
 

Semantic Sparse Representation of Disease Patterns
Artur Przelaskowski

Abstract—Sparse data representation is discussed in a context
of useful fundamentals led to semantic content description
and extraction of information. Disease patterns as semantic
information extracted from medical images were underlined
because of discussed application of computer-aided diagnosis.
Compressive sensing rules were adjusted to the requirements of
diagnostic pattern recognition. Proposed methodology of sparse
disease patterns considers accuracy of sparse representation to
estimate target content for detailed analysis. Semantics of sparse
representation were modeled by morphological content analysis.
Subtle or hidden components were extracted and displayed
to increase information completeness. Usefulness of sparsity
was verified for computer-aided diagnosis of stroke based on
brain CT scans. Implemented method was based on selective
and sparse representation of subtle hypodensity to improve
diagnosis. Visual expression of disease signatures was fixed to
radiologist requirements, domain knowledge and experimental
analysis issues. Diagnosis assistance suitability was proven by
experimental subjective rating and automatic recognition.

Keywords—Sparse representation, compressive sensing, infor-
mation theory, semantic information, disease pattern.

I. INTRODUCTION

THE problem of data representation is one of the most

critical issue concerning the realization of intelligence

machines which are able to solve real life problems [2].

Adjustment of signal or source data representation to appli-

cation requirements is a clue problem of many theories and

algorithmic solutions. General purpose is successful separation

of a signal content to manipulate it effectively.

More advanced signal study looks for information rep-

resentation intended to represent only such data which are

useful for the user/receiver. Data redundancy relates in that

case to signal components useless because of its irrelevant

meaning according to semantic information theory. Generally,

information means semantic content functional for epistemic

purposes. Floridi [10] defined semantic information as well-

formed, meaningful and veridical data.

Well-formed data often means sparse representation of sig-

nal content expressed by morphology with attached meaning

and veridicy. Structured, hierarchical and scalable representa-

tion well-fitted to specific domain knowledge may be realized

by sparsity of a whole signal representation or by sparse form

of semantic components useful for data analysis. Systematic

approach to the analysis of semantic features for spatial

information is intensively searched. Well-formed image data

with semantic sparsity of desired information is required for

many computational intelligence applications.

The role of effective information representation is ex-

tremely significant for computer medical applications, espe-

cially computer-aided diagnosis [12]. Human need computers
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in radiology mostly because of limited accuracy of radiological

diagnosis. Computer-based aiding tools are able to storage,

communicate, retrieve, emphasize, recognize and distinctly

visualize image-based diagnostic content. Because the key

constituents of diagnosis are the accurate detection and defin-

ing of the disease, full understanding and specific assessment

of image content including semantics of recognized objects,

mutual relations and accessible information complements is a

key issue of successful exploitation of imaging capabilities in

diagnosis.

For radiological applications, sparse signatures of disease

patterns, invariably identifying clue diagnostic information

across imaging conditions, cases and progress form are

searched. Enhanced pathology symptoms are recognized to be

interpreted according to diagnostic rules and procedures.

One of important subjects is subtle or hidden signal ex-

traction. Through expansions in local, scalable and adaptively

adjusted bases capability for signal energy packing with pre-

served localization across scales and subbands is realized.

Selection of specific decomposition atoms adjusted to crucial

image features allow target content modeling and extraction

through sparse data representation [9].

Sparse texture analysis is used for semantic component

selection. Identification of dominant morphological ingredients

is the most optimistic step for image analysis. Extracted texture

characteristics may be useful for specific pattern recognition.

Computer aided diagnosis often investigates subtle signatures

of pathology in a context of general content characteristics.

Numerical data analysis is used for sensing compliment of

human content assessment and interpretation. Thus formal-

ized medical knowledge is required for dominant component

recognition. Moreover, empirical knowledge from reference

database indexed by content is useful for comparative case

study. Numerical descriptors of image content resonant to

semantic image extent are designed according to structured

knowledge and following expert requirements [15]. The ex-

pected results are computational models of image semantics

formulating sparse representation of information.

The main contribution of this paper is outlined methodol-

ogy of sparse disease patterns. The concepts of compressive

sensing were adjusted to real diagnostic problem of acute

stroke diagnosis. We proposed and characterized sensing rules

based on accuracy, semantics and usefulness of sparse disease

patterns. Realized detection method of sparse stroke signatures

was verified by experimental subjective rating and automatic

recognition. Concluded remark is that semantic sparse repre-

sentation of medical images is useful for pathology extraction

and recognition.
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II. SPARSE DATA REPRESENTATION – THE PROBLEM

DEFINITION

Common practice of signal acquisition follows the basic

principle of the Nyquist-Shannon sampling theory defined for

frequency bandlimited signals. It states that perfect recon-

struction of a signal needs the number of signal samples or

measures that is dictated by its bandwidth. The number of

Fourier samples we need to acquire must match the desired

resolution of the signal. However, it is possible to reconstruct

signals of interests accurately and sometimes even exactly

from a number of samples which is far smaller than the

desired resolution of the signal, e.g. the number of acquired

measures. A few years ago, compressive sampling (or sensing)

theory has emerged which shows that super-resolved signals

can be reconstructed from far fewer measurements than what is

usually considered necessary [4]. Since we can sample signals

at roughly the ”information rate” rather than the Nyquist rate.

Compressive sensing emphasizes sparsity as very attractive

theoretical and practical signal property that has played and

continues to play a fundamental role in many fields of signal

processing applications.

Sparsity and, more generally, compressibility leads to effi-

cient data source modeling and separation, estimation, coding,

dimensionality reduction, feature extraction and pattern recog-

nition. Nowadays, sparse signal representation plays extremely

important role in many up-to-date theories and applications

[22]. In the field of medical imaging (according to current call

for papers of special issue IEEE Trans Medical Imaging1),

compressive sensing allows accurate recovery of an image

from far fewer measurements than the number of unknowns.

Moreover, it does not require a close match between the

sampling pattern and characteristic image structures giving

sparse structure essence estimates. Compact and sensible sig-

nal appearance is hot topic of medical imaging because its

transformative potential in major aspects of system design, al-

gorithm development, and preclinical and clinical applications.

For instance, data representation influences the generaliza-

tion error of kernel based learning machines like Support

Vector Machines (SVM) for classification [1]. In case of sparse

data representation, the generalization capacity of an SVM

trained by using polynomial or Gaussian kernel functions is

equal to the one of a linear SVM. It means that sparse data

representations reduce the generalization error as long as the

representation is not too sparse, as in the case of very large

dictionaries.

A. Basics of Sparsity

Strictly, a signal is sparse in relation to source di-

mension if most of its entries are (approximately) zero.

Let’s consider discrete signal f in finite-dimensional

subspace of R
N as a vector of N measurements:

f = [f1, f2, . . . , fN ]. A vector is exactly sparse if a finite

set of significant measurement indexes Λ = {1 ≤ i ≤ N :
fi 6= 0} is of cardinality #Λ = M ≪ N [23]. In that case

we can say that f is M–sparse, i.e. ||f ||0 = M (the number

1http://www.ieee-tmi.org/CallForPapers.html

of nonzero measurements of x is called l0 pseudo-norm of x:

||x||0).

Most real signals sampled or acquired are not sparse in

source space but they can be sparse after being decomposed

on a specific set of functions – elementary waveforms called

atoms. Appropriate transform domain is searched to make

signal representation as sparse as possible. Generally, it is

realized by signal expansion over dictionary of atoms, i.e.

possibly redundant collection D = {ϕi}
I
i=1 of unit-norm

vectors: ||ϕi||2 = 1 for all i such as span{ϕi} = R
N . If

{ϕi} are linearly dependent, the dictionary is redundant.

Optimized expansion in D leads to compact representation

of a large class of signals according to compressive sampling

concept. Signal f is synthesized as a linear combination of

M respectively adjusted atoms of D (according to ad-hoc or

more less formal method), such that

f =

M
∑

j=1

ajϕij (1)

Decomposed representation of f in D is a vector of coefficients

a = [a1, a2, . . . , aM ] ∈ R
N and a =< f , ϕij >.

Flexible expansion atoms are adaptively adjusted to mor-

phological signal content according to the prior knowledge

and signal sparsity requirements or assumptions. Sparse signal

expansion in specific Φ = {ϕij}
M
j=1 means that only a few

atoms of D are active to describe f . The signal is modeled only

with the atoms well approximating its investigated features.

Formally, exact (interpolated) sparse representation problem

is defined as solution of

min
a

||a||0 subject to f =

M
∑

j=1

ajϕij (2)

what means finding the sparsest representation of f over D
[13]. Optimization procedure design tries to answer how to

construct such set of approximants when the approximated

function is known.

In practice, many signals of interests are not exactly sparse

in expansion over any basis because of any acquisition limita-

tions, specificity of analyzed semantic information etc. Instead,

they may be weakly sparse or approximately sparse that the

sorted magnitudes of representation coefficients decay quickly

according to different forms of power law.

A sparsest approximation of f that achieves error ǫ ≥ 0
(error sparse approximation) is found by solving

min
a

||a||0 subject to ||f −
M
∑

j=1

ajϕij ||2 ≤ ǫ (3)

Alternatively, best approximation problem with other con-

straints is formulated as

min
a

||f −

M
∑

j=1

ajϕij ||2 subject to ||a||0 ≤M (4)

The purpose is to find the sparsest representation of f using

assumed number of M atoms (minimizing approximation error

with assumption of M–sparse approximation).
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Unfortunately, given an arbitrary redundant dictionary D
and a signal f , it is NP-hard to solve the sparse representation

problem. But compressed sensing proposes strong theoretical

and algorithmic support for methods that investigate sparse

solutions. One of important issues is that natural and most

of interest dictionaries are far from arbitrary. Orthogonal

transform bases give unique solution to sparse problem. The

coherence of a dictionary is a measure of dictionary useful-

ness. Large, incoherent (with small coherency) dictionaries

make the solution of spare problem more predictable.

B. Proposed Methodology of Sparse Disease Patterns (SDP)

Disease patterns are searched as a descriptors of specific

diagnostic information. Verified hypothesis is that sparse rep-

resentation of image data is useful for pathology extraction

and recognition. However, signal decomposition procedures

should comply domain knowledge and specific requirements

of considered application. Proposed scheme is partly general,

partly adapted for recognition of diagnostic information hidden

in source data.

We propose three conditions important for sparse rep-

resentation efficiency, considering even (if possible) signal

acquisition in ”information rate” or postprocessing, according

to compressive sensing rules:

• accuracy of sparse representation – ǫ approximated signal

(noiseless setting is ǫ = 0) representation form according

to actual signal estimation criteria; generally noise or

artifacts should be reduced through increased sparsity of

the measurements;

• semantics of sparse representation – information extrac-

tion by morphological content analysis and adjustment

of expansion coefficient distribution; diagnostically im-

portant components which are subtle or hidden can be

extracted to increase information completeness;

• usefulness of sparse representation – determining of the

receiver requirements and assurance of user-oriented out-

put; domain knowledge is extremely useful to represent

semantic information in a form optimized to application

requirements.

III. ACCURACY OF SPARSE REPRESENTATION

Accuracy of sparse representation is useful as a first stage

of noisy signal processing to estimate target content for farther

analysis. Generally useful procedure is the sparsest approxi-

mation of f according to eq.(3) that achieves acceptable error

ǫ. However, important question is how, knowing the regularity

of f to be approximated, how to derive approximation error

bounds for the best approximants within a class of bounded

complexity.

To solve the best approximation problem defined by eq.(4),

estimation of such approximant set is based on noisy data

from the unknown target function to be approximated. The

number of approximants should be fixed according to gathered

knowledge.

Error bands, the number and kind of approximants may

be fixed computationally with Orthogonal Matching Pursuit,

Basis Pursuit, Basis Pursuit Denoising, Iterative Thresholding,

Compressive Sampling Matching Pursuit, and many other

techniques [17], [11]. However, formalized domain knowledge

(ontologies) completed with heuristic and experimental proce-

dures give semantic models advising choice of best parameters

[19].

A. Nonlinear Approximation

The fundamental problem of approximation theory is to

resolve a possibly complicated target function by simpler,

easier to compute basis functions called the approximants

[6], [16]. Formally, an approximation process can be simply

defined in a Hilbert space with inner product 〈., .〉 and norm

‖.‖H . Let {ϕi}i=1,2,... be an orthonormal basis for complete

H . Each signal f ∈ H can be decomposed on this basis

f =
∑+∞

i=1 aiϕi with the coefficients of orthogonal expansion

ai = 〈f , ϕi〉.
In case of nonlinear approximation we use the nonlinear

space AN for expression of f̃ ∈ H as f̃(N) =
∑

i∈Λ aiϕi,

where Λ ⊂ N is a finite set of indexes with the cardinality

#Λ = M ≤ N . M terms are chosen depending on the

meaningful features of approximated f .

Nonlinear approximation error ǫ̃2N (f) =
∑

i/∈Λ |ai|
2 is

minimal and decays as M increases if Λ corresponds to the

M vectors that best correlate to f , i.e. having the largest

coefficients of the expansion |ai|. For the set of indexes

Λr = {ij}j=1,2,..,M sorted according to decreasing order

of the corresponding coefficients, |aj = 〈f , φij 〉| ≥ |aj+1|,

0 < j < M , we have f approximation f̃(M) =
∑M

j=1 ajϕij

with the error ǫ̃2N (f) =
∑+∞

j=M+1 |aj |
2. The decay rate of

ǫ̃2N (f) as M increases is a measure of approximation effi-

ciency. Consequently, the basis functions of approximation

space should represent the most important, precisely char-

acterized and distinguishable features of the target function,

according to knowledge platform.

B. Bases

Scalable local bases, especially wavelets are tailor-made

for nonlinear approximation because of fast and simple com-

putation, simplified characterization of approximation spaces

based on almost unconditional function classes with controlled

regularity and transparent strategies of basis selection and

target function estimates. A wavelet multiscale representation

focuses on localized signal structures with a zooming pro-

cedure that progressively reduces the scale parameter. Local

signal regularity is characterized by the decay of the wavelet

transform amplitude across scales. Singularities are detected

and interpreted by following the wavelet domain local maxima

at fine scales. Adaptive thresholding of wavelet coefficients

makes such representation extremely useful for nonlinear

approximation [14], [11].

A nonlinear approximation in a wavelet orthonormal or

biorthogonal basis defines an adaptive grid that refines the

approximation scale in the neighborhood of the signal singu-

larities. If the target function is smooth in a region of interests

a coarse scale of dyadic decomposition is used. For regions

where the target function is less smooth the wavelet functions
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of higher resolution scales are used for the approximation.

More accurate allocating terms in a nonlinear strategy depend

on signal energy distribution across scales and subbands.

If f is piecewise regular then few wavelet coefficients are

affected by isolated discontinuities and the error decay depends

on the uniform regularity between these discontinuities. For

smooth wavelet basis with p vanishing moments we have

ǫ̃2N = O(M−2α) for uniformly Lipschitz function f with

α < p.

More efficient nonlinear image approximation may be con-

structed with scaled basis functions whose support shape can

be adapted to the orientation and regularity of the object

contours. It refers to non-separable wavelet kernels called 2D

wavelets with anisotropic dilations, rotations and translations

of mother function ϕm,n,θ(·, ·) oriented by θ. The basic con-

cepts of 2D wavelets use adaptive geometry-based approaches

such as wedgelets (beamlets, platelets etc.), or directional

frames such as ridgelets, curvelets, contourlets [8].

We found curvelets as natural and flexible extension of

tenor wavelets to 2D domain. Curvelet decomposition is a

multiscale pyramid corresponding to family of functions with

many directions and positions at each length scale, and needle-

shaped elements at fine scales. This pyramid contains elements

with a very high degree of directional specificity. In addition,

the curvelet transform is based on a established anisotropic

scaling principle which is quite different from the isotropic

scaling of wavelets.

First generation curvelets were based on ridgelets, i.e.

continuous functions in the form of ρm,n,θ(x, y) =
m−1/2ψ((cos(θ)x+sin(θ)y−n)/m). Ridgelet decomposition

is a form of wavelet image analysis in the Radon domain.

It solves the problem of sparse approximation of smooth

objects with straight edges. But for finer approximation of

curved edges one can use a sufficient fine scale to capture

curves as almost straight edges. Thus curvelet transform was

based on multiscale ridgelets combined with a spatial bandpass

filtering operations and subbands splitting into blocks. Second

generation curvelets are defined directly in via frequency

partitioning without ridgelets. Digital curvelet image decom-

position is based on unequally-spaced fast Fourier transforms

or the wrapping of specially selected Fourier samples [5].

Dictionary of such wavelet bases is really important for

compressing sensing methodology.

IV. SEMANTICS OF SPARSE REPRESENTATION

Typical optimization criteria of signal expansions in atom

dictionary are based only on l–norms and metrics in con-

structed solution space. However, medical applications pay

special attention for semantic models of compactly distributed

pathology signatures. Algorithms should be adaptively ad-

justed to predicted meaning of extension coefficients.

A. Estimation by Thresholding

Estimation of masked signal is often necessary condition

for effective detection of diagnostic information. Basic scheme

of nonlinear approximation applies thresholding function with

zeroing the expansion coefficients of magnitude less than the

threshold value τ . For the source signal s = f + η (with

masking background η), we can estimate target disease func-

tion f by selection of the coefficients a
(s)
i with thresholding

function d(·) as follows: f̃ =
∑N

i=1 d(a
(s)
i )ϕi. Considering

specific coefficient meaning dependent on context appearance

ci, thresholding is realized by more general formula

f̃ =

N
∑

i=1

d(a
(s)
i ,Σi)ϕi (5)

where Σi = Σ(ci) is modeled according to domain knowledge.

The thresholds are matched adaptively considering coef-

ficients distributed across scales, subbands and orientations

keeping only expansion domain transients coming from the

disease function, according to heuristic model of sparse disease

signatures.

B. Patch Domain Modeling

To make representation effectively fixed to local semantics

of diagnostic image, patch-based image processing is useful.

Moreover, optimization is often simpler and more accurate

because of more distinct and unique local criteria. Local

patches are block contexts of each or selected pixels to

be decomposed according to multi-component sparse criteria

[18]. An image f ∈ R
N of N pixels is processed by extracting

patches p(fx) of size ν × ν around selected pixel position

x ∈ {1, . . . , X}, X ≤ N :

∀l ∈ L = {−ν/2 + 1, . . . , ν/2}2, pl(fx) = fx+t (6)

Thus, the patch p(fx) = {pl(fx)}l∈L is handled as a vector of

size n = ν2. Next, linear modeling operator P : f → {p(fx)}x
extracts all the patches from an image.

Each patch is approximated by M -sparse representation of

local features as

f̃x =
m
∑

j=1

wjkϕj (7)

where each w(jk) ∈ R is sorted coefficient associated to

the atom from a dictionary D = {ϕj}. Ordered patch-

based approximation allows extraction of local image features

important for diagnosis.

Patch domain data modeling is useful for image texture

analysis, synthesis, inpainting and classification [18]. We de-

cided to adjust patch-based image analysis for ischemic tissue

recognition.

C. Multi-component Data Representation

One possible realization of data content analysis is mor-

phological component analysis (MCA) taking into account

semantics of represented information. MCA was designed to

separate several components which have different morpholo-

gies through decomposition of the signal into building blocks

[3]. MCA decomposition exploits morphological diversity of

selected data features associated to respective atoms of used

dictionary. Fundamental assumption is that for every signal tar-

get behavior to be separated, there exists in dictionary a basis

enables its sparse and as sparse as possible representation.
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Let a given signal f be a sum of K components

having different morphologies µk and meanings Σk:

f =
∑K

k=1 fk(µk,Σk) according to available domain knowl-

edge. We assume that a dictionary of bases (sets of respective

atoms) D = {Φ1, . . . ,ΦK} exists such that for each k com-

ponent fk is satisfactorily sparse in respective Φk. It means

that ∀j 6= k, ||ΦT
k fk||0 < ||ΦT

k fj ||0 and ||ΦT
k fk||0 << ||fk||0,

where ||f ||0 denotes the l0 pseudo-norm of the vector (de facto

the number of nonzero coefficients of f ).

To make the problem solution accurate and useful for

exemplar stroke disease modeling, two semantic components

of density distribution fd and tissue texture characteristics ft
were assumed to be estimated.

We have f = fd + ft and assume heuristically and em-

pirically determined basis Φd and Φt. The components fd
and ft are estimated by solving the following constrained

optimization problem:

min
fd,ft

{||ΦT
d fd||1+||ΦT

t ft||1} s.t. ||Σf−Σfd−Σft ||2 < Σσ (8)

where Σσ is acceptable approximation of f meaning Σf by

sum of component meanings taking into account imaging

modality and case conditioning. The algorithm of respective

component estimation relies on general concept of an iter-

ative and interactive (according to radiologist requirements)

alternate matched decomposition and thresholding scheme

originated in the method proposed by [22]. Current estimate

of fd at iteration m, f̃
(m)
d is fixed by:

• nonlinear approximation of f
(m)
d by

– residual representation of r
(m)
d = f − f̃

(m−1)
t ,

– thresholding of the expansion coefficients

a = ΦT
d r

(m)
d according to semantic characteristics

of density distribution Σfd , and reconstruction of

f̃
(m)
d =

∑

i d(a,Σfd)Φdi ,

• iterative and alternatively interactive regulation of the

threshold, i.e. approximation rate, to extract accurately

useful features of disease.

V. USEFULNESS OF SPARSE REPRESENTATION

Accurate and semantic representation is useful if the method

of content extraction is adjusted to human perception con-

ditioning and interpretation procedure with responsibility of

making diagnostic decisions. It is highly specific condition of

sparsity application.

A. Ischemic Stroke Diagnosis

Usefulness of sparse representation was confirmed by ef-

fective extraction of hidden diagnostic information in case

of acute ischemia detection. Accurate early diagnosis of hy-

peracute ischemic stroke is critical due to limited timing of

applicable thrombolytic therapy. However, clinical phenotype

is today obligatory completed with neuroimaging. It should

allow identification of patients with acute stroke and selection

of suitable treatment. Computed tomography (CT) as an imag-

ing method of first choice is used for efficient identification of

patients with acute stroke. Consequently, it allows selection of

suitable treatment, exclusion of intracerebral hemorrhage and

determination of etiology as well as follow-up therapy and its

possible complications.

A CT image of the brain in acute stroke patients is not

self-evident. Reading of CT needs training and additional

knowledge about the physical conditions of image contrast

distribution with noise and artifacts-caused limitations [24].

Significant CT number instability masks very subtle hy-

podense changes within ischemic region making pathology

detection extremely difficult for many cases of irreversible

infarcts. Thus, a challenge for CAD applications is making

hypodensity distribution more distinct to reveal the diagnostic

content and improve accurate recognition of infarct signatures.

B. SDP Implementation

The sparse model of brain tissue density distributed across

image was used to extract subtle, diagnostically important

hypodensic changes. Proposed procedure computes sparse

representation of ischemic stroke patterns to extract hidden

pathology manifestation according to accuracy, semantics and

usefulness conditions.

According to assumed CT scan model of disease content,

two component data representation consists of mean density

distribution extracted for hypodensity perception improvement

and tissue texture distinction used for completed verification

of ischemia in automatic procedure.

Accuracy of sparse hypodensity representation was pro-

vided by nonlinear approximation with heuristically selected

curvelet signal expansion and adapted thresholding procedure

of waveshrink.

Curvelets provide an essentially optimal representation of

hypothetical density target function f which is C2 (twice

continuously differentiable) except for discontinuities along

C2 curves. The nonlinear approximation error obeys ǫ̃2N (f) =
O(M−2(logM)3) and is optimal in the sense that no other

representation can yield a smaller asymptotic error with the

same number of terms [6].

Satisfying results of disease estimation were

achieved with curvelets waveshrink defined by

d
(wavesh)
τ (a

(s)
i ,Σi) =

a
(s)
i

∥

∥a
(s)
i

∥

∥

· (
∥

∥a
(s)
i

∥

∥ − τi)+ for complex

coefficients with magnitudes
∥

∥a
(s)
i

∥

∥ > τi. Threshold

τi = τ(Σi) is fitted to scale and subband data characteristics.

Moreover, τi is used for interactive selection of morphological

content complexity (see Fig. 1).

Fig. 1. Diagnostic content extracted from source CT scan (left). Hypodensity
distribution across ROI was approximated progressively with 6, 4 and 3 com-
ponents, respectively (left to right). The darkest component asymmetrically
distributed across brain axis was considered to be potential indication of
central region of ischemia.
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Additionally, tensor wavelet-based perfecting of image

reconstruction was used for smoothing approximated con-

tent that contains stroke-oriented components. Fundamental

wavelet decomposition requires the filters to be finite impulse

response and linearly phased to form orthogonal filter banks

(FBs). However, only non-smooth Haar filter fulfill such

requirements. We constructed orthogonal FB with softening

perfect reconstruction (PR) condition controlling the distor-

tion introduced in data processing to extract basic (lower

frequency) signal content. Spline non–PR FB was defined by

low pass filter h = [1/4, 1/2, 1/4] and mirror high pass filter

g = [−1/4, 1/2,−1/4] [20]. As result, directional charac-

teristics of extracted components was more continuous and

smooth. Consequently, reconstructed information was assessed

by observers to be nicer, more natural and reliable.

Automatic recognition of textural tissue features was applied

as additional indicator of ischemia regions to increase useful-

ness of sparse patterns for real diagnosis aid. Stroke detection

was verified on a set of selected CT scan regions susceptible

to stroke.

Specific features were extracted in wavelet domain – nearly

symmetrical symlets and two scales of decomposition were

applied for patches of 50×50. Set of features contains an

energy of approximation related to the energy of details, and

distribution of detail energy and entropy across scales for

maximum magnitude details of successive scales. Moreover,

additional features were estimated including compactness of

energy in sparse curvelet and contourlet domain (20% of hard

thresholded coefficients) in relation to the energy distribution

in source image domain. Supervised classification based on

SVM with radial kernel, regularization and crossvalidation was

used.

Contourlet image transform was defined in a discrete do-

main as multiresolution and multidirectional expansion with

contour segments derived from non-separable, pyramidal di-

rectional filter banks [7]. Contourlets-based sparse representa-

tion for two-dimensional piecewise smooth signals that resem-

ble images satisfy the anisotropy scaling relation for curves.

Contourlets approximate signals which are C2 with rate

ǫ̃2N (f) = O(M−2(logM)3), similarly to curvelets. Through

more flexible adjustment of filter characteristics and scale-

subband decomposition scheme, contourlet bases were fitted

adaptively to specific textural characteristics of brain tissue.

To sum up, adapted and concreted method of stroke disease

recognition is as follows:

1) initial region of interests (ROI) conditioning – seg-

mentation of stroke-susceptible regions of brain tissues

with locally adaptive region growing and thresholding

algorithms with smooth complement of segmented di-

agnostic areas;

2) providing accuracy of sparse representation – nonlinear

approximation of target density distribution by expan-

sion of ROI in curvelet basis and thresholding with

waveshrink procedure;

3) providing semantics of extracted content, i.e. density

distribution:

a) interactive regulation of progressive disease ex-

traction (see Fig. 2) by waveshrink control and

adjusting wavelet-based smoothing procedure with

spline non–PR FB.

b) providing usefulness of visualized information –

hypodensity expression by display arrangement of

processed regions and source scans with greylevel

quantization and contrast enhancement according

to observer suggestions and semantic content mod-

els;

4) complement of morphological content by ischemic tissue

distinction in hypodense areas – automatic recognition

of ischemic brain tissue with sparse texture classifica-

tion; a texture dictionary of wavelets, contourlets and

curvelets was used.

C. Experimental Verification

Computer-assisted tools realized according to SDP method-

ology occurred really useful for diagnosis support.

Experimental verification was realized as subjective diagno-

sis of ischemic stroke completed with automatic recognition

of disease tissue. Test database consisted of 123 CT exami-

nations including 105 patients aged 24-92 years (70 years in

average) with proved infarction. No direct hypodense signs of

hyperacute ischemia were found on positive data sets (follow-

up confirmation).

Average diagnosis sensitivity of seven radiologists increased

from 0.385 to 0.513 (+38%) with additional preview of

extracted hypodensity. Respective specificity decrease was of

0.817 to 0.774 (-5%) because of difficulties in interpretation

of increased perceptibility of tissue density changes for less

experienced radiologists. In group of four more experienced

experts, increase of sensitivity and specificity was 26% and

2%, respectively.

Automatic recognition of ischemic tissue based on sparse

image representation was used as a compliment of visual

Fig. 2. Exemplary results of SDP realization. Sparse disease patterns were
extracted from acute CT scan (top-left) and confirmed by follow-up CT
indicating area of infarct (down-right); estimated density distribution (left to
right, top-down) from sparse representation consisting of: 0.1%, 0.02%, 0.01%
and 0.005% of nonzero coefficients, respectively.
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hypodensity expression based on extracted compact disease

signatures. Test set of ROIs segmented from 123 cases of

stroke database consisted of 236 blocks including 82 positive

cases.

To compare, initially only texture features defined in image

domain, i.e. typical statistics (standard deviation, kurtosis,

skewness, 0-order entropy, energy) and features based on

co-occurrence matrix (joint entropy, contrast, correlation, en-

ergy, homogeneity), completed with Tamura textural features

(coarseness, directionality, contrast) were considered. The

recognition results for classified image features were limited

to 0.57 of sensitivity and 0.88 of specificity.

The effectiveness of sparse texture characteristics, defined

according to SDP paradigm to distinct disease patterns and

verified experimentally was 0.72 (+26%) of sensitivity and

0.90 (+2%) of specificity, respectively.

More exhaustive description of stroke detection procedures

and other results verifying their usefulness was presented in

[21].

VI. CONCLUSIONS

Key problem of a semantic gap between the numerical

descriptors and human interpretation of images is still chal-

lenging problem of assisted radiology. Low level descriptors

are not uniquely and explicitly associated to specific meaning-

ful label of abstractional description of medical, image-based

knowledge. Sparse data representation, related to specific

dictionary atoms selected and fitted according to semantical

reasons and models, is potentially susceptible to be recognized

as invariant disease patterns. Compact distribution of such

scalable ”disease image” means new possibility of pathology

manifestation understanding for computer-aided diagnosis.

Suggested methodology is aimed at cognitive resonance of

estimated sparse descriptors with formalized, structured and

often heuristically established medical knowledge platform.

Thanks that considered methodology includes estimation of

semantic sparse representation of an image that is optimized

with medical knowledge platform, the following classification

of extracted semantic components is simplified and designed

according to specified diagnostic categories.

Achieved results confirmed high potential of semantic

sparse models for diagnostic content extraction and recogni-

tion of diseases. However, further improvement of proposed

SDP methodology is necessary to make semantic sparsity

criteria more formalized and computationally unique. Clue

problems are: – more effective schemes of nonlinear approx-

imation for target content estimation, – new atoms of multi-

scale, local, flexible image approximants adjusted invariantly

to representative pathology patterns, – investigation of pursuit

and thresholding algorithms to investigate optimal represen-

tation over overcomplete dictionaries according to diagnostic

knowledge criteria. New applications of sparse representation

for disease modeling and recognition are necessary to develop

reliable tools.
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