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Abstract—Classification is an important task in image analysis.
Simply recognizing an object in an image can be a daunting step
for a computer algorithm. The methodologies are often simple
but rely heavily on the thresholding of the image. The operation
of turning a color or gray-scale image into a black and white
image is a determining step in the effectiveness of a solution.
Thresholding methods perform differently in various problems
where they are often used locally. Global thresholding is a difficult
task in most problems. We highlight a pseudo Bayesian and a
linear regression global thresholding methods that performed
well in an engineering problem. The same approaches can be
used in biomedical applications where the environment is better
controlled.
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I. INTRODUCTION

CLASSIFICATION is an important task in image analysis.
Simply recognizing an object in an image can be a daunt-

ing step for a computer algorithm. Images come with variation
and noise. Classification is a field that evolved significantly
in recent years due to the interest in pattern recognition and
machine learning. While statisticians developed the field of
Statistical Classification, engineers, physicists and computer
scientists developed Data Algorithmic approaches that do not
require modeling. Both approaches lead to successes and
failures. Classification is applied in many fields. In medical
imaging, statistical methods can be used to classify brain
tissue in magnetic resonance (MR) images [21]. Manual
recognition by a medical expert of the three brain tissue
types, white matter, gray matter, and cerebrospinal fluid, is a
time consuming task. The images are three dimensional, and
the volume of data involved is large. An example of a data
algorithmic approach in classification is the use of acoustic
emission for the investigation of local damage in materials
and the application of neural networks to the study of the
acoustic signals [26]. In the mid 1980’s, neural networks, along
with decision trees provided two new powerful algorithms for
fitting data. Breiman (2001) [15] argues for the goodness of the
data algorithmic approach, using examples of large problems
he encountered as a consultant. Classifiers from both schools
have been compared on many problems and no single classifier
outperforms the others. The classifier performance depends
greatly on the characteristics of the data. To take advantage
of the strengths of both methods, Osl et al. (2008) [19]
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propose an algorithm that combines a logistic regression model
with a non-parametric classification method, the k-nearest
neighbors. In this article we present probability models for
classification problems in image analysis. Neural Networks
have been consistently applied to one problem, when in fact
a simple probability model provided a performing solution.
We use one of the examples to highlight the need for good
thresholding and the difficulty in obtaining performing global
thresholds. We then highlight a pseudo Bayesian and a linear
regression global thresholding methods that performed well in
an engineering problem. The same approaches can be used
in biomedical applications where the environment is better
controlled.

II. PROBABILISTIC SOLUTION FOR A CHARACTER
RECOGNITION PROBLEM

A pattern recognition problem that has been worked on
extensively is the recognition of characters in license plates. A
licence plate recognition system is designed for the automatic
identification of a vehicle through its license plate. The system
consists of a series of steps starting with the detection of a
vehicle, the capture of images and the recognition of characters
in the license plate. The last step involves image analysis in
three parts; (i) the localization of the license plate in the image,
(ii) the segmentation of characters from the localized license
plate region and (iii) the recognition of those characters. These
steps need to be performed automatically and require good al-
gorithms. Many solutions have been applied and most of them
use a learning approach. A historical data set is collected and
used in the training and validation of a selected algorithm. For
the character recognition, the data set consists of binary images
of license plate characters extracted from images of vehicles.
The characters are visually inspected and classified in the 36
possible classes {A, B, C, ..., X, Y, Z, 0, 1, ..., 8, 9}. Each set
of characters is split into a training set and a validation set.
The problem is to develop an algorithm that can recognize an
extracted character as one of the 36 possible characters. It is a
classification problem and the solution is known as an optical
character recognition algorithm. Many approaches are used in
the resolution of this problem. The most common ones are the
correlation-based template matching [22] and neural networks
[30]. Other methods are feature based, use pattern mapping
or are based on the Hausdorff distance. Binary classifiers are
also used as well as the Hidden Markov model.

A. Neural Network
Neural networks (NN) haven been applied successfully in

many prediction and classification problems. In license plate
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recognition, they are used to localize the license plate in the
image and to recognize the extracted characters of the plate.
A NN is trained to recognize by feeding it a set of inputs
to which the outputs are known. Training data is taken from
historical records. The NN processes the inputs one by one
and compares the resulting outputs against the desired outputs.
Errors are calculated and weights which control the strength
of network connections are adjusted at each iteration. The
training is stopped once the NN reaches a satisfactory level
of recognition. The set of final weights is used for processing
new data.

B. Template Matching

The other approach most used in character recognition
in license plate recognition is template matching. It is a
technique in image analysis for scanning an image template
until part of it matches an image at hand. There are many
variants in the application of template matching to character
recognition. In its simplest form, the image, in its binary form
is compared with same size parts of the template image using
a suitable metric. The metric can be the euclidian distance or
a correlation measure between the pixels of the image and the
template. The cross-correlation, a statistical measure, can be a
metric for template matching. Template matching is a method
based on the minimization of a distance between two images.

C. A Simple Probabilistic Solution

Let Z be a random variable that represents statistical
features of the character in a binary image processed for
recognition. In a search for a performing statisticZ, Aboura
(2008) [11] arrived at the conclusion that the values of the
pixels in the binary image hold all the information needed to
recognize the character.Z is defined as the multidimensional
vector of the values of all the pixels in the image. Each of
these values is either 0 or 1, the input image being binary.
For each pixel, [11] applies the Bernoulli probability model
θZi

i (1 − θi)
1−Zi , Zi being the value ofZ at pixel i. Making

the assumption of conditional independence of the pixel values
given an image, the likelihood function is

L(θi(C)) = Prob(Z|θi(C)) =

|Z|∏

i=1

θZi

i (1 − θi)
1−Zi (1)

where |Z| is the cardinal, or vector size ofZ. |Z| equals
the total number of pixels in the image. To estimate the
proportion θi(C) for pixel i in images of characterC, a
number of approaches are available, among them the average,
and maximum likelihood estimator:

θ̂i(C) =

NC∑

j=1

xi,j/NC (2)

whereNC in equation (2) is the size of the training set for
characterC, andxi,j = {0 or 1} is the value of pixeli for
image j of the training set. This is done for each character
C. From a computational point of view, the assessment of the
likelihood parameters is very simple. For each characterC,
all the images of the training set are added. They are matrices

of the same size. The resulting matrix sum is then divided by
the size of the set,NC , automatically providing a matrix of
estimates[θ̂i(C)]

|Z|
i=1. This is a simple operation, inexpensive

computationally, that replaces the training of a neural network.
Figure 1 shows the matrix[θ̂i(C)]

|Z|
i=1 for characterC = K.

Fig. 1. Likelihood image of character K

Each value of the pixeli of the image in Figure 1 is the
estimate0 ≤ θ̂i(K) ≤ 1. It is the estimate of the parameter
of the Bernoulli model of equation (1) for pixeli, for character
K. Values of 1 signify that the corresponding pixels are always
present in the foreground ofC (in black in Figure 1). Values
0 mean that the corresponding pixels are always background
in C (in white in Figure 1). The different shades of gray in
between correspond to pixelsi that are present inC with a
probability 0 < θ̂i(C) < 1. One observes that the K in the
image is not a perfect one. The extracted images of characters
are most often taken at angles and subject to many sources
of noise and deformation, making the problem a stochastic
one. The image is the addition of many images, and the
variation is captured in the summation. The colors of the image
in Figure 1, presented for illustration, do not show all the
nuances in the values. But the matrix[θ̂i(C)]

|Z|
i=1 is computed

with double precision accuracy and provides estimates of the
probabilities of the foreground existence.

Once the likelihood function is constructed, it is used to
recognize characters in a simple operation. Letz be the
realization of the statisticZ for a binary image that has
received similar cleaning, cropping and resizing as have the
images of the training set. Then

Prob(C|z) =
Prob(z|C)Prob(C)

∑S=9
S=A Prob(z|S)Prob(S)

(3)

where Prob(z|C) is assessed from the model of equation (1).
The posterior probability distribution of equation (3) ranks the
charactersA, B, . . . , X, Y, Z, 0, 1, . . . , 8, 9 for their likelihood
of being the character in the image being treated. The character
with the highest posterior probability is selected. This method
provides a full probabilistic approach. To further improve the
speed and increase the accuracy, we note that maximizing the
product of two bounded positive values is equivalent to maxi-
mizing their sum. Ignoring any prior probability influence, the
score functionf(C) of equation (4) is used to determine the
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most likely character candidate:

max
C=A,B,...,9

f(C) =

|Z|∑

i=1

{θ̂i(C)zi + (1 − θ̂i(C))1−zi} (4)

This simple and fast method yielded excellent results. As such,
it fails to distinguish fully between some characters like 2 and
Z, 5 and S, 1 and I, B and 8, and O, 0, D and Q. However,
using the same logic and applying it exclusively to parts of
the image, a 97% reliability was reached.

III. STATISTICAL ANALYSIS OF A LOCALIZATION SIGNAL

License plate numbers show frequencies that lead them-
selves to a spectral analysis. Parisi et al. (1998) [28] propose an
application of theDiscrete Fourier Transform(DFT) to find the
license plate. DFT is a transform for Fourier analysis of finite-
domain discrete-time signals that can be computed efficiently
in practice using aFast Fourier Transform(FFT) algorithm.
The authors in [28] scan the image horizontally and vertically
and use the average periodogram estimate of the signal as a
statistic to detect the license plate region. Acosta (2004) [4]
proceeds similarly and computes the periodogram estimate
using the FFT, for each row to locate vertically, then each
column to locate horizontally. Rather than using the whole
range of frequencies, the author in [4] computes the average
of the periodogram over some frequencies where the license
plate signal is expected to dominate. We introduce a formal
statistical analysis of the localization signal.

A. Image Signal Data

The DFT is used in signal processing to analyze the fre-
quencies contained in a sampled signal. In our approach [10],
the original image is scanned with a small window that slightly
overestimates the license plate size. The study was done on
images taken for vehicles within a certain distance. This gives
a fairly good estimate of the size of the license plate in the
image. The scanned region was taken to be 30 x 120 for 637
x 480 images. The scan window starts at the upper left corner
of the image and is moved 5 pixels at a time to the right until
it reaches the end of the image. It is then lowered 5 pixels and
moved again to the right, and so on, until the whole image is
scanned. In each iteration, the original image in the window is
transformed into gray scale, G=.2989*R+.5870*G+.1140*B,
using the RGB components of the window image. Hysteresis
thresholding [8] is applied to obtain a binary image of the
scanned window. Hysteresis thresholding was found to be the
best in highlighting characters in a license plate image region,
if applied locally. That is if the size of the thresholded region
is not too big, which happened to be near perfect in our case.
We observed this fact empirically over thousands of license
plate regions of size 30 x 120. Once thresholding is applied,
the columns of the resulting binary matrix are summed up
and normalized by the height of 30, to provide the discrete
signalS for that scanned region, over the 120 discrete points
representing the pixels on the x-axis. Figure 2 shows the signal
of a license plate region.

Fig. 2. SignalS of the scanned region

The DFT of the signalS = {S(j), j = 1, . . . , 120} is
defined in equation (5):

Y (k) =

120∑

j=1

S(j) e−2πi(j−1)(k−1)/N k = 1, . . . , 120 (5)

or Y (f) = Y (k) wheref = k/120. The power spectrum is
a measurement of the power at various frequencies, defined
in this case asP (f) = |Y (f)|2/120. Due to its symmetry,
the curveP (f) (Fig. 3) is split in two to provide the power
function.

Fig. 3. Power spectrum of the image signalS

B. The Statistical Model

The behavior of the power spectrum of the scanned region
shows a significant increase in magnitude at some frequencies,
for scanned parts of the image that contain the license plate or
parts of it. This is due to the periodicity in the signal generated
by the characters of the license plate, as apparent in Figure
2. Summing the power at these frequencies allows for the
ranking of the scanned regions for the likelihood of hosting
the license plate. The regions with maximum summed power
are considered candidate regions. For example, [4] chooses to
sum the power of the FFT signal over a range of frequencies.
While this approach does work, it requires the specification of
the domain of frequencies over which to sum the power spec-
trum. This domain may change from one recognition system
deployment to another. We introduce a statistical procedure
that does not require the specification of the power spectrum
range. We define functions of the power spectrum and analyze
them statistically using probability models built with historical
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data. Using likelihood ratio tests, we determine whether each
scanned region is a candidate. Bayesian posterior ranking of
scores allows us to determine areas in the image in which the
license plate is located.

1) Statistics of the Signal:Several images were used as
historical data. Each image was visually inspected for the
existence of a car in it. For each scanned region, we con-
sider the power spectrum functionp(f) = P (f)/120, f =
.025, .0333, . . . , .5083 as being the range of the power function
divided by 120. The frequencies correspond tok = 3, . . . , 61,
and the division by 120 was arbitrary and does not affect the
results. We compute the following five statistics:

• Strength of the Signal: The strength of the signal is
the summation of the power spectrum over the range of
frequencies, i.e.SS =

∑
f p(f).

• Normalized Maximum Amplitude: We consider the max-
imum amplitude of the power spectrum divided by the
strength,MS = maxf p(f)/SS.

• Frequency of Maximum Amplitude: LetFM = f̂ such
that p(f̂) = MS.

• Frequency Center: We compute a statistic and call it the
frequency centerFC =

∑
f (f ∗ p(f))/SS. It is a power

weighted average of all the frequencies.
• Frequency Spread: The frequency spread is a measure of

variation of the frequency of the signal, weighted by the
power spectrum,FS =

∑
f (f − FC)2 ∗ p(f)/SS.

2) The Likelihood Model:Let the eventθ = 1 be the
event that the region has the license plate, and letD be data
that provides information aboutθ. By the laws of probability,
Prob(θ|D) ∝ Prob(D|θ)Prob(θ). The first step is to build the
probability modelL(θ) = Prob(D|θ), the likelihood function
of θ. This is done using the historical set of images. These
images are taken through the same steps that a scanned region
is: (i) gray scale conversion, (ii) thresholding, (iii) projection
of foreground to obtain a signal, and (iv) FFT and power
spectrum computations. The five statistics are computed to
form the dataD = (SS, MS, FM, FC, FS). It was found
that, except for FM, the Normal distribution is a reasonable
model for each of the statistics. The histogram of the frequency
of the maximum amplitude FM shows bi-modality. It is
modeled with a mixture of Normal distributions (Fig. 4).

Fig. 4. Frequency of maximum amplitude as a Mixture of Normals

Using conditional independence assumptions, we build the

likelihood modelL(θ) = Prob(D|θ), starting withθ = 1,

Prob(D|θ = 1) = Prob(MS, FM, FC, FS, SS|θ = 1) =

= Prob(FM |MS, SS, θ = 1)Prob(MS|SS, θ = 1) ×

Prob(FS|FC, SS, θ = 1)Prob(FC|SS, θ = 1) ×

Prob(SS|θ = 1).

Similarly, a large set of historical data on scanned regions
that are not license plate regions is gathered. Over 19,000
images of non plate data are collected and cut into 30 x 120
sections. The 5 statistics are computed and analyzed to obtain
Prob(D|θ = 0), the alternative likelihood.

C. Scores and Likelihood Ratios

The assessment of the likelihood function is the essential
part of the statistical methodology. OnceL(θ) is constructed,
it can be used in the selection of candidate regions for the
license plate. The candidate regions are found by maximizing
the likelihood;maxd Prob(d|θ = 1), whered is the data of the
scanned region, realization ofD. We ranked all the scanned
regions to obtain the first 100 regions with a descending score.
Figure 5 shows successive candidate regions for one image,
pasted together left to right and top to bottom for illustration.
The method performed relatively well for most images. In this

Fig. 5. Candidate license plate regions

example, the first nine regions with the highest scores contain
part of the license plate and are therefore successful in locating
the region of the license plate in the image. Supplemental
localization processing will extract the exact license plate
region using this first localization. But this approach did not
work for all images. It failed in a number of cases, for
example when there is a strong signal similar to that of a
license plate existing in the image. It failed in a non negligible
percentage of the images processed. The approach does not
use information about the alternative. It does not employ the
alternative likelihood model Prob(D|θ = 0). Conducting a full
Bayesian analysis, we arrived at a methodology that results in
a reliable localization of the license plate.

1) Bayesian Analysis:To rank all the scanned regions of
an image according to their likelihood of being the license
plate, a score is assigned to the area. The score is the posterior
probability Prob(θ = 1|d), computed for each scanned area as
follows:

Prob(θ = 1|d) =
1

δ
Prob(d|θ = 1)Prob(θ = 1) (6)

δ = Prob(d|θ = 1)Prob(θ = 1) + Prob(d|θ = 0)Prob(θ = 0).
It is not trivial, but possible, to provide prior knowledge for
the scanned regions. Texture and colors in the region can be
used to construct a prior probability. In our case, we choose to
ignore any differentiating prior knowledge, making the prior
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probabilities Prob(θ = 1) = Prob(θ = 0) = 1/2. This leads
to

Prob(θ = 1|d) =
Prob(d|θ = 1)

Prob(d|θ = 1) + Prob(d|θ = 0)
(7)

This is the posterior probability that the scanned region is the
license plate. Similarly, the posterior probability that the region
is not the license plate is

Prob(θ = 0|d) =
Prob(d|θ = 0)

Prob(d|θ = 1) + Prob(d|θ = 0)
(8)

Using this approach, the reliability of the localization process
was improved (Fig. 6).

Fig. 6. Candidate regions using the Bayesian approach

D. Locating the License Plate

In Figure 7, the upper-left corner location of these candidate
regions are dotted in a scattered plot over an area the size of
the original image. The larger concentration area of dots in this
plot corresponds to the license plate location in the image. This
pattern repeats itself in all images. To locate the license plate,

Fig. 7. Scattered plot of the upper-left corner of the candidate regions

additional steps are taken in [14], where the scatter points are
joined to form clusters and a statistical analysis is performed
on their binary images. A likelihood function is built and used
to determine precisely the location of the license plate region.
The overall approach yielded a 94% reliability in the case
of our data, based on a set of 1000 images. This approach
shows the applicability of a probability model to a signal in
the localization of a region in an image.

E. Importance of Thresholding

Image thresholding is a classification problem where the
pixels of an image are divided into two classes: foreground and
background. Thresholding creates binary images from grey-
scale ones by turning some pixels to zero (black) and the other

pixels to one (white). A digital image is a matrix of values
consisting of the colors of the pixels. For an×m image, letIi,j

represents the color of pixel(i, j), i = 1, . . . , n, j = 1, . . . , m.
In the red green blue (RGB) image color space,Ii,j can take
one of2563 = 16, 777, 216 possible colors. This range creates
an extremely large number of combinations of pixel values
making up the image. To work in this image space makes
it nearly impossible to have reasonable processing times. A
reduction in dimension is unavoidable and it comes first in the
form of a grayscale, or gray level, transformation. The color
image is reduced to a grayscale image through the application
of one of a number of transformations that can take the pixel
value from[0 255]3 to [0 255]. Even in this one dimensioned
pixel space, the application of some search algorithms can
be tedious and would require long processing times. In some
image analysis problems such as the search for an object in
the image, or the definition of a contour, the difficulty may
be greatly reduced by switching to a black and white image,
without too much loss in efficiency. In a black and white
image, each pixel can have only one of two values, 0 for black
and 1 for white, as compared to a whole interval[0 255], or
256 values for a gray pixel. When this difference is taken to a
n×m image, wheren andm are in the hundreds, it makes a
great difference. The operation of turning a gray-scale image
into a black and white image is done through thresholding. All
three steps in license plate recognition rely on thresholding,
or binarization, of the original image or parts of it. Many
approaches exist for plate localization and most achieve a good
result if the thresholding is adequate. Thresholding in license
plate recognition has often been done empirically and seldom
mentioned in the reporting of results. In [12], this topic is
discussed and a new thresholding method is introduced. In
the methodology we introduce here for the localization of the
license plate, we improve the accuracy and the speed of the
results using the thresholding method of [12]. In this article,
we review the new global thresholding method. But first we
introduce the topic in biomedical applications where it is often
conducted manually or semi-automatically.

IV. T HRESHOLDING IN BIOMEDICAL APPLICATIONS

To illustrate the thresholding problem, we take the image of
cells used in biomedicine (Figure 8a) and taken from the image
bank of the National Institutes of Health, US Department of
Health and Human Services [23]. The original image is in
color, the actin purple, the microtubules yellow, and the nuclei
green. And these are labeled in these cells by immunofluores-
cence. We first take the image through a grayscale transforma-
tion using the formulaJ = .2989 ∗R+ .5870 ∗G+ .1140 ∗B
on the RGB components of the image. Then we use a well
known thresholding method, the Otsu method [24] and apply
it to the grayscale image to obtain the black and white image
in Figure 8b. The Otsu method is a clustering-based method.
The algorithm assumes two classes of pixels, say foreground
and background. It then computes the optimal threshold that
minimizes the weighted sum of within-class variances of
the foreground and background pixels. This method gives
satisfactory results when the numbers of pixels in each class
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(a) Original Image (b) Otsu Thresholding

Fig. 8. Cell image (NIH [23])

are close to each other. The Otsu method still remains one
of the most referenced thresholding methods. In the case of
Figure 8a, it yielded an optimal threshold of 0.4275. To better
understand threshloding, we apply the simplest thresholding
method. The color image is first converted to a gray scale
image using the formulaJ = .2989∗R+ .5870∗G+ .1140∗B
on the RGB components of the image. In a simple approach,
thresholding at levelT ∈ [0, 1] means that all pixel values
J are classified as background (black=0) ifJ/255 < T and
foreground (white=1) otherwise1. The image is divided into
background and foreground using the threshold levelT . we
vary the thresholdT from its optimal value and set it to 0.10,
0.30, 0.70 and 0.90. The resulting black and white images are
show in Figure 9. Varying the thresholdT from 0 to 1 takes

(a) T=0.10

Threshold Level = 0.3

(b) T=0.30

(c) T=0.70 (d) T=0.90

Fig. 9. Different thresholds

the resulting image from an all white image to a completely
dark one. There is an ’optimal’ threshold level that separates
best the desired features in the image. In this example, the
Otsu level of 0.4275 seems to provide a good black and white
image, although ‘good’ here depends on the context, that is
the goal of the image analysis problem.

Another biomedical example requiring thresholding is the
automatic segmentation of the caudate nucleus (CN) region
from human brain magnetic resonance images (MRI). The

1The color black can be used to represent background or foreground,
depending on the convention adopted.

issue of automation is important in the analysis of MRIs.
Manual segmentation requires significant time on the part of
expert medical staff. In addition, manual inspection is prone to
human errors. In the case of this particular biomedical prob-
lem, existing solutions such as SnAP [29], a software package
for CN segmentation available in the public domain, require
manual input for a number of tasks including thresholding.
This highlight the importance of thresholding. It is a significant
step in any image analysis. All ensuing results depend on
the effectiveness of the separation of pixels in the image
before applying any search or localization algorithm. Figure
10 shows a 2D section of a MRI brain image, which comes in
color originally, and its corresponding Otsu thresholded binary
image.

(a) Original Image (b) Otsu Thresholding

Fig. 10. MRI brain image (NIH [23])

A. Local thresholding

A common problem with global thresholding is the changes
in illumination across an image. Parts of the image appear to
be brighter and some parts darker regardless of the objects
being photographed. This illumination can be natural or man
made and has to do with the angle of the shot, the time of the
day and other factors, some random. This variation of illumi-
nation renders the application of a global threshold difficult. A
commonly used solution is to apply thresholds locally. Instead
of having a single global threshold, the threshold is allowed to
vary across the image. The hysteresis thresholding approach
[8] is a local thresholding method that can be used efficiently
in a number of problems, for example in angiography where
vessel imaging is conducted after the injection of a radiopaque
substance [2]. Figure 11 shows the segmentation results ob-
tained for a retina image. The first column shows the original
image, the second the ground truth (hand segmentation) and
the third the segmentation result using Hysteresis thresholding.
A number of thresholding methods exist (see surveys [27], [18]
and [5]).

V. PSEUDOBAYESIAN GLOBAL THRESHOLDING

In license plate recognition, hysteresis thresholding per-
forms poorly when applied to the whole image. It is used
locally around the license plate area where it is ‘optimal’,
in that it brings out the characters in the foreground. In this
section, we review a global thresholding method [12] suitable
for license plate recognition. We call it a Pseudo Bayesian
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Fig. 11. The hysteresis thresholding approach (Condurache and Aach [2])

method as it mimics the use of a proper Bayesian method.
The solution was found accidentally while searching for a
probability model. It uses information from a color spectrum
histogram representation of the image. The notion of the
reduction of the number of colors in an image and their
representation in a histogram has been in use for some time
in a number of image analysis problems; detection of image-
to-image similarity (Chen and Wong 1999 [32]), in optimal
color composition matching of images (Hu and Mojsilovic
2000 [9]), tracking people in video surveillance (Lu and Tan
2001 [31]), tracking people (Piccardi and Cheng 2005 [20]).
A normalized geometric distance between two points in the
RGB space can be used to create clusters of colors. The
centers of the clusters define the major colors and these major
colors are ranked by the sizes of their respective clusters. The
image colors are reduced to a limited number of major colors
(for example, 15 to 100) without losing much accuracy on
representing an object in the image with those colors. We
use the same approach in defining a color histogram for each
image. This information in the image is treated as data, and
we mimic the Bayesian combination of prior information and
image data to provide an estimate of the ‘optimal’ thresholding
level of the image.

A. Prior information and image data

A set of images was studied. The license plate regions
in the images were identified visually and thresholded using
the hysteresis method. Then each license plate image was
run through the straightforward thresholding where a level
T ∈ [0, 1] separates the gray scale version of the image
into two sets{0, 1}. T was varied from 0 to 1, with .01
increments. The minimization of squared errors was used to
select thatT opt value that yielded a thresholded image that
most resembles the result of the hysteresis approach. This
T opt value is considered to be the ‘optimal’ threshold level.
The major color histogram is calculated from the image of a
vehicle. Letc represent the vector of colors on the x-axis of
the histogram. These are the major colors found in the image.
c is a vector of RGB colors. LetJ be its gray scale transform,
that isJ = .2989∗c(., 1)+.5870∗c(., 2)+.1140∗c(., 3), where
c(., 1), c(., 2) and c(., 3) are the RGB colors, respectively,
of the corresponding colorc. Figure 12 shows the resulting
histogram in the form of a probability distribution for the
intensities (gray colors) in an image.J is then sorted in a
descending order intou = {u1, . . . , un}, where ui > uj

for i > j, as shown in figure 13 where the colorsJ in the
histogram are theui’s, starting with the maximum major gray
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Fig. 12. Probability distribution of the major gray colors

color 250.18 and finishing with the smallest (darkest) gray
color, .298 in the example. There aren = 282 values in
the example. Note thatn can be set arbitrarily, depending on
the problem. A color image can possess a very large number
of colors. One can limit the number of major colors. In our
implementation, we accept as a many as 400 major colors.
In this fashion, most likely, all major colors in an image will
be captured by the color histogram. Given theui’s, the image
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Fig. 13. Histogram gray colors ranked in decreasing order

data is generated the following manner. LetRs = 1.6, . . . , 2,
with increments of.004. Let T (Rs) be the threshold value
um/255, such thatm is the firsti that satisfies equation (9),
as shown in figure 13.

m∑

i=1

ui >

∑n
i=1 ui

Rs
, (9)

Then these 101 image sampled values,T (Rs), Rs =
1.6, 1.604, . . . , 2, are the image data.

B. Pseudo-Bayesian thresholded image

The prior information is a discrete probability distribution
derived from historical data,p = {pi}, such thatpi =
Prob(T opt = Ti), Ti = 0, 0.01, , . . . , 1. The image data
T (Rs), Rs = 1.6, 1.604, . . . , 2 is rounded off to match the
discrete sample spaceTi = 0, 0.01, , . . . , 1, and its frequency
is summarized in a probability distributionq = {qi}, such
that qi = Prob(T (Rs) = Ti), Ti = 0, 0.01, , . . . , 1. In an
ad-hoc manner that mimics the combination of likelihood and
prior in Bayes’ theorem, we multiply these two distribution in
equation (10) to obtain a distributionQ:

Q =
p.q∑
i pi.qi

(10)
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Using this distribution, we generate an image we call a
Pseudo-Bayesian Thresholdedimage by simply threshold-
ing the original image for each threshold levelTi =
0, 0.01, , . . . , 1, and multiplying the image with the corespond-
ing Qi = pi.qi/

∑
j pj .qj , then summing all the resulting

images. This is the equivalent of taking the expected value over
the optimal threshold with the posterior distribution. Figure 14
shows an example of the resulting thresholded image.

Fig. 14. Pseudo-Bayesian thresholded image

The image in figure 14 has pixel values between 0 and 1.
To make it a fully thresholded image, we threshold again, this
time in the middle, by turning all pixels of value less than
0.5 into 0 and the others into 1. This approach yielded good
results. In about 89.8% of the cases, this thresholding gave a
high level of separation of the characters in the license plate.

VI. L INEAR REGRESSIONGLOBAL THRESHOLDING

The information contained in the image data used in the
pseudo Bayesian approach provides the major part of the
solution. However the method is ad-hoc and does not make
full use of the color information contained inJ . It uses the
intensities found in the image, but not the frequencies at which
these intensities exist in the image. To incorporate the full
color information, a formal statistical approach is adopted
by [12] in the development of a thresholding method based
on a linear regression model. A set of 9 explanatory variables
is used. The first source of explanation was the same one used
to generate the image data in the above thresholding method.
Instead of varyingRs from 1.6 to 2 and sampling within, the
intensity and therefore the thresholdT (Rs) is taken at 6 values
Rs = 4, 2.66, 2, 1.6, 1.33, 1.14. These variables provide the
information about the intensities in the image. To use the full
color information, the histogram values corresponding to the
intensities given by the color histogram are accumulated from
the smallest intensity to the highest. Then the three intensities
that provide the 25%, 50% and 75% of the accumulated sum
are used as the remaining 3 variables in the linear regression.
These 9 variables plus the intercept proved to be the most

effective regression in the case of the data. A training set of
200 images was used to estimate the model parameters. Figure
15 shows the performance of the model over the 800 images
test data. The method is compared to the Otsu method, which
performs poorly globally, to the optimal threshold assessed
manually and to a a fixed thresholdT = 0.5. Where the model
appears to perform poorly, the images were inspected visually.
Due to the varying color image composition, illumination and
brightness, more often than not the poor performance was not
as bad as the error in the model. All the 1000 images were
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Fig. 15. Thresholds for the validation data

inspected visually for each of the three thresholding methods.
The regression approach yields a 93.4% reliability figure in the
case of our data. Figure 16 shows the example of a thresholded
image using the regression approach.

Fig. 16. Linear Regression thresholded image

VII. PROBABILITY AND BAYES THEOREM

We call the first global thresholding approach a “Pseudo
Bayesian” solution. This is because we mimic the use of
Bayes theorem in an ad-hoc manner that works. We construct
a prior distribution from the data and combine it with data
from images in the same fashion Bayes theorem would use
that data in a likelihood function. We do that without having
constructed the probability model of the likelihood function.
The likelihood model is implied in the image, and the image
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dataq of section V-B is used as its values. This solution was
arrived at by accident, and it shows in fact that Bayes theorem
works wonders even when mishandled.

Bayes’ Theorem is a powerful inference tool, derived from
the laws of probability. In 1933, the Russian mathematician
Andrey Nikolaevich Kolmogorov introduced an axiomatic
approach,Grundbegriffe der Wahrscheinlichkeitsrechnung[1],
turning the probability concept into a mathematical theory.
Andrei Kolmogorov work set out the axiomatic basis for
modern probability theory. Kolmogorov organized a theory
Emile Borel [1871-1956] had created many years earlier by
combining countable additivity with classical probability. In
Kolmogorovs axioms and in his way of relating his axioms
to the world of experience, they were traces of the work of
many others such the work of Borel, the work of Maurice
Frechet [1878-1973], and that of Francesco Cantelli [1875-
1966], Alexander Chuprov [1874-1926], Paul Levy [1886-
1971], Wladyslaw Steinhaus [1887-1972], Stanislaw Ulam
[1909-1984] and von Mises [1883-1953] [7]. A Russian trans-
lation of [1] by G. M. Bavli, appeared in Moscow in 1936,
with a second edition, slightly expanded by Kolmogorov with
the assistance of A. N. Shiryaev, in 1974, and a third edition in
1998. An English translation by N. Morrison appeared under
the title Foundations of the Theory of Probability(Chelsea,
New York) in 1950, with a second edition in 1956 [7].

Probability theory is a modern mathematical theory, consid-
ered a subfield of measure theory. Probability models are used
to solve problems that have a relevant amount of uncertainty
in them. Bayes’ Theorem is a probability rule for inverse
probability computation. In what seems to be a simple law,
it contributed to the resolution of countless problems in
estimation, inference, and prediction. The formulation of the
theorem is due to Thomas Bayes [1702-1761] and was redis-
covered by Laplace [1749-1827] in 1774. Laplace also derived
the Law of Total Probability. This law is another important
probability derived rule, also used to compute the denominator,
or normalizing constant in Bayes theorem. Bayes’ theorem
allows the updating of probability in light of new information.
If P (E) is the initial probability for an eventE of interest,
such as “Optimal threshold value is 0.567” andD is the newly
acquired data, thenP (E) is changed intoP (E|D) through
Bayes’ Theorem to reconcile past and current information (See
Singpurwalla (2006) [25]):

P (E|D) =
P (E, D)

P (D)
=

P (D|E)P (E)

P (D)
. (11)

Bayes’ theorem is known as the “law of inverse probability”,
having the ability to assessP (D|E), one can turnP (E) into
P (E|D), sinceP (D) can be calculated using the law of total
probability [25]:

P (D) =
∑

i

P (D|Ei)P (Ei), (12)

where{Ei} represents an exhaustive and exclusive partition
of the set of all possible outcomes.

A. Bayes Theorem and Subjective Probability

Bayes theorem is a powerful tool, but it requires the spec-
ification of a prior distribution. In many problems, one starts

with P (E), called a prior probability, or as is often the case,
a prior distribution, and computesP (E|D), whereD is the
set of data.D often comes in pieces over time,(D1, D2, . . .)
such as radar measurements inTarget Tracking. Each time new
information Dj arrives,P (E|Dj , Dj−1, . . . , D1) is obtained
from P (E|Dj−1, . . . , D1) using Bayes’ theorem. This mech-
anism provides for a powerful recursive probabilistic updating
that proved successful in many problems. For example, in
target tracking, it is the basis of many effective algorithms
for tracking targets in all sorts of conditions [6]. However,
one must start withP (E). In a field like target tracking or
image analysis, data are abundant and the effect ofP (E) is
small and does not affect the solution much after a while.
For example, in the character recognition problem, we chose
a uniform prior in equation (3), that isP (C) = 1/36 for
any C. In the license plate region localization problem we
choseP (θ = 1) = P (θ = 0) = 1/2 (Eq. 6). It doesn’t
matter much as data takes over quickly. But when there is
little data, the subjective input weights in significantly on the
final answer. Some dictates the use ofSubjective Probability
in defining the prior. The approach is an axiomatic theory
for defining the meaning of probability that lead to the
development of theBayesianschool of statistics in the 20th
century. While mostly successful in the application of their
methods,Subjective Bayesiansencounter resistance to their
definition of probability (See Aboura (2009) [13]).

Bayes’ theorem is a probability law, and as such, it is
not subject to controversy. In the image analysis solution
we presented, we used Bayes’ theorem and therefore pre-
sented Bayesian solutions. This does not make us Subjective
Bayesians. Subjective Bayesians define probability as ‘per-
sonal’ probability. This is where the controversy occurs.

B. Subjective Probability

The meaning of probability took many forms over the course
of centuries. From James Bernoulli’s [1654-1705] notion of
probability, to Laplace’s [1749-1827] definition of probability,
to Venn [1834-1923] and Von Mises [1883-1953] frequentist
interpretation, to de Finetti [1906-1985] and Savage [1917-
1971] subjective probability, the meaning of probability has
been constantly questioned and continues to be. In the example
of a flip of a coin, the probability of 0.5 could be arrived
at through three possible reasonings. The first one uses the
symmetry of the coin and can be used in many other situations.
Not all situations lead themselves to this assessment. In the
second reasoning, the probability is taken to be the limit of the
frequency of the outcome if the coin is flipped infinitely in sim-
ilar conditions. This provides the basis for the frequentist view
of probability. While this definition of probability prevailed
for a long time and is liked by many in different scientific
fields for its rigorous definition, it lacks a major quality; it
does not apply to all situations. The idea of a ‘personal’
probability, or ‘subjective’ probability saw the day with the
work of Frank Ramsey [1903-1930] and Bruno de Finetti [3]
early in the 20th century in Europe, and that of Leonard
Jimmie Savage [16] in the United States in mid century. It was
developed over the course of decades, with its origin crossing
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centuries. The full theoretical axiomatic approach of Savage is
described in Degroot (1970) [17]. Aboura (2009) [13] argues
against the use of subjective probability. First the author
shows a case in bridge maintenance optimization where the
likelihood model for expert opinion can be developed leading
to a ‘good’ subjective prior distribution, then states the reason
for the inapplicability of the approach. The author reviews
the foundations of the definition of subjective probability and
highlights flaws of the theory. He concludes that there is no
convincing definition of probability and while the work of
de Finetti and Savage is admirable, probability still remains
to be defined properly.

VIII. C ONCLUSION

Converting an image into a binary image is a fundamental
step in image analysis. It has several applications in the
biomedical field. There is a large variety of methods, but the
problem of finding a global threshold remains in the case
of many problems. We highlight an approach based on the
application of a linear regression model where the explanatory
variables are color intensity informative variables extracted
from the original images. The method succeeds in the good
segmentation of the image in an engineering problem where
outdoor conditions increase the difficulty of separating the
foreground from the background. The purpose of this article
is to bring the success of the method to the attention of re-
searchers in the bio-medical imaging field. Simple approaches
can be used to develop effective global thresholding methods.
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