

Waiting

t5: x5*x6 t6: !x5*x6

Reaction
t4

t11

t12: x8

t13: !x9

WagonRight

do / y8

EmptyingWagon

do / y6

WagonWaiting

do / z1

t9: x7

Process

WagonReturn

StirringControl

t15: !x6

WaitingForStart

t1: x0

Substrates

AgentsDispensing

t14: !x6

Fig. 3. Chemical reactor – statechart diagram.

In figure 4 a simple diagram and its waveforms illustrate the
assumed dynamics features. When transitiont1 is fired (T =
350) eventt1 is broadcasted and becomes available to the
system at next instant of discrete time (T = 450). The activity
moves from stateSTART to stateACTION. Now transition
t2 becomes enabled. Its source state is active and predicate
imposed on it (eventt1) is met. So, at instant of timeT = 450
the system transforms activity to the stateSTOPand triggers
eventt2, which does not affect any other transition. The step
is finished.

V. STATECHART DIAGRAMS SYNTHESIS

Statechart diagram synthesis is process by which controller
described by statecharts is turned into design implementation
in terms of logic gates and flip-flops.

A. Foundations of Hardware Implementation

The main assumption of a hardware implementation be-
haviour described with statecharets diagram is that the sys-
tems specified in this way can directly be mapped into
programmable logic devices. This means that elements from
a diagram (for example states or events) are to be in direct
correspondence with resources available in a programmable
device — mainly flip-flops and programmable combinatorial
logic. Basing on that assumption and taking into account
assumed dynamic characteristics, following foundations of
hardware implementation has been formulated:

STATECHART-BASED CONTROLLERS SYNTHESIS IN FPGA STRUCTURES WITH EMBEDDED ARRAY BLOCKS 15

����� � � ���	 �
�������� � ������ � ����� � ��� ������ � ���	

Fig. 4. Simple diagram and its waveform.

• each state is assigned one flip-flop — activity means that
state associated with the flip-flop can be active or in case
of a state with history attribute is remembered its past
activity; activity of state is established on the basis of
activity of flip-flops assigned to superordinate states (in
sense of hierarchy),

• each event is also assigned one flip-flop — activity means
occurrence of associated event and it is sustained to
the next tick of discrete time when the event becomes
available do the system,

• based on diagram topography and rules of transition
executions, excitation functions are created for each flip-
flop in a circuit.

SYSTEM STATECHART

excitation
functions

flip-flop
registry

Y X

clock
reset

signal
functions

Fig. 5. Statechart diagrams Hardware Implementation

Farther statechart diagrams synthesis description is mainly
revolving around specification of flip-flop excitation functions
of two types: state flip-flops and event flip-flops.

B. State Flip-flop Excitation Functions

Every state is assigned one flip-flop. Logic1 on its output
means occurrence of one of two situations:

• activity of state (to whom the flip-flop was assigned),
• remembering that the state was most recently active —

this takes place in case of states with history attribute.
These two circumstances are essentially different. Therefore it
is necessary to define the rules which will allow to determine
the former and the latter situation in an unambiguous way.
As far as activity of a state is concerned, this is realized on

the basis of activity of flip-flops assigned to the superordinate
states. The state is said to be active when every flip-flop bound
with the states belonging to the path (in sense of hierarchy
tree) carried from the state to the root state (located on top
of a hierarchy) is asserted. Formally activating condition is
calculated in the following way:

activecond(s) =
∏

si∈path(root,s)

si (1)

wheresi is a signal from flip-flop output.
Having established a role that flip-flop is to play in a digital

circuit it is possible to formulate general assumption regarding
its excitation function. This function yields1 when the state
bound with given flip-flop is:

• not active and in next iteration will be active,
• an active state or is, so called, a recently active state (it

can take place in case of state with history attribute) and
in next iteration will also be active or recently active.

One characteristic feature of these two assumptions is causal
relationship which consist in that before state became most
recently active it must be prior active. This observation leads
to state flip-flop excitation function of following shape:

δ(s) = activate(s)
︸ ︷︷ ︸

a

+ s ∗ inactivate(s)
︸ ︷︷ ︸

b

(2)

wherea andb, respectively, are:
a) activating component (activate): it assumes logic1

when the state bound with a flip-flop is not active and
in next iteration will become active; this corresponds
to the situation when directly incoming transitions to
the state fires or, in case of default states, the state
activated is by directly superordinate state,

b) sustaining component: it assumes logic1 when 1) the
state bound with a flip-flop is active (it means that
componentactivatemust have been fulfilled before)
and in next iteration the state will also be active or 2)
in case of the state is attributed history property the
state is recently active and in next iteration will also
be recently active; factorinactivateassume value1,
when the state loses activity and at the same time is
not recently active, this corresponds to the situation
when one of some output transitions is fired.

D

C

Q

s
inactivate

activate

s

Q

δ

Fig. 6. Logic diagram of flip-flop excitation function.

A variables in equation 2, is a feedback signal and its role is to
sustain flip-flop activity since the moment specified byactivate
component till the moment determined byinactivate factor.
The excitation function defined in that way leads to the logic
diagram presented in figure 6. Farther descriptions of synthesis
rules of state flip-flop excitation function are focused around
detailed definition of activating components and inactivating
factor.

G. ŁABIAK, G. BOROWIK16

1) Activate Component:Theconclusion which results from
what is stated in point a) is that to form an expression for
componentactivateis necessary to investigate two cases.

• The first case holds when a normal state (i.e. not being a
default state) is examined. Then activation of such state
depends only on transitions which directly come to the
state. Formally, it is defined by following equation:

activate(s) =
∑

ti∈•s

encond(ti) (3)

• Second case takes place when it comes to a state which is
the default state. Then activation of such a state depends
not only on directly incoming transition, but additionally
depends on activity of directly superordinate state. When
directly superordinate state becomes active it means that
one of its directly subordinate states must also become
active. It is as if activity “comes from above”. Equation
which describes this case presents as follows:

activate(sd) =
∑

ti∈•s

encond(ti)

︸ ︷︷ ︸

a

+

+
∏

sj∈path(root,parent(sd))

δ(si)

︸ ︷︷ ︸

b

∗

∗
∑

si∈hrc(parent(sd))

si

︸ ︷︷ ︸

c

(4)

Componenta is responsible for activating which comes
from directly incoming transition, similarly as it is in
previous case (eq. no. 3). Factorb is referring to the
activation which is caused by directly superordinate state.
This factor is, in fact, modified activating condition (see
eq. no. 1).δ is a flip-flop activating function and as
a signal is taken from flip-flop input. This means that
factor b represents activity of the parent state in next
tick of discrete time. Factorc allows to activate flip-flop
only when there is no other active flip-flop. Activity of
other flip-flop means that default state flip-flop must not
be activated, because the other flip-flop remembers past
activity of the other state to which is bound with.

2) Inactivate Factor:This factor is to assume value1 when
the state to which a flip-flop is bound with is to lose activity
and at the same time is not recently active state. The situation
arise in consequence of firing some output transitions. The
issue is which are these output transitions. This depends both
on whether investigated state is an end state or a normal state
(in this context normal state means not an end state) and on
presence of history attribute and also on whether investigated
state belongs to an automaton with an end state. The latter case
means that transitions of higher levels of hierarchy cannot take
activity. First, to put it in an order, let us consider four cases
when state is a normal state and has or not history attribute.

• state without history attribute belonging to the automaton

without an end state:

inactivate(s) =
∑

ti∈s•

encond(ti)

︸ ︷︷ ︸

a

+

=
∏

si∈path(root,parent(s))

δ(si)

︸ ︷︷ ︸

b

(5)

Flip-flop is reset by firing of directly outgoing transitions
from states (componenta) or by firing output transitions
of superordinate states. The latter case, in equation,
is represented by negated activity condition of directly
superordinate state (componentb).

• state without history attribute belonging to an automaton
with an end state,

• state with history attribute belonging to automaton with-
out an end state,

• state with history attribute belonging to automaton with
an end state:

inactivate(s) =
∑

ti∈s•

encond(ti) (6)

In these three cases only directly outgoing transitions can
reset a flip-flop. This results from semantics and from
taken assumption as to what role plays activity of a flip-
flop.

Now there is an end state case left to investigate. An end state
can have or not history attribute, so it gives two next situations
to analyze:

• end state without history

inactivate(s) =
∏

si∈path(root,parent(s))

δ(si)

︸ ︷︷ ︸

b

(7)

An end state must not have directly outgoing transitions,
but its activity can be taken by transitions of higher levels
of hierarchy (see also eq. no. 5).

• end state with history attribute:

inactivate(endst) = 0 (8)

Attribution of history property to an end state means that
a flip-flop bound with such a state will never be reset,
because an end state must not have directly outgoing
transitions and reactivating automaton with such a state,
as result of firing transition of higher levels of hierarchy,
will always cause activating the end state. In general,
ascribing history attribute to the automaton with an end
state makes no sense and hence is not recommended.

C. Event Flip-flop Excitation Functions

Hardware implementation inFPGA structures is based on
the assumption that the circuit responds to the set of currently
available events in next tick of discrete time. Between an
event and a respond to it there is a period of time equal to
a period of clock signal. To fulfill this assumption there is
a necessity to bound with every place in circuit where event

STATECHART-BASED CONTROLLERS SYNTHESIS IN FPGA STRUCTURES WITH EMBEDDED ARRAY BLOCKS 17

can be triggered one flip-flop. The flip-flop’s assignment is to
sustain information about an event for the clock signal period.
Basically, there are four possible places where an event can
be generated:

1) Transition: Firing transition can be assigned broadcast-
ing set of events. Excitation function of such a flip-flop is a
simple enabling transition condition:

δ(et) = encond(t) (9)

2) Entry Action: Every state can be assigned an entry
action, which is executed when state is being activated. This
is, of course, broadcast set of events. Activation of a state
takes place when, at given moment of discrete time, state is
not active (factora) and at next instant of time will become
active (factorb):

δ(een) = activecond(s)
︸ ︷︷ ︸

a

∗
∏

si∈path(root,s)

δ(si)

︸ ︷︷ ︸

b

(10)

3) Do Action: Sometimes called static action is a set of
events which are broadcast at every tick of clock signal, as long
as state to which the action is ascribed is active. Therefore, an
excitation function boils down to the state flip-flop excitation
function (see section V-B).

4) Exit Action: This action complements entry action and
is being executed when given state is active (factora) and at
next instant of time will lose activity (factorb):

δ(eex) = activecond(s)
︸ ︷︷ ︸

a

∗
∏

si∈path(root,s)

δ(si)

︸ ︷︷ ︸

b

(11)

VI. STATECHART DIAGRAMS TRANSFORMATION INTO

FSM MODEL

Transformation of statechart diagrams into FSM model
consists in constructing equivalent finite state machine, which
for external observer behaves just the way statechart does.

Definition 1: Finite state machine of Mealy type, denoted
asM , is a following tuple:

M = 〈X, S, Y, δM , λM 〉

where:

X = {x1, . . . xm} − set of input signals

S = {s1, . . . sn} − set of internal states

Y = {y1, . . . yr} − set of output signals

and:

δM : DδM
7→ S − is a transition function

λM : DλM
7→ Y − is a output function

DδM
⊆ X × S

DλM
⊆ X × S

WhenDλM
⊆ S the automaton is of Moore type.

The construction involves building equivalent Moore-type
automaton from statechart elements, where members of the
sets are explicitly enumerated and functions are given sym-
bolically in tabular form, eg KISS format [19].

A. Statechart as a FSM

Statechart diagrams in some sense can be perceived as a
finite state machine of Moore type. Then, such a FSM formally
can be defined as follows:

Definition 2: A statechart FSM (SFSM) is defined as a
6–tuple: SFSM = (m, n, r, δS , λS , Init) where: m is the
number of Boolean inputs,n is the number of Boolean state
variables (all flip-flops),r is the number of Boolean outputs,
δS is the functional vector of the state transition functions
δSi : {0, 1}m × {0, 1}n → {0, 1} and 1 ≤ i ≤ n, λS is
the functional vector of the output functionsλSj : {0, 1}n →
{0, 1} and1 ≤ j ≤ r, Init is the initial state.

For the diagram from figure 1m = 1, n = 13, r = 1.
Because output functionλS depends only on state variables,
statechart FSM is of Moore type. The set of equivalent FSM
input signal is the setX of statechart input events, the set
of FSM output signals is the setY of statechart event visible
to the environment. Cardinality of both sets is, respectively,
|X | = m and |Y | = r. For example for the diagram from
fig. 1 X = {a} and Y = {d}. The setS of equivalent
FSM states, transition functionδM and output functionλM

need referring to statechart state transition graph (STG, see
fig. 7). STG presents global states of statechart and transitions
between them. The transition is fired when events imposed
on it are being broadcast, whether coming from environment
(bolded in the fig. 7) or generated internally in the diagram.
Then, the setS of equivalent FSM states is the set of all
statechart global states from STG (see def. 3), FSM transition
function δM is a relationship between STG transition source
and target states, FSM output functionλM is a relationship
between STG global states and events assigned to them which
are visible to the environment (bolded in the fig. 7).

3217612543212111 eeessesssssss

3217612543212111 eeessesssssss

3217612543212111 eeessesssssss

3217612543212111 eeessesssssss

t1: {c}

t2: {b}

 t3, t4: {a, c}

G0

G1

G3

3217612543212111 eeessesssssss

G4

t4: {a, c}

3217612543212111 eeessesssssssG5

t5: {c}

3217612543212111 eeessesssssssG6

t6: {b}

G2

 t2, t3: {a, c}

y={c}

y={b,c}

y={a,c} y={a,c}

y={c ,d}

y={b,c}

y={c}

Fig. 7. Statechart state transition graph for the diagram from fig. 1.

G. ŁABIAK, G. BOROWIK18

B. Global State of a Statechart

The global state of the statechart is defined as follows:
Definition 3: Global state Gis a set of all flip-flops’ states

in the system, bound both with local states and with distributed
events, which can be generated in several parts of the diagram
and separately memorized.

Figure 7 presents state transition graph for the diagram
from figure 1. The diagram consists of 10 state flip-flops
{s1, s11, s12, s2, s3, s4, s5, e12, s6, s7} and 3 event flip-flops
{e1, e2, e3}. The flip-flop denoted ase1 corresponds to the exit
eventa assigned to states2, e2 corresponds to the entry action
b assigned to states5, and e3 corresponds to the transition
action (broadcasting of eventb) bound with transitiont5
firing (from states7 to states6). Global state comprises all
information about the statechart both about currently active
states and their past activity. Number of global states is 7.
Technically, global state can be expressed as a conjunction
formula, where variable in formula are bound with flip-flops’
output signal:G0 = s1 s11 s12 s2 s3 s4 s5 e12 s6 s7 e1 e2 e3.

C. Characteristic Function

To implement the algorithm of transformation statechart
FSM into FSM there are needed means to represent symboli-
cally set of global states. The set of states can be implemented
by means of notion of characteristic function represented by
Boolean equation.

Definition 4: A characteristic functionχA of a set of ele-
mentsA ⊆ U is a Boolean functionχA : U → {0, 1} defined
as follows:

χA (x) =

{
1⇔ x ∈ A
0⇔ x /∈ A.

(12)

The characteristic function is calculated as a disjunction
of all elements ofA (i.e. the set of all global states). Op-
erations on sets are in direct correspondence with operations
on their characteristic functions. Thus:χ(A∪B) = χA + χB,
χ(A∩B) = χA ∗ χB, χ(A) = χA, χ(∅) = 0. The charac-
teristic function allows sets to be efficiently represented in
computer memory by means of BDDs [20]. For example, if,
for the state transition graph from figure 7, the global state
is defined as a conjunction of flip-flop variable (eg. initial
state G0 = s1 s11 s12 s2 s3 s4 s5 e12 s6 s7 e1 e2 e3) then
the characteristic function of the set of all global states is
a disjunction of respective Boolean expressions, where one
expression represents one global state:

χG = G0 + G1 + G2 + G3 + G4 + G5 + G6 =

= s1 s11 s12 s2 s3 s4 s5 e12 s6 s7 e1 e2 e3 +

= s1 s11 s12 s2 s3 s4 s5 e12 s6 s7 e1 e2 e3 +

= s1 s11 s12 s2 s3 s4 s5 e12 s6 s7 e1 e2 e3 +

= s1 s11 s12 s2 s3 s4 s5 e12 s6 s7 e1 e2 e3 +

= s1 s11 s12 s2 s3 s4 s5 e12 s6 s7 e1 e2 e3 +

= s1 s11 s12 s2 s3 s4 s5 e12 s6 s7 e1 e2 e3 +

= s1 s11 s12 s2 s3 s4 s5 e12 s6 s7 e1 e2 e3 (13)

D. Transition Relation

Transition relation is a relation which relates transition’s
source and target states with an event (or events) imposed on
this transition. This notion symbolically can be expressed by
means of characteristic function:

Definition 5: A characteristic functionχδS
of the transition

relation of the functional vectorδS is a Boolean functionχδS
:

{0, 1}n × {0, 1}m × {0, 1}n → {0, 1} defined as follows:

χδS
(s′, x, s) =

{
1 ⇐⇒ s′ = δS(x, s) ,
0 otherwise.

where s′, s and x are sets of state variables of next state,
present state, and input signal variables, respectively.

In practice, the functionχδS
is calculated using the follow-

ing equation:

χδS
(s′, x, s) =

n∏

i=1

[s′i ⊙ δSi(x, s)] (14)

where the symbol⊙ represents the logic XNOR operator and
n is the number of state variables.

The relationχδS
(s′, x, s) = 1 implies that in states there

exists a transition to states′ on inputx.

E. Symbolic State Space Generation

Having defined notions of statechart global state and charac-
teristic function it is necessary to present an algorithm which
computes symbolic state space of statechart, where set of
global states symbolically is represented by its characteristic
function.

The algorithm traverses the state transition graph of stat-
echart FSM in breadth-first manner, moving from a set of
current states to the set of its fan-out states. In this approach
a sets of states are represented by means of characteristic
functions. The key operation required for traversal is the
computation of the range of a function, given a subset of its
domain. The symbolic state space exploration of statecharts
relies in [21]:

• association excitation functions to state and event flip-
flops,

• association logic functions to signals,
• representation of Boolean function as BDDs,
• representation of sets of states using their characteristic

functions,
• computation of a set of next states as an image of the

state transition function on the current states set for all
input signals.

Starting from the default global state and the set of signals,
symbolic state exploration methods enable the computation
of the entire set of next global states in one formal step.
The symbolic state space algorithm of statechart is presented
below.

Listing 1. Symbolic traversal of state space
1 symb t rav of S ta techar t (Z , i ni t m a r k) {

χ[G0〉 = curr mark = i n i t m a r k ;
3 whi l e (curr mark != 0) {

next mark = im comp(Z , curr mark) ;

STATECHART-BASED CONTROLLERS SYNTHESIS IN FPGA STRUCTURES WITH EMBEDDED ARRAY BLOCKS 19

5 curr mark = next mark∗ χ[G0〉 ;
χ[G0〉 = curr mark + χ[G0〉 ;

7 }
}

The variables in italics represent characteristic functions of
corresponding sets of configurations. All logical variables are
represented by BDDs. Several subsequent global states are
simultaneously calculated using the characteristic function of
current global states and transition functions. This computation
is realized by theim compfunction, which calculates image of
function for given subset of the domain. The set of subsequent
global states is calculated from the following equations:

next mark = ∃s∃x(curr mark ∗
n∏

i=1

[s′i ⊙ (curr mark ∗ δSi(s, x))]) (15)

next mark = next mark〈s′ ← s〉 (16)

where s, s′, x denote the present state, next state and input
signals respectively;∃s and∃x represent the existential quan-
tification of the present state and signal variables;n is a
number of state variables;⊙ and ∗ represent logic operators
XNOR and AND, respectively; equation 16 means swapping
variables in expression.

For example a characteristic function of the set of all global
states for the diagram from figure 1 is presented by equation
13.

F. The Transformation

The construction of a FSM state transition table of the
function δM can be carried out in many ways. Authors’
proposal is not an optimal approach, but is relatively simple in
coding on the one hand and not so computationally complex
on the other hand, that testing benchmarks has been conducted
quickly and successfully. Construction of FSM state transition
table consists in checking for every pair of statechart global
states whether exists transition between them (see listing 2),
and if exists, in calculating an event or a set of events imposed
on this transition. Result of the transformation, state transition
table with outputs, is in KISS format [19].

1) FSM Textual Form:FSM-description is a textual form
of Finite State Machine, also known as KISS format [19],
which in tabular way defines FSM according to the following
grammar:

.i <num-inputs>

.o <num-outputs>

.p <num-terms>

.s <num-states>

.r <reset-state>
<in> <current-st> <next-st> <out>

. . .

wherenum-inputsis the number of inputs to the FSM,num-
outputs is the number of outputs of the FSM,num-termsis
the number of ”<in> <current-st> <next-st> <out>” 4-
tuples,num-statesis the number of distinct states that appear

in ”<current-st>” and ”<next-st>” columns,reset-stateis the
symbolic name of the start state.in is a sequence ofnum-inputs
of {0, 1,−}, out is a sequence ofnum-outputsof {0, 1,−}.
current-standnext-stare symbolic names for the current state
and next state transitions of the FSM. Format of this type
describes automaton as an automaton of Mealy type.

2) The Algorithm:The algorithm of transformation consists
in establishing a map between statechart FSM and FSM-
description. The FSM set of inputs (X) is equivalent to the sets
of inputs in statechart model, the FSM set of outputs (Y) is
equivalent the sets of outputs in statechart model. The elements
of the set of statesS in FSM are coded as a global stateG
in statechart (see definition 3). The parametersnum-inputs,
num-outputsfrom KISS format is a cardinality of the sets,
respectively,X andY . In case of transitions, from SFSM side
we have automaton of Moore type and from FSM-description
we have model of Mealy automaton, where transitions are
explicitly enumerated. Hence, the transformation involves two
major steps:

a) transformation Moore automaton into Mealy automaton,
b) generation, transition by transition, KISS 4-tuple.

The transformation Moore automaton into Mealy automaton
is very simple [22]. If we omit the answer of Moore’s
automaton on empty inputε, this means in fact that we exclude
answer of automaton at the first state, the two automata differ
only in their output functions. Letλ be Moore automaton
output function andλ′ be Mealy automaton output function.
Then we have:

λ′
M (x, s) = λM (δM (x, s)) (17)

and we must remember to add one extra state (the initial
state) to the set of state of Mealy automaton and one extra
transition from this extra state to the so far first state. Hence,
the parameternum-statesin KISS format is cardinality of set
S plus 1. The transition is unconditional (empty inputε), and
the output is an output from first state of Moore automaton.

As far as transition functionδM is concerned, in format
KISS, the function is given in tabular form; one 4-tuple for
one transition. The problem is how to generate the elements
of the 4-tuple.

The algorithm depicted in listing 2 starts with characteristic
function of global states spaceχ[G0〉 and with characteristic
functionχδM

of functional vectorδM . The transition, regard-
ing input signals, is represented by productt, which is a
relation between current (Gi) and next (G′

j) state, represented
as conjunction formulae (line no. 4). For every pair of states:
current state and next state(Gi, G

′
j) is being checked whether

there is a transition between them (line no. 5). In line no. 6
states variables (s, s′) are removed from transition productt,
hencetx represents this part of the expression which solely
depends on input variablesx. Then current and next states
are put into 4-tuple (lines 7 and 8). Between lines 11 and
17 is being computed input vector. For each minterm intx
expression is being checked how this minterm depends on
input variables. This is realized by means of logic differential,
which can formally be computed according to the following

G. ŁABIAK, G. BOROWIK20

Listing 2. Transitions generation algorithm
Tran s i t i on s Gen era t i on (Z , χ[G0〉 ,χδM

) {
2 f or each g l o b a l s t a t e Gi χ[G0〉 (Gi) = 1 ; {

f o r each g l o b a l s t a t e G′
j χ[G0〉

(
G′

j

)
= 1 ; {

4 t = χδM
(s′, x, s) ∗Gi ∗G′

j ;
i f t = 0 then con t inue ;

6 tx = ∃s′∃st
c u r r e n t−s t = Gi ;

8 next−s t = G′
j〈s

′ ← s〉 ;
f o r each minterm mi i n tx {

10 f o r each i n p u t xj ∈ X {
i f ∂mi

∂xj
6= 0 th en { / / deps on xj

12 i f mi ∗ xj 6= 0 then i n [j] = 1
e l s e i n [j] = 0 ;

14 }
e l s e i n [j] = −;

16 }
}

18 f o r each o u t p u t yi ∈ Y {
i f G′

j〈s
′ ← s〉 ∗ λM i 6= 0 then ou t [i] = 1

20 e l s e ou t [i] = 0 ;
}

22 }
}

24 }

formula:
∂f

∂xi

= fxi
⊕ fxi

(18)

wherefxi
, fxi

are, respectively, positive and negative algebraic
cofactor and symbol⊕ represents XOR operator. In lines 12,
13 and 15 is determined how signalxj affects the transition. In
lines from 18 to 21 output vector is being computed. Although
this is not presented in the algorithm, it is enough to execute
these 4 lines one time per next states′.

G. The Example of the Transformation

Fig. 1 presents statechart diagram which is, on one hand,
complex enough to show nearly every syntax feature and, on
the other hand, simple enough to give and discuss its state
diagram (fig. 7). The diagram, although very similar to FSM
state transition graph, exhibits statecharts perspective. States
are coded as a statechart global states, according to HiCoS
implemental scheme. Depicted events are both input, output
and internal, but input and output events are bolded. Names
in labels at the transitions, put before colon, are transitions
names (ex.t1), which correspond to the transitions from
the diagram in figure 1. Below is a FSM-description, where
abstract names of states (ex.G0, G1) were preserved and one
extra state (start) was added.

.i 1 0 G1 G2 0

.o 1 1 G1 G3 0

.p 8 1 G2 G4 1

.s 8 1 G3 G4 1

.r start - G4 G5 1
- start G0 0 - G5 G6 0
- G0 G1 0

VII. ROM- BASED SYNTHESIS

The presented implementation scheme (developed under
HiCoS project) allows the transformation of statechart di-
agrams into FSM-description. Using this scheme we can
implement FSMs in field programmable gate array devices.

Although most of the methods gathered and discussed in
[23] can be effectively used for synthesis of FSM implemented
with gates and flip-flops, they are not efficient for today’s
programmable structures, particularly for FPGA devices with
embedded memory blocks [23]. Such implementations would
benefit from a structure with a separate memory block which
is common in microprogrammable circuits. However, an ad-
vanced apparatus for design of address modifier is required
to support the synthesis based directly on the FSM transition
table.

A limited size of embedded memory blocks available in
FPGA devices is the main argument behind the application
of this structure. For example, Altera FLEX family devices
have 2048-bit EAB memory blocks. In [24] it is demonstrated
that the ROM-based implementation of an example sequential
circuit – thetbk benchmark – requires 16,384 bits of memory;
this considerably exceeds the resources available in the FLEX
10K device. An alternative implementation of this circuit with
LUTs requires 895 logic cells (a result from the Altera Quartus
II ver. 8.1 system); this also exceeds the resources available in
the FLEX 10K device, as it has only 576 cells. Thus, thetbk
implementation with this device must rely on the new FSM
architecture.

Clearly, a considerably larger number and size of embed-
ded memory blocks in the newer programmable Stratix and
Cyclone devices do not eliminate this problem, as there will
always be FSMs whose implementation requires more memory
than is available in the state-of-the-art programmable devices.

In case when efficient memory utilization is essential, the
FSM can be implemented in a structure that includes an
address register and ROM memory, in which the reduction
of ROM memory size is obtained by the introduction of an
additional block for address modification (Fig. 8).

m

r

p

u

v

w - u

w w < m + p

REGISTER

ADDRESS
MODIFIER

ROM

inputs

outputs

Fig. 8. FSM implementation with the addition of an address modifier

The address modifier can be synthesized with advanced
algorithms of functional decomposition, applied until recently
exclusively to synthesis of combinational circuits. Such an

STATECHART-BASED CONTROLLERS SYNTHESIS IN FPGA STRUCTURES WITH EMBEDDED ARRAY BLOCKS 21

REGISTER

ROM

ad resd s

r

m p

inputs

outputs

Fig. 9. FSM implementation using ROM memory

approach to address modifier synthesis was proposed in [25],
[24] (and extended in [14], [15]).

The implementation of an FSM shown in Fig. 8 can be
seen as a serial decomposition of the memory block included
in the structure of Fig. 9 into two blocks: an address modifier
and a memory block of smaller capacity than required for the
realization of the structure of Fig. 9. As a result, sequential
circuits requiring large-capacity ROM memories (and thus
not implementable in the architecture of Fig. 9) can be
implemented using a memory block with a smaller number
of inputs and an additional combinational logic block – the
address modifier.

Assuming FSM implementation with FPGA device, the
advantage of the proposed architecture lies in that the address
modifier can mapped into a network of LUT cells or into a
PAL matrix, while the memory block can be mapped into the
built-in EAB matrices. The application of this concept (without
the optimization of the state encoding) to the synthesis of the
earlier discussed benchmarktbk results in a design composed
of 333 logic cells and a 4096-bit embedded memory block,
which fits entirely in the limited resources of the FLEX
structure.

The promising results of other design experiments reported
in [24] confirm the effectiveness of the architecture of Fig. 8.
The results of the subsequent studies in this area are presented
in [14] and [15].

1) Example.: Partition description and partition algebra
introduced in [26] are applied to describe logic dependencies
in such an FSM.

Based on [26], for the FSM and functionT shown in Table
I, the characteristic partition is:

Pc = {1, 8, 11, 16; 3, 9, 10, 14; 6, 7, 13; 2, 4, 12, 15; 5}.

The partition

P1 = {1, 2, 3, 4, 5, 6, 7, 8, 9; 10, 11, 12, 13, 14, 15, 16}

is related to the partitionπ = {s1, s2, s3; s4, s5}, while the
partition

P2 = {1, 2, 4, 6, 7; 10, 11, 13, 14; 3, 5, 8, 9; 12, 15, 16}

is related to the set{π, θ}, andθ = {v1, v2; v3, v4}.
For set T = {1, 2, 3, 4, 5, 6} and partitions P1 =
{1, 2, 5; 3, 4, 6}, P2 = {1, 2; 3, 6; 4; 5}, the quotient partition
is:

P1|P2 = {(1, 2)(5); (3, 6)(4)}.

TABLE I
FSM TRANSITION TABLE AND T MAPPING

V

x1, x2 00 01 11 10

S v1 v2 v3 v4

s1 s1 s4 - s2

s2 - s4 s5 -
s3 s3 s3 s1 s2

s4 s2 s1 s4 -
s5 s3 s2 s4 s1

V

x1, x2 00 01 11 10

S v1 v2 v3 v4

s1 1 2 - 3

s2 - 4 5 -
s3 6 7 8 9

s4 10 11 12 -
s5 13 14 15 16

Let partitions in Π correspond to the state variables and
partitions in Θ correspond to the input variables. IfΠ =
{π1, . . . , πp} is the set of two-block partitions onS and
Θ = {θ1, . . . , θm} is the set of two-block partitions onV ,
while Pk is a partition on the setT which is related to either
πi or θj , thenp = {P1, . . . , Pm+p} is the set of all partitions
related to partitions{π1, . . . , πp, θ1, . . . , θm}.

Theorem. To achieve unambiguous encoding of address
variables and, at the same time, maintain the consistency
relation T with the transition function, two-block partitions
P = {P1, . . . , Pw} have to be found, such that:

P1 · P2 · . . . · Pw 6 Pc. (19)

Although some of the partitions for theP set can be selected
from the p set, the selection is made in such a way that the
simplest addressing unit (address modifier) is produced. Such
a selection is possible thanks to the method of [15], based on
the notion of r-admissibility, [26].

The encoding of state variables can be obtained using the
method of construction and coloring of weighted graphs, [15].

Assume thatu partitions{π1, . . . , πl} and {θ1, . . . , θu−l}
were chosen. These partitions correspond to the address lines
driven by a single variable, either a state variableq or an
external variablex. The result is the state and input symbol
partial encoding; e.g.,

a1 = q1, . . . , al = ql, al+1 = θ1, . . . , au = θu−l.

Corollary. Inequality(19) can be written as:

Pi1 · Pi2 · . . . · Piu
· Piu+1

· . . . · Piw
6 Pc, (20)

where PU = Pi1 · Pi2 · . . . · Piu
is related to the partitions

{π1, π2, . . . , πl, θ1, θ2, . . . , θu−l}.
The encoding of the state variables remaining after the

partial encoding (input variables, in general) can be obtained
from the following rules:

π1 · π2 · . . . · πl · π = π(0), θ1 · θ2 · . . . · θu−l · θ = θ(0),

where π and θ represent partitions corresponding to these
remaining state variables.π(0) as well asθ(0) are partitions
whose blocks are equal to their elements.

Inequality (20) can be transformed into:

PU · PG 6 Pc. (21)

Corollary. A partition PG has to be constructed, such that:

PG > PV , (22)

G. ŁABIAK, G. BOROWIK22

wherePG = Piu+1
· . . . ·Piw

and PV is related to the partition
set{π, θ}.

PartitionPV can be constructed in the following way:

PV = PS · PVθ
, (23)

wherePS is the partition related toπ(0) on the set of statesS,
andPVθ

is the partition related toθ.
The triple〈PV , E1, P1〉 – whereP1 is a relation representing

incompatibilities in quotient partitionPU |Pc on the setT
and E1 is the set of pairs in the relationP1 – is a multi-
graphM1(PV , E1, P1). Relation of incompatibility in quotient
partitionPU |Pc is a relation among all elements in each block
of the partition separately.

The coloring of theM1 multi-graph determines thePG

partition.
The value of

µ = |U |+ ⌈log2(χ(M1))⌉ (24)

determines the size of the required memory, whereχ(M1)
denotes the chromatic number of theM1 multi-graph.

The size of the required memory is equal

M = 2µ · (r + p). (25)

In the case ofµ > w, a new partitionP ′
V can be constructed.

Then,PV has to be multiplied by appropriately chosen two-
block partitions related to those which are generated by input
variables from theU set. In that case the result is a non-disjoint
decomposition, [15].

Then, the size of the required memory is equal

M = 2w · (r + p). (26)

VIII. E XPERIMENT RESULTS

As it was stated FSM-based statecharts are transformed
into FSM KISS format. The number of resulting FSM ele-
ments (i.e. states and transitions) grows exponentially. Table
II presents syntax properties of the controllers both statecharts
and FSMs. The controller calledReaWW is described in
detail in section 4. The statechart diagram of this controller
covers nearly all main syntax feature of statechart formalism.
Equivalent FSM consists of 33 transitions and 263 states. Two
first controllers, respectively,demo1anddemo2, correspond to
diagrams from figures 1 and 4.

TABLE II
SYNTAX PROPERTIES OFCONTROLLERS

statecharts FSMs
name #st #tr #seq #aut #hier #in #out #st #tr

aut whist depth
demo1 8 6 4 0 3 1 1 8 9
demo2 3 2 1 0 1 1 4 5 6
Garage 8 7 3 0 2 6 3 14 49
TVrm 8 8 4 1 3 8 5 12 55

Reactor 20 19 8 3 3 10 15 137 986
ReaWW 22 15 9 0 4 10 9 33 263

where abbreviations are:st – states,tr – transitions,seq aut– sequential
automata,aut whist– automata with history,hier depth– hierarhy depth,in

– inputs,out – outputs

Table III presents the results of FSM synthesis according
to the algorithm described in section 5. BlockG corresponds
to block ADDRESS MODIFIERfrom figure 8, and blockH
corresponds to block calledROM. The number of bits of the
memory blocks (#bit) is calculated according to formula:

#bit = 2#in ·#out, (27)

where#in is the number of address bits and#out is the length
of the memory word.

TABLE III
RESULT OFDECOMPOSITION AS AFSM

block G block H
name #in #out #cube #bit #in #out #cube #bit

demo1 4 3 7 48 3 4 7 32
demo2 3 2 5 16 2 6 4 24
Garage 9 2 38 1024 6 10 27 640
TVrm 10 4 36 4096 8 11 45 2816

Reactor 16 5 433 327680 11 27 534 55296
ReaWW 13 2 57 16384 9 19 87 9728

Table IV compares results of the synthesis from before
ROM-based synthesis (before) and after synthesis (after).
Implementationbefore ROM-based synthesis is realized ac-
cording to idea from figure 9 and the number of memory bits
(#bit) is calculated as follows:

#bit = 2(#in+⌈log2(#tr)⌉) · (#out + ⌈log2(#tr)⌉), (28)

where #in and #out are, respectively, number of inputs and
outputs to the controller and#tr is the number of transitions
in FSM. Number of bits (#bits) after synthesis is a simple sum
of memory bits of blocksG andH from table III. The gain in
memory bits is calculated according to the following formula:

gain =
#bitbefore −#bitafter

#bitbefore

· 100%. (29)

Obtained gain reaches more than 90%, especially in complex
examples(!). The gain is so huge that decrease in memory bits
is better to express bydecreasing ratio:

decreasing ratio =
#bitbefore

#bitafter

. (30)

The more complicated controller, the decrease in memory bits
is bigger and is even tenfold or more!

TABLE IV
COMPARISION: ENCODED FSM BEFOREDECOMPOSITION ANDAFTER

before after gain dec.
name #in #out #q #cube #bit #bit % ratio
demo1 1 1 3 9 64 80 -25.00 0.8
demo2 1 4 3 6 112 40 64.29 2.8
Garage 6 3 4 49 7168 1664 76.79 4.3
TVrm 8 5 4 55 36864 6912 81.25 5.3

Reactor 10 15 8 986 6029312 382976 93.65 15.7
ReaWW 10 9 6 263 983040 26112 97.34 37.6

STATECHART-BASED CONTROLLERS SYNTHESIS IN FPGA STRUCTURES WITH EMBEDDED ARRAY BLOCKS 23

IX. CONCLUSION

The idea of statechart diagram synthesis through FSM
transformation presented above lies in the decomposition of
the combinational section of the FSM into two modules:
an address modifier and a ROM memory. In general, it is
possible to view the address modifier and the memory as sepa-
rate combinational blocks and implement them independently,
applying different strategies for decomposition of these two
components. In particular, an alternating application of serial
and parallel decomposition has been shown to be an effective
strategy to design a structure with both logic cells and EMBs.

Presented synthesis method seems to be very attractive
yet another implementation scheme in modern programmable
structures equipped with EMBs. Obtained results shows that
the method is especially efficient in case of complex con-
trollers.

REFERENCES

[1] Adamski M. and Wȩgrzyn M., “Design of reconfigurable logic con-
trollers from petri net-based specifications,” inDiscrete-Event System
Design - DESDes ’09 : preprints of the 4th IFAC Workshop, University
of Valencia, University of Zielona Góra. Gandia Beach, Hiszpania: [B.
m.], 2009, pp. 233–238.

[2] G. Borowik, T. Łuba, and P. Tomaszewicz, “A notion of r-admissibility
and its application in logic synthesis,” inDiscrete-Event System Design
- DESDes ’09 : preprints of the 4th IFAC Workshop, University of
Valencia, University of Zielona Góra. Gandia Beach, Hiszpania: [B.
m.], 2009, pp. 233–238.

[3] R. Wiśniewski,Syntheis of Compositional Microprogram Control Units
for Programmable Devices. Zielona Góra: University of Zielona Góra
Press, Poland, Nov. 2009.

[4] D. Harel, “Statecharts: A Visual Formalism for Complex Systems,”
Science of Computer Programming, vol. 8, pp. 231–274, 1987.

[5] Unified Modeling Language Specification. Version 1.4.2. ISO/IEC
19501, Object Management Group, OMG, 250 First Avenue,
Needham, MA 02494, U.S.A., Apr. 2005. [Online]. Available:
http://www.omg.org/cgi-bin/doc?formal/05-04-01

[6] D. Drusinsky and D. Harel, “Using Statecharts for Hardware Description
and Synthesis.”IEEE Transaction on Coputer-Aided Design, vol. 8,
no. 7, pp. 798–807, Jul. 1989.

[7] D. Drusinsky-Yoresh, “A State Assignment Procedure for Single-Block
Implementation of State Chart.”IEEE Transaction on Coputer-Aided
Design, vol. 10, no. 12, pp. 1569–1576, Dec. 1991.

[8] S. Ramesh, “Efficient Translation of Statecharts to Hardware Circuits.”
in Proceedings of Twelfth International Conference On VLSI Design,
Jan. 1999, pp. 384–389.

[9] STATEMATE Magnum Code Generation Guide., I-Logix Inc., 3 River-
side Drive, Andover, MA 01810 U.S.A., 2001.

[10] K. Buchenrieder, A. Pyttel, and C. Veith, “Mapping statechart models
onto an FPGA-based ASIP architecture.” inProc. EURO-DAC ’96, Sep.
1996, pp. 184–189.

[11] G. Łabiak, “HiCoS Homepage,” http://www.uz.zgora.pl/˜glabiak, 2004.
[Online]. Available: http://www.uz.zgora.pl/˜glabiak

[12] ——, “From UML statecharts to FPGA - the HiCoS approach,” in
Proceedings of Forum on specification & Design Languages – FDL’03,
Frankfurt am Main, Sep. 2003, pp. 354–363.

[13] ——, “From statecharts to FSM-description - transformation by means
of symbolic methods.” inDiscrete-Event System Design - DESDes ’06.
A proceedings volume from the 3rd IFAC Workshop, Rydzyna n. Leszno,
Oct. 2006, pp. 161–166.

[14] G. Borowik, B. J. Falkowski, and T. Łuba, “Cost-efficient synthesis
for sequential circuits implemented using embedded memory blocks of
fpga’s,” 10th IEEE Workshop on Design and Diagnostics of Electronic
Circuits and Systems, pp. 99–104, 2007.

[15] G. Borowik, “Improved state encoding for fsm implementation in fpga
structures with embedded memory blocks,”Electronics and Telecommu-
nications Quarterly, vol. 54, no. 1, pp. 9–28, 2008.

[16] M. von der Beeck, “A Comparison of Statecharts Variants,” inProc.
of Formal Techniques in real-Time and Fault-Tolerant Systems, Third
International Symposium, ser. LNCS. Springer-Verlag, Sep. 1994, pp.
128–148.

[17] M. Adamski, “Parallel Controller Implementation using Standard PLD
Software.” inFPGAs, W. Moore and W. Luk, Eds. Abingdon EE&CS
Books, Oct. 1991, pp. 296–304.

[18] G. Łabiak, The use of hierarchical model of concurrent automa-
ton in digital controller design, in polish, ISBN: 83-89712-42-3, ser.
Prace Naukowe z Automatyki i Informatyki. Zielona Góra: Oficyna
Wydawnicza Uniwersytetu Zielonogórskiego, 2005, vol. VI.

[19] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
P. Stephan, R. Brayton, , and A. Sangiovanni-Vincentelli, “SIS: A
System for Sequential Circuit Synthesis,” Department of Electrical
Engineering and Computer Science, University of California, Berkeley,
Department of Electrical Engineering and Computer Science, University
of California, Berkeley, CA 94720, Tech. Rep. UCB/ERL M92/41, May
1992.

[20] F. Somenzi, “CUDD: CU Decision Diagram Package Release
2.4.0.” WWW, Feb. 2004, department of Electrical and Computer
Engineering University of Colorado at Boulder. [Online]. Available:
http://vlsi.colorado.edu/ fabio/CUDD/cuddIntro.html

[21] G. Łabiak, “Symbolic States Exploration of UML Statecharts for Hard-
ware Description,” inDesign of Embedded Control Systems, M. A.
Adamski, A. Karatkevich, and M. Wȩgrzyn, Eds. Springer, 2005, pp.
73–83.

[22] J. E. Hopcroft and J. D. Ullman,Introduction to Automata Theory,
Languages and Computation. Reading MA: WAddison-Wesley, 2000.

[23] T. Łuba, G. Borowik, and A. Kraśniewski, “Synthesis of finite state ma-
chines for implementation with programmable structures,”Electronics
and Telecommunications Quarterly, vol. 55, no. 2, 2009.

[24] M. Rawski, H. Selvaraj, and T. Łuba, “An application of functional
decomposition in rom-based fsm implementation in fpga devices,”
Journal of Systems Architecture, vol. 51, pp. 424–434, 2005.

[25] H. Selvaraj, M. Rawski, and T. Łuba, “FSM Implementation in Embed-
ded Memory Blocks of Programmable Logic Devices Using Functional
Decomposition,” inProc. of International Conference on Information
Technology: Coding and Computing, Las Vegas, Apr. 2002, pp. 355–
360.

[26] J. A. Brzozowski and T. Łuba, “Decomposition of boolean functions
specified by cubes,”Journal of Multi-Valued Logic & Soft Computing,
vol. 9, pp. 377–417, 2003.

G. ŁABIAK, G. BOROWIK24

