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at H(i, j) indicates that there is an edge existing between i-th 
row (variable node) and j-th column (parity check node). 

For NB-LDPC codes there is a weight on each edge of the 
Tanner graph. This weight is the matrix entry in the parity 
check matrix and is chosen from the finite field GF(q). So now 
for nodes defined over GF(q), a parity check m would require 
a following expression: 
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where N(m) is the set of variable nodes (representing possible 
codewords xj = [x0 x1 … x
–1]j) connected to the parity check m 
and amj ∈ GF(q), amj ≠  0. All operations are done in GF(q). 
MacKay showed that going from binary to non-binary field 
may reduce the number of cycles in the Tanner graph. This is 
one of the main reasons why it is expected that LDPC codes 
over non-binary fields should perform better than LDPC codes 
over the binary field. 

MacKay and Davey [5] also show that the average entropy 
of messages passed in the graph for non-binary LDPC codes 
falls faster than the average entropy of messages passed in 
graph for binary LDPC codes only for certain mean column 
weight. Although the procedure provided in [5] finds the mean 
column weight where codes over GF(q) would outperform 
codes over GF(2) it does not give any insight into the 
convergence properties of the decoding algorithm. 

However moving onto GF(q), q > 2, increases the state 
space of each node in the decoding graph by decoding over 
GF(q). In other words increasing the field order is comparable 
to increasing the memory of a convolutional code. 

In the framework of the DAVINCI project, ultra-sparse non-
binary LDPC codes are used that were designed in a Galois 
field GF(q) of order q = 64, which corresponds to the largest 
modulation order considered for wireless communications 
(i.e., 64 QAM — Quadrature Amplitude Modulation) in this 
project. The non-binary LDPC codes are described by a 
Tanner graph with regular and constant connection degree, 
with dv = 2 edges at the variable node side, and varying parity-
check connection dc depending on the desired code rate. To 
each edge, a non-zero value belonging to the Galois field 
GF(64) is assigned, in order to define non-binary parity check 
equations. The choice of the nonzero values is especially 
important to obtain good performance and requires an 
optimization strategy. This type of non-binary LDPC code is 
also referred to as cycle codes and has two main advantages: 

• Regular codes with dv = 2 are very sparse and the 
corresponding Tanner graphs have very large girths 
compared to usual binary codes graphs. As a 
consequence, iterative decoders show very good 
performance, especially at small to moderate codeword 
lengths. For example, the girth of a binary irregular 
LDPC code with length 
 = 848 bits and rate r = 1/2 is at 
most gb = 6, while the girth of a NB-LDPC code with 
same parameters is gnb = 14 when a good graph 
construction is used [9], [17]. 

• As for the code design, it has been shown in the literature 
[15] that the finite length optimization of non-binary 
cycle codes can be decomposed into two steps: (i) first 
build a Tanner graph with the maximum possible girth 

and the minimum number of cycles with minimal length, 
then list all 'short' cycles and the combination of short 
cycles which define the smallest trapping sets, (ii) 
optimize iteratively the choice of the non-zero values on 
the edges of the cycles, such that the local binary 
minimum distance computed on the set of cycles and 
trapping sets is maximized. This optimization procedure 
allows gaining performance both in the waterfall and the 
error floor region, compared to a random choice of the 
Tanner graph structure and of the non-zero values 
assignment. 

As for binary decoders, there are two possible 
representations for messages: probability weights vectors or 
LDR (Log-Density-Ratios) vectors. The use of the LDR form 
for messages has been advised by many authors who proposed 
practical LDPC decoders. The LDR values, which represent 
real reliability measures on the bits or the symbols are less 
sensitive to quantization errors due to the finite precision 
coding of the messages [14]. Also, LDR measures operate in 
the logarithm domain, which avoids complicated operations 
like multiplications or divisions. 

B. Decoding 

Improvement of the coding performance using NB-LDPC is 
related to a greater computing power needed for the decoding 
due to increased decoding complexity. As in all practical 
coding schemes, an important feature is the 
complexity/performance trade-off, it is very important to try to 
reduce the decoding complexity of non-binary LDPC codes, 
especially for high order fields GF(64). The base iterative 
decoder of non-binary LDPC codes is the Belief Propagation 
(BP) decoder over the Tanner graph representation of the 
code. The main difference with the binary BP decoder is that 
for GF(q) LDPC codes, the messages from variable nodes to 
check nodes and from check nodes to variable nodes are 
defined by q probability weights, or q–1 log-density-ratios. As 
a result, the decoder complexity scales as O(q

2
) per check 

node [21], which is too complex for practical applications. 
Computing the check node in the Fourier-domain reduces 

the complexity of the BP decoder to O(q log q) per check node 
[1], [9], but adapting the Fourier-domain decoder to practical 
implementation is tedious due to complicated operators like 
exponentials or real multiplications. 

Recently, sub-optimum decoders based on the 
generalization of the Min-Sum (MS) decoder have been 
developed [6], [18]. One of them is Extended-Min-Sum (EMS) 
algorithm [18] proposed for NB-LDPC codes [18], [19], [20]. 
A particularity of this algorithm is that it takes into accounts 
the memory problem of the non-binary LDPC decoders, 
together with a significant complexity reduction per decoding 
iteration. 

The core idea of the Extended Min-Sum (EMS) decoder is 
to only use a limited number of LLR (Log-Likelihood Ratio) 
values nm << q both for the storage of messages, and for the 
computation of symbol and check nodes. In the decoder the 
vector messages of the decoder (represented by LDR vector) is 
truncated to a limited number nm of values in order to reduce 
the memory requirements. This algorithm promises the best 
complexity/performance trade-off for LDPC codes in high 
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order fields, and the complexity scales as O(nm log(nm)) with 
nm << q. The performance loss compared to BP decoding is 
small (around 0.1 dB) to negligible, depending on the decoder 
complexity which is tuned by the value of nm. 

The NB-LDPC iterative decoding algorithms are 
characterized by three main steps corresponding to the 
different nodes: (i) the variable node update, (ii) the 
permutation of the messages due to non-zeros values in the 
matrix H and (iii) the check node update which is the 
bottleneck of the decoder complexity, since the BP operation 
at the check node is a convolution of the input messages, 
which makes the computational complexity grow in O(q

2
) with 

a straightforward implementation. 
Although interesting in terms of memory and computation 

reduction, the truncation of messages from q–1 to nm values 
obviously loses potentially valuable information that leads to 
performance degradation on the error rate curves. This loss of 
performance could be mitigated by using a proper 
compensation of the information that has been truncated. 
Before truncation to nm entries, which are assumed to be the 
largest reliability values, the values in a message are sorted in 
decreasing order. Because the concern is the development of 
low complexity decoders, a single scalar value γ was chosen to 
compensate for the q–nm truncated values. It is the simplest 
model that one can use. 

C. Modulation for q-ary channel codes 

There are basically two possibilities to combine modulation 
and coding: coded modulation (e.g. Trellis Coded Modulation 
(TCM)) and Bit-Interleaved Coded Modulation (BICM). 
While the former considers both operations jointly and is 
therefore theoretically superior for many cases, the latter is 
preferred in nearly all wireless communications systems due to 
its lower complexity. Additionally, it has been shown that even 
theoretically, the performance loss of BICM is insignificant 
[3]. 

For these reasons and since BICM is also used in all three 
reference systems, this scheme which is depicted in Fig. 1, is 
also applied to the q-ary channel codes. 

The channel encoder and decoder are described in [11]. The 

message K

qF∈u  is encoded into a codeword c = (c0, c1, …, 

c
-1) 
K

qF∈ , which is interleaved and mapped to QAM symbols. 

Moreover there are mapping and demapping 
transformations [10]. The mapping function µ(·) is responsible 
for assigning symbols out of a M-QAM constellation Ax to the 
interleaved code symbols which are taken out of a Galois field 
of order q. Since the cardinality of both sets is generally not 
identical, one has to gather m1 code symbols and map them 
onto m2 QAM symbols: 
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In order to have a bijective mapping, the number of 
elements on both sides must be equal, i.e. m1 code symbols out 
of Fq are mapped onto m2 M-QAM symbols, such that: 
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where ld(·) is log2(·), lcm stands for least common multiple 
and M = |Ax| is the number of constellation points. 

For common values of q and M, this gives the values for 
(m1, m2) as denoted in the following Table I [11]. 
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Fig. 1.  Transmitter and receiver structure for BICM; CP – Circular Prefix adder/remover; WGN - White Gaussion Noise adder. 

  

TABLE I 

VALUES FOR M1 AND M2 FOR DIFFERENT MODULATIONS AND GALOIS FIELD 

ORDERS 

M \ q 64 256 

2 (1,6) (1,8) 

4 (1,3) (1,4) 

16 (2,3) (1,2) 

64 (1,1) (3,4) 

256 (4,3) (1,1) 
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The mapping function hence gathers m1 code symbols to 

) ..., ,(  10 1 −= mbbb  and maps them onto m2 QAM symbols: 
 

))(µ ..., ),((µ  )(  ) ..., ,(  1m010 22
bbbµx −− === mxx  (4) 

 

For the following, a mapping from binary vectors to QAM 
symbols is considered. This is possible because the code 

symbols 
qic F∈  can be represented by their binary images 

) ..., , ,( 1,1,0, −piii ccc where p = 1dq and .F2, ∈jic  

Let 
x

M AF: ld

2 →χ be the mapping function, which assigns 

to each bit vector of length ldM a QAM symbol out of the 
constellation Ax. 

For each code symbol 
qnb F∈ , a vector of q APP (A 

Posteriori Probability) L-values Ln = (Ln,0, Ln,1, …, Ln,q–1) has 
to be calculated, with: 
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where αk are the Galois field elements, i.e. Fq = {αo, α1, …, 
αq-1}, and Zq = {0, 1, …, q–1} is a set of integers from 0 to 
q–1. 

Since generally more than one code symbol is involved in 
the mapping, in order to calculate this vector we require a 
marginalization: 
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where }α:{B kn

k

n b == b  is the set of all code symbol vectors 

) ..., ,( 10 1 −= mbbb  with the n-th component fixed to αk. 

It can assumed that all code vectors are equiprobable, i.e. 

,][ 1mqP −=b  and the channel is memoryless, i.e., p(y | b) = 
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For a flat fading channel, given by: 
 

( ) ( )0

2

0,CN~ ,µ

1 , ,1 ,0 ,


wx

miwxhy

ii

iiii

b=

−=+⋅= K
 (8) 

 

where hi is a channel coefficient, and CN(0, 
0) is a noise 
sample of complex Gaussian distribution with mean equal 0 
and variance 
0, there is the conditional probability density 
function (pdf) of the received signal: 
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which leads to the LLR vector: 
 

( )

( )
=













 −
−













 −
−

=

∑∏

∑∏

∈

−

=

∈

−

=

0

2

2

B

1

0 0

2

B

1

0 0

2

,

µ
exp

µ
exp

ln

n

k
n

m

i

ii

m

i

ii

kn




hy




hy

L

b

b

b

b

 

( )

( )

1 , ,1 ,0  ;1 , ,1 ,0

µ
exp

µ
exp

ln

1

B

1

0 0

2

B

1

0 0

2

0

2

2

−=−=













 −
−













 −
−

=

∑ ∑

∑ ∑

∈

−

=

∈

−

=

qkmn




hy




hy

n

k
n

m

i

ii

m

i

ii

KK

b

b

b

b

 (10) 

 

The cardinality of the set for the first summation is 
11 |B| −= mk

n q . Since the denominator does not depend on k, one 

can compute only the first term and then normalize such that 
Ln,0 = 0: 
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In the following, it is assumed that q = 64 and p = ld q = 6 , 
and let (αk,0, αk,1,…, αk,p-1) be the binary image of the GF 
element αk. 

For QPSK, one GF(64) symbols is mapped onto 3 QPSK 
symbols, i.e. m1 = 1 and m2 = (ld q) / 2 = 3 and hence the 
expression (1) simplifies to: 
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with 

),ααχ()α(µ 100 kkk = ),ααχ()α(µ 321 kkk = ),ααχ()α(µ 542 kkk =  

where ,0 ,5( , , )k kα αK is the binary image of the GF(64) symbol 

αk. 

For 64-QAM modulation, the mapping and demapping 
functions are especially simple since one code symbol 
corresponds to one QAM symbol, i.e., m1 = m2 = 1 and hence 
the formula (1) simplifies to: 
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For higher-order modulations, very similar expressions can 
be derived from the general formula (1). It should be noted 
here, that so far no efforts have been undertaken to optimize 
these mappings. 

The decoder expects as input parameter a truncated and 
sorted version of the LLR vector defined above. Given the 
LLR vector as a = (a0, a1, …, aq–1), first these values are sorted 
in descending order such that: 
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Next, only the greatest nm = nbMax values are kept and one 
subtracts a constant such that the last value is zero: 
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There is one such vector for each code symbol, i.e. for each 
codeword, there are 
 such vectors. Together with the 
truncated LLR vector, the permutation (π(0), π(1), …, 
π(nm–1)) is fed into the decoder. 

III. SIMULATIONS RESULTS 

In this section results of simulation research are presented 
that allow comparing the performance of DAVINCI codes in a 
function of their parameters. In the physical layer there are 
BPSK, QPSK, 16-, or 64-QAM modulation schemes and 
Additive White Gaussian Noise (AWGN) channel. The 
maximum number of iterations in the algorithm has been fixed 
to 30, and a stopping criterion based on the syndrome check is 
used. A LLR vector is truncated to 16 values. Simulations are 
done for single-carrier and OFDM transmission mode. The 
value γ that replaces the truncated ones in the LLR vector was 
chosen equal to 1. 

In Fig. 2 WER (Word Error Rate) is presented for 
DAVINCI codes of different codeword lengths Kbin = r·
·ld q 
and rate r = 1/2. The longer codewords, the better performance 
can be obviously obtained. The gain between the longest and 
shortest ones is about 1,6 dB at WER = 10

–2
. 

In Fig. 3 the WER of DAVINCI codes for OFDM 
transmission and different modulation schemes (QPSK, 16-, 
and 64-QAM) is shown. The relation between codeword 
lengths remains the same as described in the case of a single-
carrier transmission. Gains between Kbin = 48 and 1152 for 

each modulation schemes are listed in Table II. The longer 
codeword the more steep waterfall region of WER is obtained. 
In OFDM transmission mode DAVINCI codes are also 
efficient and may be successfully deployed in future mobile 
systems. 

IV. CONCLUSIONS 

Channel coding based on NB LDPC becomes an attractive 
solution for mobile radio systems. They can be seen as a 
patent-free competitor for turbo codes. 

Using the truncated messages, an efficient implementation 
of the Extended-Min-Sum decoder can be proposed, which 
starts to be reasonable enough to compete with binary 
decoders. The performance of the low complexity algorithm 
with proper compensation is a quite good approach for 
complexity reduction. 

The gain achieved by DAVINCI codes was found to vary 
with respect to the codeword length, coding rate and 
modulation order. The gain increases with an increase of the 
coding rate, or modulation order. On another hand, the gain 
increases when the codeword length decreases. This leads to 
the conclusion that DAVINCI codes are very promising 
solutions to achieve high spectral efficiency even in the 
challenging scenarios of short codeword lengths. 

 
 
 

 

Fig. 2.  WER in a function of Eb/N0 for DAVINCI codes of different 

codeword lengths for BPSK. 

  

TABLE II 

A GAIN FOR THREE MODULATION SCHEMES DUE TO INCREASE OF 

CODEWORD LENGTH BY 1104 BITS 

Modulation Gain at WER = 10–2 

QPSK 1,5 

16-QAM 2,3 

64-QAM 2,5 

 

 

Fig. 3.  WER in a function of Eb/N0 for DAVINCI codes of different 

codeword lengths and modulation schemes in OFDM transmission. 
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