

Architecture Design of The Hardware H.264/AVC

Video Decoder
Mikołaj Roszkowski, Andrzej Abramowski, Michał Wieczorek, and Grzegorz Pastuszak

Abstract—The need for real-time video compression sys-
tems requires a particular design methodology to achieve high
troughput devices. The paper describes the architecture of the
H.264/AVC decoder able to support SDTV and HDTV resolu-
tions. The design applies many optimization techniques to reduce
the resource consumption and maximize the throughput. The
archietcture is verified with the software reference model JM16
and synhesized for FPGA technology. The maximal working
frequency is 100 MHz for Stratix II devices.

Keywords—H.264/AVC, video compression, FPGA, architec-
ture design.

I. INTRODUCTION

THE most modern, and the best in terms of offered

capabilities of all video compression standards currently

in use is undoubtedly H.264/AVC ([10], [6]). The standard

itself evolved in time. The main purpose of the first version,

published in 2003, was to provide efficient compression meth-

ods of standard and high definition video signals that would

meet the requirements of an average home-user. This part

of the standard is called Main Profile. However, this profile

can not be employed for more advanced applications that

require increased sample bit-depth or chroma sub-samplings

other than 4:2:0. These features required the development of

standard extensions (commonly known as FRExt extensions)

that were gathered in a group of profiles known as High

Profiles and became part of the standard in 2005.

FRExt extensions, except for the introduction of many new

features, further improve compression efficiency. Tests (see

[7]) prove that the use of H.264/AVC Main Profile allows the

reduction of the bit-rate twice compared to MPEG-2 systems,

while preserving the same perceived quality. Other tests (see

[9]) proved that the use of High Profile provides further 10%

decrease in bit-rate compared to Main Profile.

Compared to MPEG-2, the most important advances include

Context Adaptive Variable Length Coding (CAVLC), Context

Adaptive Binary Arithmetic Coding (CABAC), INTRA pre-

diction, and variable block size INTER prediction. All these

changes allow a tremendous performance improvement, but

bring the increase in complexity. As a consequence, decoding

and encoding of H.264/AVC sequences typically requires the

The work is a part of the project ”Integrated mobile system for coun-
terterrorism and rescue operations”, co-financed by the European Regional
Development Fund within the framework of the 1. priority axis of the
Innovative Economy Operational Programme, 2007-2013, submeasure 1.1.2
”Strategic R&D Research”. Contract no. POIG.01.02.01-00-014/08.

M. Roszkowski, A. Abramowski, M. Wieczorek, and G. Pastuszak are
with Institute of Radioelectronics, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland (e-mail: {M.Roszkowski,
A.Abramowski, M.Wieczorek, G.Pastuszak}@ire.pw.edu.pl).

use of signal processors, graphical processing units (GPU),

or specialised integrated circuits. This means that the de-

velopment of efficient hardware implementations of a H.264

decoder modules is a task of the fundamental importance to

increase the adoption of the standard.

This paper presents the architecture of a H.264/AVC de-

coder designed to support a real time decoding of H.264/AVC

High Profile (except for MBAFF processing mode) sequences

with video resolutions up to 720x576 in both progressive and

interlace mode in FPGA devices. If B frames are not used,

also HDTV resolutions can be supported. The architecture was

designed to be very flexible, and after some modifications to

the INTER prediction module it should be capable of decoding

1080p sequences in real time for B frames. The reason these

modifications were not introduced, is the fact that they require

a significant increase of the resources used, far beyond the ones

that were available to us. Nevertheless, the remaining modules

are prepared to decode 1080p@fps sequences.

II. H.264/AVC DECODER OVERVIEW

A. H.264/AVC Stream Organisation

In order to fully understand the way the H.264/AVC decoder

works it is necessary to become familiar with the H.264/AVC

data-flow. Data in H.264/AVC compliant stream is organised in

a hierarchical way. A sequence comprises of multiple frames,

and each frame is divided into slices. Decoding of each slice

is completely independent on the decoding of the other slices,

which prevents transmission error propagation or even losing

data from the whole frame. Slices are made up of macroblocks,

which are the basic coding unit on which H.264/AVC decoder

operates. Each macroblock contains 16x16 luma sample array

with two accompanying chroma components, which are sent

separately within a macroblock. Depending on the chroma

sub-sampling, the size of the chrominance components vary.

Particularly, For 4:2:0, 4:2:2, and 4:4:4 sub-samplings, chroma

block size is equal to 8x8, 8x16, and 16x16, respectively.

The macroblock layer is the only one containing actual sample

data. The structures higher in the H.264/AVC stream hierar-

chy contain only control data specifying the exact way the

macroblocks should be decoded.

B. Timing Constraints

The design of the system working in real time require

a detailed analysis and specification of the timing constraints.

In the case of the H.264/AVC decoder, the timing constraints

the results from the video throughput, and they are specified

by the number of clock cycles that can be allocated to one

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2010, VOL. 56, NO. 3, PP. 291-300
Manuscript received July 10, 2010: revised September, 2010. DOI: 10.2478/v10177-010-0039-7

TABLE I
THROUGHPUT OF 4:2:0 SUB-SAMPLED SEQUENCES

Resolution frames/s
throughput

bits/s MB/s

1920x1080 (1080p)
25 622.080.000 204.000
30 764.496.000 244.800

1280x720 (720p)
25 276.480.000 90.000
30 331.776.000 108.000

720x576 (576p)
25 124.416.000 40.500
30 149.299.200 48.600

TABLE II
MAXIMAL NUMBER OF CLOCK CYCLES AVAILABLE FOR ONE

MACROBLOCK DECODING AT DIFFERENT OPERATING FREQUENCIES AND

FOR DIFFERENT VIDEO RESOLUTIONS

Resolution frames/s
frequency

80 MHz 100 MHz 120 MHz

1920x1080 (1080p)
25 392 490 588
30 326 408 490

1280x720 (720p)
25 888 1111 1333
30 740 925 1111

720x576 (576p)
25 1975 2461 2962
30 1646 2057 2469

macroblock decoding. The latter measure is particularly useful

as it is independent of the chroma sub-sampling. The through-

put of the various sequences is presented in Table I, and the

maximal amount of clock cycles available is summarised in

Table II.

III. PROPOSED DECODER

A. Design Goals

The primary goal was to create an almost fully H.264/AVC

High Profile compliant decoder supporting 576p sequences

and capable of operating at the frequency of 100 MHz

in Arria 2 devices. The only not-supported feature of the

H.264/AVC High Profile is the macroblock adaptive frame

field coding (MBAFF), temporal direct prediction modes, and

implicit weighted prediction. All of these significantly increase

resource usage and macroblock processing time. Moreover, the

MBAFF frame coding mode do not seem to be widely used.

The second goal was to make the design that could be

easily adapted to support higher video resolutions including

1920x1080. As it is shown in Table II, there are only 408

clock cycles available for the decoding of a macroblock

in 1080p@30fps sequence. This implies that a decoding of

one sample can take maximally one clock cycle for 4:2:0

sub-sampling. Therefore, if the decoder was to be easily

upgradable to support higher video resolutions, most modules

should have throughput close to one sample per clock cycle.

The final goal was to keep the size of the decoder relatively

small. It was decided that the whole decoder should not

use more than about 30K ALUTs of an Arria 2 device. For

that reason, whenever it appeared that the support of 1080p

sequences in the module would entail excessive resource

usage, only 576p support was implemented.

B. Modules Overview

The basic unit the decoder operates on is a macroblock.

Although some of the modules need to operate on blocks of

sizes smaller than the macroblock size, the inter-module syn-

chronisation is done on a macroblock level. The macroblock

processing in the proposed decoder is divided into four main

pipeline stages:

• Decoding of elementary stream data

• Residua and INTER prediction calculation

• Original sample values reconstruction.

• Deblocking (loop) filter process

The block diagram showing all modules of the designed

H.264/AVC decoder is presented in Fig. 1. The first stage

is entropy decoding of the input stream. In the case of the

H.264/AVC High-Profile either CAVLC or CABAC entropy

coding can be used, so the entropy decoder module is com-

prised of two sub-modules: CAVLC decoder and CABAC

decoder. The parsing result of the elementary stream is stored

in the embedded dual-port RAM module and registers.

The second stage includes the data preparation, dequan-

tisation, inverse transform, and INTER prediction modules.

The data preparation unit is vital to the correct functioning

of the whole decoder. It is responsible for the calculation of

all prediction parameters like INTRA prediction mode, motion

vectors, reference frames etc. It also reorders the data for a use

by the next modules by performing operations like the zig-zag

scan or the Hadamard transform on DC samples.

The dequantisation module calculates transform coefficients

using the data decoded by the entropy decoder in the previous

stage, and sends them to the inverse transform module. The

inverse transform module computes sample residua — values

equal to the difference between original sample and its pre-

diction (either INTRA or INTER). The residua are stored in

the RAM for further use in reconstruction process. In parallel

to the residua calculation process, INTER prediction module

determines INTER prediction for the current macroblock, if

necessary. This involves the restoration of correct motion

vectors and reference frames from data preparation unit,

fetching reference block data from the external memory, and

performing actual prediction. Afterwards, predicted data are

buffered for the reconstruction.

The third stage is a reconstruction process, combined with

INTRA prediction in the case of INTRA coded macroblocks.

During the process the original sample values are restored as

a sum of residua calculated by inverse transform and appro-

priate prediction values. The reason why INTRA prediction is

done together with reconstruction, unlike INTER prediction, is

its strong dependence on just-reconstructed data. The INTRA

prediction computes prediction values for the block using sam-

ples neighbouring with the block. Since in most cases INTRA

prediction module operates on blocks of sizes much smaller

than the macroblock, block neighbouring samples are usually

those just reconstructed ones. In consequence, to achieve

desired throughput a tight coupling of the reconstruction and

INTRA prediction modules is necessary.

The last decoder stage is the deblocking (loop) filtering

process. It smooths the final image, reducing the visibility of

distortions introduced in the encoding process, The filtering

takes place on borders of the blocks of sizes corresponding

to the ones used by the transform. It operates on samples

reconstructed in the previous stage, and filtered samples are

MIKOŁAJ ROSZKOWSKI, ANDRZEJ ABRAMOWSKI, MICHAŁ WIECZOREK, AND GRZEGORZ PASTUSZAK292

Fig. 1. Proposed H.264/AVC decoder block diagram.

stored into the external memory. These samples are displayed

on the screen, and they can be later accessed for the use in

the INTER prediction.

Except for the modules working in the four-stage pipeline,

there are two additional modules that cannot be fitted into

particular macroblock pipeline stage. These are: the external

memory controller module, the decoded frame buffer man-

ager, and the module responsible for sending decoded data

to the screen. The external memory controller acts as an

arbiter between different modules requiring external memory

access like the INTER prediction module, the data preparation

module, or the loop filter module. The decoder frame buffer

manager is a module operating on slice and frame level rather

than macroblock one. It assigns space in external memory for

frame storage, maintains reference lists, and controls which

frame is to be send to screen next.

C. Data Organisation

1) Embedded RAMs: One of the greatest challenges in

the design of the H.264/AVC decoder is ensuring the best

performance of the designed pipeline. For that reason, each

pipeline stage is terminated with a RAM module and register

set. Each RAM module can keep data from two macroblocks.

One macroblock address space contains data that is a source

for the next pipeline stage, whereas the second is for the data

calculated by the previous stage. When both pipeline stages

are ready, the macroblocks’ data is swapped by simple change

of the address spaces. This allows the smoothing out of the

latencies of the different pipeline stages and makes the better

use of available clock cycles. The RAM modules keep only

actual sample data, and the accompanying control data will be

stored in registers. The RAM located after the entropy decoder

stage keeps one sample in a memory cell, while the remaining

ones keep four samples. These four samples constitute one

(a) 4:2:0 (b) 4:2:2

Fig. 2. Organisation of the color components in the external DRAM for a 4x4
block; Light grey — placement of a Cb sample, dark grey — placement of
a Cr sample.

column of a 4x4 block. Such a format is selected since the

H.264/AVC standard specifies the inverse transform returning

column based data.

2) External DRAM: The organisation of the data in the

external memory is very important for the design of INTER

and data display modules. The samples’ data in the external

memory is grouped into frames. The decoder assigns to each

frame a separate address space from a pool of free address

spaces. The size of the pool is equal to 16 as this is the

maximal number of reference frames that can be used.

Colour components of a frame are stored in an interleaved

fashion, which varies depending on the chroma sub-sampling.

In the case of the 4:2:0 sub-sampling, one memory cells keeps

two luma samples from a column and one chroma sample

(see Fig. 2 (a)). In the case of the 4:2:2 sub-sampling, one

memory cell holds two luma samples from one row and two

accompanying chroma components (see Fig. 2 (b)). When

4:4:4 chroma sub-sampling is used one memory cell keeps

whole pixel consisting of one luma and two accompanying

chroma samples.

Such a manner of storing samples has many advantages.

First of all, for 4:2:0 and 4:4:4 sub-samplings, one memory cell

ARCHITECTURE DESIGN OF THE HARDWARE H.264/AVC VIDEO DECODER 293

can hold samples with bit-depths higher than standard 8 bits,

even when using simple 32-bit wide memory. This makes

the High Profile sample’s extended bit depth implementation

possible with cheaper hardware. The second benefit is the

simplified architecture of the display module. The data is most

often sent to the screen using BT.656 standard, in which colour

components are transferred also in an interleaved way. Having

the data already organised in such a way reduces the number

and size of necessary buffers — only one is needed for all

data instead of one for each component. The last gain of such

an approach is easy to achieve parallel processing of image

components in the INTER prediction.

The main drawback of the interleaved approach are trough-

put limits for real-time 1080p@30fps sequences processed

by the INTER prediction module. To support this kind of

sequences, the INTER prediction module should accept four

samples per clock cycle from an input (see section IV-F),

which is nearly impossible with such a way of storing samples.

On the other hand, INTER module capable of taking four input

samples in a clock cycle would surely be too big to meet the

assumed maximal resource usage (see section III-A).

IV. ARCHITECTURE

A. Entropy Decoder

Sequence/Picture control and slice data are embedded in

separate NAL (Network Abstract Layer) units. This provides

the simple internal synchronisation as each NAL unit starts

with a unique byte sequence which must not appear within

a NAL code-stream. After detecting a new NAL unit an

appropriate decoding schema is started according to the order

specified in the standard. The architecture consists of four

major parts: the elementary stream buffer, the Finite State

Machine (FSM) controller with headers parser, the Exponent-

Golomb decoder, and the CAVLC decoder. The design pro-

vides the simple interface to the arithmetic decoder module.

When syntax elements are coded using the CABAC mode, the

FSM controller disables other processing units (e.g., CAVLC)

and forward stream data to the CABAC path using the hand-

shake.

1) Elementary Stream Buffer: The architecture of the ele-

mentary stream buffer is shown in Figure 3. It communicates

with three alternative decoding paths and synchronises them

with the external data source.

The buffer loads new data whenever they are available on

the input and there are enough invalid bits in the buffer. In

each clock cycle, the decoder needs a variable number of bits

to parse appropriate parameter. When there is not enough valid

data in elementary stream buffer the work of the module is

halted.

2) Syntax Element Parser: The superior module of the

proposed H.264/AVC binary decoder is the FSM controller,

which controls the order of syntax elements. To synchronise

the decoder with the input stream, the FSM looks for the NAL

start sequence in the elementary stream buffer and detects the

NAL type by reading the following byte. In dependence on

the type, an appropriate decoding process is invoked. There

are separate paths for each NAL type. The paths include states

Fig. 3. Proposed architecture of elementary stream buffer.

associated with successive syntax elements embedded in the

code stream. Transitions between states follows the order of

syntax elements specified in the H.264/AVC standard.

3) Exponent-Golomb Decoder: The submodule refers to

the stream buffer and detects the number of leading zeros.

In fact, this detector supports the unary code used also for

other syntax elements. The number of leading zeros is used

to retrieve and normalise the suffix in the cascade of two

multiplexers. Particularly, the multiplexers shift the input down

and insert sequence of zeros on the MSB positions. Instead of

determining the value of an appropriate power of two, the

normalised string contains the concatenated one-value bit on

the MSB position (e.g., taken from the input). To get the proper

code number, the normalised string is decremented. Thank to

the simplified structure (combined retrieving and normalisation

and the decrementation), the circuit has the reduced complex-

ity compared to the straightforward implementation

4) CAVLC Decoder: The sequential nature of the binary-

decoding algorithm imposes the general structure of archi-

tecture, which is well-described in literature for the CAVLC

decoder. Particularly, there are two optimisation methods for

the basic CAVLC decoder - the multi-symbol decoding for

high throughputs and the simplification of coef token tables

to save resources. CAVLC coefficient token is decoded using

six tables (four for luma and two for chroma). An appropriate

table is chosen by the number of non-zero coefficients in

neighbouring blocks. Only one of those tables can be replaced

with simple arithmetic operations (for nC > 8). Other luma

tables are rather complex and require a large address space to

map directly all binary representations. The detailed analysis

of the coefficient-token codes allows us to notice that they

can be represented as a number of leading zeros followed by

a suffix composed of maximally three bits. Since the number

of leading zeros cannot exceed 14, four bits are enough to

represent the prefix length. As a consequence, only 7 address

bits are needed to specify all coefficient token tables, which

is much less than in the straight-forward representation.

MIKOŁAJ ROSZKOWSKI, ANDRZEJ ABRAMOWSKI, MICHAŁ WIECZOREK, AND GRZEGORZ PASTUSZAK294

Fig. 4. Proposed architecture of CAVLC decoder.

Fig. 5. Proposed CABAC decoder architecture.

B. CABAC

H.264/AVC provides three different modes for the binary

arithmetic coding: non-equiprobable, bypass and terminate.

In the most important non-equiprobable mode, the appro-

priate context must be provided to decode an individual

symbol. This context is determined with reference to the cur-

rent syntax element, the symbol position, previous symbols,

left and/or top neighbours and header parameters. Its value

allows a selection of the correct probability model, consisting

of the state index and the More Probable Symbol (MPS)

value. In dependence on the current index and two MSB

bits of the range register, the H.264/AVC standard specifies

the division of the range into two subranges, correspond-

ing to Less and More Probable Symbol values (LPS/MPS).

In the decoder, the chosen probability estimate is subtracted

from the range register and compared with the content

of the offset register. The result of this comparison identifies

the decoded symbol, determines the update of the selected

probability model and the context for the next symbol. To keep

the required precision, the range and offset registers have

to be renormalized. To restore an original syntax element

value, successive symbols are grouped and mapped to num-

bers.

The main difficulty in designing an efficient CABAC archi-

tecture is the inter-symbol dependency, which creates a tight

feedback loop. Particularly, a proper model is necessary to de-

code the next symbol, and the decoded symbol is needed

to prepare the context that selects following probability model.

These constraints exclude employing pipelining to accelerate

the design. The proposed solution is based on the fact,

that an incoming symbol may take only two values: 0 or 1.

As a result, it is possible to avoid waiting for this bit

at the context generator by the calculation of two possible

contexts in advance [3].

The design consists of three separate modules: the ini-

tialisation module, the arithmetic decoder core and the con-

text generator, which is presented in Fig. 5. The first ele-

ment restores probability models for all contexts at the be-

ginning of each slice, using parameters m and n stored

in the ROM memory. The model contains the MPS value

and the index, identifying LPS probability estimate.

The primary task of the arithmetic decoder core is to de-

code each symbol in one clock cycle, regardless of selected

routine. In order to save hardware resources all symbols are

decoded using the same logic. For bypass mode it is realised

by employing several multiplexers, whereas the termination

mode exploits a suitable probability model for the context

equal to 276. Decoded symbol selects the appropriate context

and the bypass mode flag, which allows reading of the prob-

ability model for the following symbol from the dual-port

RAM memory. Simultaneously an update of probability model

is prepared and stored in the same memory.

The context generator is designed to prepare two alternative

contexts and two bypass mode flags. In addition, this module

controls the work of the arithmetic decoder and restores origi-

nal syntax elements from the sequence of successive decoded

symbols. Syntax elements are processed in the order defined

in the H.264/AVC standard. Therefore, the CABAC architec-

ture incorporates a Finite-State Machine (FSM) to identify

the type of the syntax element and the order of processed

data. Two alternative sets of information for each possible

symbol value are prepared in each clock cycle. Each set

contains the new FSM state, parameters describing the current

macroblock and the syntax element value. The multiplexer,

controlled by the currently decoded symbol, chooses one

of those sets, which permits the correct data to be stored

in registers and transferred outside. Based on these two sets

and neighbour variables, the context generator prepares two

corresponding context and bypass mode flags for next symbol

decoding. A register contains variables decoded for the left

macroblock, whereas parameters describing the top neighbour

are read from the dual-port memory, keeping data for the

whole line above the current macroblock.

C. Data Restoration Module

Data received from the entropy decoder must be adjusted

to the troughput of further modules. The proposed solution

consists of two independent units and an arbiter, responsible

for management of access to the RAM memory with decoded

syntax elements from current macroblock. First unit performs

reverse coefficients’ zyg-zag reorder, whereas the second ex-

ARCHITECTURE DESIGN OF THE HARDWARE H.264/AVC VIDEO DECODER 295

Fig. 6. Inter prediciton module architecture overview.

tracts original values of prediction parameters, such as IN-

TRA prediction modes or motion vectors with frame indexes,

and calculates strength for the loop filter for each border

within the macroblock. All tasks of the second module requires

access to the data from the previous macroblocks. This is

solved by the storage of parameters describing left neighbour

in a set of registers and employing a special memory to keep

necessary information about the upper line of macroblocks.

Each memory cell keeps data corresponding to a single parti-

tion from the lowest line of the macroblock.

An arbiter manages access to the RAM memory with syntax

elements. Usually, the first unit has the priority, as a specific

number of coefficients is required to fill up the inverse trans-

form buffer. As many coefficients are equal to zero, there is no

need to check data from the memory for them. This allows us

to read prediction parameters during that time. The second unit

gets the higher priority only if the inverse transform buffer is

full.

D. Inverse Transform

The H.264/AVC High Profile allows the use of two trans-

form sizes: 4x4 and 8x8. To simplify the dataflow, it seems

reasonable to work only on the 8x8 block basis, which can

be easily achieved by grouping four 4x4 blocks into one 8x8

block. Though the 4x4 and 8x8 transforms’ definitions are not

identical, such a grouping makes resource sharing between

this two modes easier. As a consequence, the transforms takes

columns of eight samples from the input and returns columns

of eight samples as a result.

E. Dequantiser

The dequantiser module is responsible for the dequantisa-

tion of the coefficients fed by the entropy decoder module.

Fig. 7. Luma interpolated pixel positions. Grey samples — original samples;
aa,bb,b,j,s,gg,hh,cc,dd,h,m,ee,ff — half-pixels; the rest — quarter-pixels.

One coefficient is dequnatised at a clock cycle. Afterwards,

the dequantised coefficients are buffered to form columns of

eight elements, which are sent to the inverse transform module.

F. Inter Prediction

The INTER prediction module is one of the most resource-

consuming and computational-demanding operation in the

whole H.264/AVC decoder. This comes from the fact that the

standard allows motion vectors with the quarter-pel precision.

Such a precisions requires the interpolation of half and quarter

pixels from reference sample values. The locations of all possi-

ble interpolated pixels is presented in Fig. 7. The interpolation

is a two stage process. First, half-pixels are interpolated from

six original samples values arranged either in a column or

a row. In the second stage, the quarter-pixels are computed as

a mean of two selected half-pixels and original pixel values. In

general, to obtain one interpolated quarter-pixel value an array

MIKOŁAJ ROSZKOWSKI, ANDRZEJ ABRAMOWSKI, MICHAŁ WIECZOREK, AND GRZEGORZ PASTUSZAK296

Fig. 8. Intra prediction module overview.

of 6x6 original pixels has to be used. The standard permits

the use of prediction blocks of different sizes, varying from

4x4 to 16x16. The way the interpolation works means that for

a 4x4 block there are 5 time more input samples than output

values. For the larger blocks, this ratio decreases and for 8x8

blocks it is equal 2.6. The chroma interpolation process is

much simpler, as it uses simple linear approximation from the

four neighbouring samples.

To fully support real-time processing of 1080p@30fps se-

quences, INTER prediction module should take four samples

per clock cycle from the input and incorporate four parallel

luma interpolators. As this would use more resources than

were available to us, it has been decided that only one luma

interpolator will be used, which is enough to support 720x576

sequences. To further reduce the size of the buffer used by the

interpolator unit, the maximal block size that can be processed

is 8x8. The blocks of larger sizes are simply divided into 8x8

blocks, which are processed consecutively.

The overview of the module architecture is presented

in Fig. 6. At the beginning, the external memory address

is determined to fetch appropriate prediction samples. The

downloaded data are buffered and sent to the interpolation

modules, if necessary. Note that in the case of chroma 4:4:4

sub-sampling, the chroma component interpolation is done

in the same way as luma interpolation, in contrast to the

other sub-samplings. This means that to process all sub-

samplings two sets of chroma interpolators are required. If the

prediction does not uses the pixel interpolation, interpolation

modules are bypassed. Following the interpolation, the sample

storage order is changed from an interleaved to separate colour

components, as the reconstruction and the transformation store

data in this way. This is done by a simple buffering of

samples of different components in three separate buffers. If

the weighted prediction is required, the sample goes through

weighting prediction module. Otherwise, they are sent directly

to the output. In the case of the prediction obtained from

two reference blocks, the interpolated samples from the first

block are also buffered locally, waiting for weighting with the

samples from the second reference block, as soon as they are

ready.

G. Intra Prediction

The designed INTRA prediction module supports all IN-

TRA prediction modes defined in the standard: 4x4,8x8, and

16x16. It is based on a widely used architecture consisting

of four parallel processing elements (PE) [5], [12], [2], [11].

Each processing element is capable of calculating exactly one

prediction per clock cycle. The overview of the module is

presented int Fig. 8. As it can be seen in the Fig. 8, except

for PEs there is also separate module for calculating INTRA

16x16 plane parameters. It is because for the calculation of

this mode requires some entry parameters, which can not be

easily and timely computed using solely PEs.

A parallel calculation of four samples is necessary to

ensure that the average throughput of the module is at least

one prediction per clock cycle. This is the consequence of

the dataflow defined in H.264/AVC. The INTRA prediction

usually operates on data blocks smaller than macroblock, and

samples necessary for prediction are available only after the

calculation of prediction and reconstruction of the previous

data block. The referred samples are reconstructed samples

neighbouring with the block from the left side and above. In

the case of the 8x8 prediction modes, these samples undergo

a simple low-pass filtering process.

The transfer of the neighbouring samples from the re-

construction module to the INTRA prediction module takes

significant amount of time, which cannot be used for the

prediction. The samples are transferred one at a clock cycle,

to reduce the complexity of the 8x8 mode pre-filtering, as in

such case it is needed to filter only one sample per clock cycle.

Despite slow transfer rates, the calculation of four prediction

ARCHITECTURE DESIGN OF THE HARDWARE H.264/AVC VIDEO DECODER 297

Fig. 9. Loop filter architecture overview.

values in parallel allows us to achieve a throughput of one

sample per clock cycle.

In the case of the blocks lying at the macroblock’s top

border, the samples neighbouring above belong to the mac-

roblock adjacent to the currently processed one. Hence, the

whole previous image line has to be buffered to calculate the

prediction. For the sake of the simplicity and the reduction of

external memory access, this line is buffered in the embedded

RAM module indicated in Fig. 8. The samples referred for

the currently processed macroblock prediction are stored in

registers. The first layer of registers keeps all samples that

will be used for the prediction. The second layer (registers

indicated as ”Subset” in Fig. 8) conveys the samples for the

prediction of a 4x4 block. Blocks of larger sizes are divided

into 4x4 ones. The division into two register layers makes

achieving higher operating frequencies much easier.

H. Loop Filter

The loop filter module reads exactly one sample from

the input and produces exactly one sample per clock cycle.

The filtering process is defined by the H.264/AVC standard

to operate on successive macroblocks in a frame. For each

macroblock, the filtering of vertical borders takes place first,

followed by the filtering of horizontal borders. Which borders

are filtered depend on the transform size used, i.e., either 4x4

or 8x8 block’s borders. To reach one sample per clock cycle

throughput, the architecture is decomposed into two identical

and independent filters. The first is responsible for filtering

vertical borders, whereas the second filters horizontal ones(see

Fig. 9. The samples for the first filter are provided in the raster-

scan order: from left to right in a consecutive lines that make

up a macroblock. The filters are separated by the RAM buffer

responsible for changing data order from the raster-scan to

column oriented, which is required by the horizontal filter.

Unfortunately, the dataflow defined by the H.264/AVC

standard requires some already horizontally filtered data to

be vertically filtered again at the next macroblock border. As

a result another RAM buffer is incorporated for such samples.

Moreover, access to four lower lines of the macroblock above

is necessary to properly filter top macroblock border. Hence,

another RAM buffer capable of keeping four image lines is

TABLE III
SYNTHESIS RESULTS OF THE PROPOSED H.264/AVC DECODER FOR THE

ARRIA 2 DEVICES

Without CABAC With CABAC

Parameter Value Value

ALUTs 26486 31155

Memory ALUTs 183 183

Registers 12953 13758

DSP blocks 11 12

memory used[bits] 583352 704824

added. The use of an embedded RAM is preferred over the

usage of an external memory as typical FPGA has enough

memory blocks available, and such a memory is far simpler

to use. It also lowers the requirements for the data transfer

rates to the external memory.

V. IMPLEMENTATION RESULTS

The proposed decoder is verified to work using reference

data generated by the JM16 H.264/AVC reference software.

The decoder has been synthesised for the relatively-low-

cost Altera Arria 2 FPGA devices in two versions: with and

without CABAC entropy decoder. The synthesis is performed

using Quartus II Version 9.1 and the device used as a synthesis

target is EP2AGX125EF29I5 Arria 2. The results are gathered

in Table III, and the operating frequency of 100 MHz has

been achieved for the version without CABAC. The ver-

sion with the CABAC module can operate only at about

92 MHz. However, much higher frequencies can be achieved

for Stratix 3/4 devices allowing HDTV with B frames. The

whole design occupies around 30000 ALUTs in both cases.

This resource consumption should leave enough space in an

average-size Aria 2 FPGA for some accompanying units like

audio decoder and transport stream decoders. This would allow

the construction of the whole TV decoding system on a single

chip.

Most decoders described in the literature target ASIC chips

[8], [1], [4]. Moreover, some of them supports only Baseline

Profile [1], and none of them supports High Profile, although

all of them claim to support real time decoding of the

MIKOŁAJ ROSZKOWSKI, ANDRZEJ ABRAMOWSKI, MICHAŁ WIECZOREK, AND GRZEGORZ PASTUSZAK298

1080p@30fps sequences. This differences make the compari-

son with the proposed decoder, targeted mostly for medium-

sized, difficult. Furthermore, the decoders presented in the

literature were not compiled for FPGA, so any comparisons

of the resource usage is virtually impossible.

VI. CONCLUSION

The H.264/AVC standard is nowadays the most advanced

commonly used video encoding standard. However, its effi-

ciency comes at the price of the increased complexity. As

a result, only hardware or hardware supported implementa-

tions can provide optimal performance. This paper presents

the proposal of an H.264/AVC architecture optimised for

FPGA structures, capable of processing in real-time SDTV

and HDTV sequences encoded in High Profile. The design

is flexible enough to easily upgrade the decoder to support

higher resolutions, by modifying an implementation of the

INTER prediction unit, but at the expense of significantly

higher resource usage.

REFERENCES

[1] T.-W. Chen, Y.-W. Huang, T.-C. Chen, Y.-H. Chen, C.-Y. Tsai, and L.-
G. Chen, “Architecture design of h.264/avc decoder with hybrid task
pipelining for high definition videos,” in IEEE International Symposium
on Circuits and Systems 2005, 23-26 2005, pp. 2931 – 2934 Vol. 3.

[2] T.-C. Chen, H.-C. Fang, C.-J. Lian, C.-H. Tsai, Y.-W. Huang, T.-W.
Chen, C.-Y. Chen, Y.-H. Chen, C.-Y. Tsai, and L.-G. Chen, “Algorithm
analysis and architecture design for hdtv applications - a look at
the h.264/avc video compressor system,” IEEE Circuits and Devices

Magazine, vol. 22, pp. 22–31, May–June 2006.

[3] H. Eeckhaut, M. Christiaens, D. Stroobandt, and V. Nollet, “Optimizing
the critical loop in the h.264/avc cabac decoder,” in IEEE International

Conference on Field Programmable Technology, 2006., dec. 2006, pp.
113 –118.

[4] Y. Hu, A. Simpson, K. McAdoo, and J. Cush, “A high definition
h.264/avc hardware video decoder core for multimedia soc’s,” in Con-

sumer Electronics, 2004 IEEE International Symposium on, sept. 2004,
pp. 385 – 389.

[5] Y.-W. Huang, B.-Y. Hsieh, T.-C. Chen, and L.-G. Chen, “Analysis,
Fast Algorithm, and VLSI Architecture Design for h.264/avc Intra
Frame Coder,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 15, pp. 378–401, May 2005.

[6] Recommendation ITU-T H.264(2007) — Corrigendum 1, Joint Video
Team of ITU-T VCEG and ISO/IEC MPEG, January 2009.

[7] Report of The Formal Verification Tests on AVC (ISO/IEC 14496-
10 — ITU-T Rec. H.264), JVT, Test and Video Group, December
2003,Waikoloa.

[8] C.-C. Lin, J.-W. Chen, H.-C. Chang, Y.-C. Yang, Y.-H. O. Yang, M.-C.
Tsai, J.-I. Guo, and J.-S. Wang, “A 160k gates/4.5 kb sram h.264 video
decoder for hdtv applications,” IEEE Journal of Solid-State Circuits,
vol. 42, no. 1, pp. 170 –182, jan. 2007.

[9] D. Marpe, T. Wiegand, and S. Gordon, “H.264/MPEG4-AVC Fidelity
Range Extensions:Tools, Profiles, Performance, and Application Areas,”
in IEEE International Conference on Image Processing 2005., vol. 1,
September 2005, pp. 593–596.

[10] I. E. G. Richardson, H.264 and MPEG-4 Video Compression. John
Wiley & Sons, 2003.

[11] W. T. Staehler, E. A. Berriel, A. A. Susin, and S. Bampi, “Architecture of
an hdtv Intraframe Predictor for a h.264 Decoder,” in IFIP International
Conference on Very Large Scale Integration, October 2006, pp. 228–233.

[12] C.-H. Tsai, Y.-W. Huang, and L.-G. Chen, “Algorithm and architecture
optimization for full-mode encoding of h.264/avc intra prediction,” in
48th Midwest Symposium on Circuits and Systems, 2005., vol. 1, August
2005, pp. 47–50.

ARCHITECTURE DESIGN OF THE HARDWARE H.264/AVC VIDEO DECODER 299

