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Programmable, Asynchronous, Triangular
Neighborhood Function for Self-Organizing Maps

Realized on Transistor Level
Marta Kolasa, Rafał Długosz, and Krzysztof Bieliński

Abstract—A new hardware implementation of the triangular
neighborhood function (TNF) for ultra-low power, Kohonen self-
organizing maps (SOM) realized in the CMOS 0.18µm technology
is presented. Simulations carried out by means of the software
model of the SOM show that even low signal resolution at the
output of the TNF block of 3-6 bits (depending on input data set)
does not lead to significant disturbance of the learning process of
the neural network. On the other hand, the signal resolution has a
dominant influence on the overall circuit complexity i.e. the chip
area and the energy consumption. The proposed neighborhood
mechanism is very fast. For an example neighborhood range of 15
a delay between the first and the last neighboring neuron does not
exceed 20 ns. This in practice means that the adaptation process
starts in all neighboring neurons almost at the same time. As a
result, data rates of 10–20 MHz are achievable, independently
on the number of neurons in the map. The proposed SOM
dissipates the power in-between 100 mW and 1 W, depending
on the number of neurons in the map. For the comparison, the
same network realized on PC achieves in simulations data rates
in-between 10 Hz and 1 kHz. Data rate is in this case linearly
dependend on the number of neurons.

Keywords—Self-Organizing Maps, parallel signal processing,
CMOS realization, low energy consumption, digital circuits.

I. INTRODUCTION

SELF-ORGANIZING MAPS (SOM), broadly described in
the literature, are used in various applications. They are

powerful tools frequently used in classification of the signals
that due to their nature can not be easy described mathe-
matically. The SOMs are powerful tools used, for example,
in medical healthcare systems in classification of various
biomedical signals [1], [2]. Different network architectures
of this type with different learning algorithms have been
proposed. One of them is the Kohonen SOM, which is often
referred to as the classical approach [3]. This SOM is trained
according to the following formula:

Wj(l + 1) =Wj(l) + η(k)G(i, j, R, d)[X(l)−Wj(l)] (1)

where η(k) is the learning rate in the kth training epoch, Wj

are the weight vectors of particular neurons in the map, and
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X is an input training pattern in an lth cycle. The neurons that
belong to the winners neighborhood are trained with different
intensities, depending on the neighborhood function (NF) G()
of the topological distance, di,j , between the winning neuron
ith and a given jth neurons in the map. In the classical
approach a simple rectangular neighborhood function (RNF)
is used, defined as [3], [4]:

G(i, j, R, d) =

{
1 for d(i, j) ≤ R
0 for d(i, j) > R

(2)

where R is the neighborhood range, which is decreased after
each training epoch.

The common opinion is that better results can be achieved
in case of using the Gaussian neighborhood function (GNF)
instead of the rectangular one [5]. The Gaussian function is
defined as follows:

G(i, j, R, d) = exp

(
−d

2(i, j)

2R2

)
(3)

Various hardware realizations of the Gaussian function have
been proposed [6], [7], [8]. The reported solutions usually are
based on the analog circuits. On the other hand, in the SOMs
with large numbers of neurons, in which the neighborhood
mechanism must be distributed over a large chip area, dig-
ital solutions seem to be more efficient, as they are robust
against the variation of external parameters, such as the supply
voltage, the environment temperature, the noise and various
technology nonidealities that occur during the chip fabrication
process. The main disadvantage of a digital realization of the
GNF is relatively large complexity of such circuit. It makes
difficult its implementation in large neural networks with the
neurons operating in parallel, in which low chip area and low
power disspation are required [6].

To solve this situation the authors have recently focused on
the triangular neighborhood function (TNF). They proposed
an efficient digital realization of this function. Detailed inves-
tigations revealed that for a variety of the combinations of
different network parameters the TNF offers a very similar
performance as in case of using the GNF [9]. The TNF can
be expressed as follows:

G(i, j, R, d) =

{
−a(η0) · d(i, j) + c for d(i, j) ≤ R

0 for d(i, j) > R
(4)

where a() is the assumed steepness of this function, η0 is the
winning neurons learning rate, while c is a bias value. All
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Fig. 1. The proposed realizations of the Kohonen SOM – the neighborhood
scheme.
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Fig. 2. Simplified model of the neuron used in the proposed hardware
implementation of the Kohonen SOM.

these parameters decrease toward zero after each, kth, epoch.
Such scheme enables rapid changes of the neuron weights at
the beginning of the learning process, and only tuning their
values at the end.

II. AN OVERVIEW OF THE PROPOSED NEIGHBORHOOD
MECHANISM

The programmable asynchronous neighborhood mechanism
proposed by the authors is a very fast and energy efficient
solution [10]. A general diagram of the proposed SOM is
shown in Figure 1. The simplified structure of a single
neuron used in this network is presented in Figure 2. For
the simplicity, only these blocks that are directly used by the
neighborhood mechanism have been shown in this diagram.
Detailed structures of these components are shown in Figure 3.

The proposed neighborhood mechanism works as follows.
First the winning neuron receives an initial value of the radius
R (the RPROG signal in Figure 2), which is equal to the

��

��

����

��

��

��

��

��

��

��

��

��

��

��

��

��

�
�
�
� �

�
�
� �

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

ENout_1

ENin_1

ENout_5

ENin_5

ENout_2
ENin_2

ENout_8

ENin_8

ENout_3
ENin_3

ENout_7

ENin_7

ENout_6

ENout_4

ENin_6

ENin_4

WTA

1

8EN

EN

7EN

STOP
1

8

7

STOP

STOP

NEIGHBOR

NEIGHBOR

NEIGHBOR

a
1

a
2

a
3

a
i

R
in

R
out

b
i 3 2 1

b b bSTOP

Fig. 3. Diagrams of the blocks used in proposed neighborhood mechanism:
(top) the enable signal EN PROP and (bottom) radius signal R PROP
propagation blocks.
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Fig. 4. Basic topologies of the SOM: (top) the rectangular one with four
neighbors (Rect4), (middle) the rectangular with 8 neighbors(Rect8), and
(bottom) the hexagonal one (Hex).

topological distance d. This externally programmed signal is
sent by the winning neuron in all directions, which are allowed
in a given topology, as shown in Figure 4. In parallel with this
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signal an enable (EN) signal is also sent in all directions. As
soon as a given neighboring neuron receives the EN signal, it
allows the Rin signal that comes from the same direction to
enter its internal R PROP circuit, which decreases it by one
and then resends it also in all directions. To prevent collisions,
i.e. the situation in which one neuron receives the R signal
from more than one direction, the EN PROP circuit has been
designed in such a way to enable the propagation of the EN
signal only in selected directions, which are always out of the
winning neuron. The proposed scheme resembles a wave that
spreads out of the winning neuron. At each following ring of
neurons surrounding the winner the value of the R signal is
decreased by 1. If the value of this signal reaches the value
0, the further propagation of the EN signal is prohibited. For
the RPROG signal set to its maximal value, the neighborhood
range covers the entire map. This means that in this case
each neuron in the map is allowed to adapt its weights. The
EN PROP and the R PROP circuits are shown in Figure 3. In
such form the neighborhood mechanism can be directly used
in the classic SOM with the RNF. In this case the learning rate
η, which is equal in all neurons, is externally reprogrammed
after each epoch in the same way as the RPROG signal.

The network topology, defined as a grid of neurons, plays an
important role in the overall learning process. This parameter
determines which neurons belong to the winners neighborhood
for a given value of the distance d [3], [4], [5]. The most
frequently used topologies are the rectangular one with either
four or eight neighbors and the hexagonal grid, as shown in
Figure 4. In this paper they are referred to as Rect4, Rect8
and Hex, respectively. The authors’ previous investigations
shows that particular topologies are suitable for different
combinations of remaining network parameters, as well as
different sizes of the map (the numbers of neurons). For this
reason they proposed the programmable solution, which can
operate with all these topologies on a single chip [10].

III. AN INFLUENCE OF PARTICULAR NETWORK
PARAMETERS ON THE TRAINING PROCESS

A. An Influence of Type of the Neighborhood Function

The comparative study for all three neighborhood functions
described in first section by means of the software model of
the SOM has been presented in [9]. This study shows that the
triangular neighborhood function is a very good approximation
of the Gaussian one. It is worth mentioning that the majority
of reported applications of the Kohonen SOM were realized
as software systems. In such systems both the TNF and GNF
can be very simply realized as single instructions, and the
conclusion above is of second importance in this case. For
this reason, to our knowledge, the investigations presented in
[9] have not been undertaken before. A different situation is
if such networks are realized on transistor-level as application
specific integrated circuits (ASIC) [11]. Such chips find an
application in ultra-low power portable devices, e.g. in Wire-
less Sensor Networks (WSN) [12], which are more and more
frequently used in medical healthcare systems. In this case the
conclusion drawn above is very important, as application of
the TNF instead of the GNF enables the simplification of the

overall circuit structure and significant reduction of both the
chip area and the energy consumption.

B. An Influence of the Signal Resolution at the NF Output

The second important aspect is the influence of the signal
resolution at the output of the NF block on the overall circuit
complexity i.e. the power dissipation and the chip area, as
well as on the learning quality of the SOM. Selected results
presented in this section show that there exists a trade-off
between these two aspects. The number of transistors used in
the neighborhood mechanism linearly depends on the signal
resolution. On the other hand, decreasing the signal resolu-
tion below some critical values disturbs the overall learning
process.

To show this problem in numbers the learning process of
the SOM has been evaluated by use of the quantization error
(Qerr), which is a commonly used criterion in such cases. The
Qerr can be expressed as follows:

Qerr =

m∑
j=1

√
n∑
l=1

(xj − wj,l)2

m
(5)

The m parameter is the number of the learning patterns, X ,
in the input data set, while n is the number of the network
inputs.

In this section are presented selected simulation results by
means of the software model of the network for different
signal resolutions. The network was trained with data either
regularly or randomly distributed in the input data space. The
number of training patterns X depends on the map sizes. For
example, the map with 16x16 neurons was trained with either
1280 or 2560 training patterns, which are either regularly or
randomly distributed in the input data space. The map with
10x10 neurons was trained with either 500 or 1000 learning
patterns, respectively.

The results in Figures 5 – 7 are shown versus an initial
value, Rmax, of the neighborhood radius R. The Rmax param-
eter is the radius in the first epoch after starting the learning
process. The influence of Rmax on the quantization error for
the RNF, given by (2), has been studied by the authors in [13].
It has been demonstrated that for different input data sets and
different other network parameters varying in the wide range,
the optimal values of the Rmax are usually very small, even
for large SOMs with hundreds neurons. This conclusion is in
contrast to a very common opinion that Rmax at the beginning
of training process should be large enough to cover at least
half of the map. In hardware realization this conclusion is
important, as low values of Rmax allow for further reduction
of the circuit complexity [13].

The results in Figures 5 and 6 are shown for two inputs
and data regularly distributed in the input data space, for the
maps with 16x16 and 10x10 neurons, respectively. Figure 7
shows example results for the map with 16x16 neurons, for
three inputs and input data randomly distributed.

On the basis of presented results some conclusions can be
drawn. In case when the network is trained with regular data
it is possible to point out such values of Rmax, for which the
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Fig. 5. Quantization error after completing the learning process for different
resolutions of the η · G() signal, for 16x16 neurons, for: (a) rect8 (b) rect4
(c) hex topology, for two inputs and data regularly distributed in the input
data space.

map becomes properly organized for all topologies even for
the resolution of 3 bits. This case is shown in Figure 8 (a).
The Rect8 and the Hex topologies offer better properties in
this case, as this optimal arrangement of neurons is visible for
wider range of the Rmax parameter. For smaller maps, e.g.
with 10x10 neurons, the resolution of 3 bits does not disrupt
the learning process, while for larger maps this effect starts
to be visible, as shown in Figure 8 (b). Nevertheless, even
in this case a proper ordering of the map is achievable for
selected values of Rmax. In the optimal case the quantization
error equals 16.18e-3. The nonzero value of this parameter in
this case results from the arrangement of data in the input data
space. In the not optimal case shown, for example, in Figure 8
(b), 29 neurons of 256 are not properly placed, resulting in the
Qerr enlarged by 25%.

A different situation can be observed in the case shown in
Figure 7. In this case the best results have been achieved for
the resolution of 6 bits, for the Rect4 topology. Nevertheless,
even for 3 bits the Qerr exhibits comparable values for selected
values of Rmax. For the Rect8 topology the best results have
been achieved for the resolution of 10 bits, although for 3 bits
Qerr is only 13% larger, which in some cases is acceptable.
For the Hex topology the best solution has been achieved for

Fig. 6. The same results as in Figure 5 for 10x10 neurons in the map.

the resolution of 4 bits, although for 3 bits the Qerr is only
8% larger.

The number of transistors in case of the resolution of 3-
bits, for Rmax = 8 (coded using 3 bits) equals c. 550 per a
single neuron, while for 6 bits equals c. 1200. The ability to
reduce the signal resolution for an example map with 16 x
16 neurons leads to reduction of the number of transistors by
about 170,000. If such network were realized in the CMOS
0.18µm technology the chip area was reduced by about 2mm2,
while the power dissipation was reduced by 30 %.

IV. HARDWARE IMPLEMENTATION OF THE PROPOSED
TNF BLOCK

The neighborhood mechanism as a whole is composed of
two different components that should be clearly distinguished.
The first one is the topological distance calculation block
proposed by the authors in [10], briefly described in previous
section. This block is composed of the EN PROP and the
R PROP circuits described above. As it has been mentioned,
at each following ring of neurons surrounding the winner
the value of the R signal is decreased by one. Particular
R signals can directly be used as the input signals to the
second component – the neighborhood function (NF) block.
Each neuron contains its own NF block, so that the calculation
of the factor η · G() in (1) can be carried out in parallel in
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Fig. 7. The same results as in Figure 5 for: (a) rect8 16x16, (b) rect4 16x16
(b) hex 16x16 cases but for three inputs and data randomly spread in the input
data space.

all neurons in the map. A majority of the reported solutions
concern implementation of the NF as a separate block. In
most reported cases the Gaussian function is realized using
the analog circuits. Only a few works present implementation
of the overall neighborhood mechanism with the distance
calculation block. One of such implementations is the analog
neighborhood mechanism reported in [14].

In this paper authors focus on the implementation of the
digital triangular NF block, which can be used with either a
fully digital SOM [10], or with the analog network reported
by the authors in [11].

An idea of the proposed TF block implemented as a digital
circuit can be described as follows:

η(k) ·G(i, j, R, d) = R · E/D + C (6)

The C, D and E variables determine the shape of the
triangular function. The R · E multiplication is performed
using a typical shift-and-add circuit. If, for example, in such
a circuit a binary number E = 1001 has to be multiplied
by R = 110, a series of add operations is performed say,
0·1001+1·10010+1·100100. The summing operation of partic-
ular terms is performed by use of the multi-bit adders. The
next operation is division by the D variable. In the proposed
solution the allowed values of D are limited to the numbers

Fig. 8. Final placement of neurons in the map with 16x16 neurons, for the
Rect8 topology, for data regularly distributed: (a) the optimal case, (b, c, d)
not optimal cases with the quantization error increased by 25%, 42%, and
56% respectively.

that are the following powers of 2 i.e. 1, 2, 4, 8, . As a result,
the division operation is realized very simply by shifting all
bits in the R ·E product to the right, using the circuit shown
in Figure 10.

To illustrate how the proposed TNF circuit operates, several
example cases are shown in Figure 9 for selected values of
the C, D, E and R parameters. All neurons in the SOM
receive the C, D and E variables with equal values, while the
R parameter is provided only to the winning neuron, as an
RPROG signal. At the following neighborhood stages, i.e. the
following rings of neurons, the value of R decreases toward
zero, so at a ρth stage Rρ = R− d(i, j).

The number of bits in the C, D, E and R variables has
direct influence on the circuit complexity, as described above.
The number of the multi-bit adders in a single multiplier is
linearly proportional to the resolution of E. On the other hand,
the resolution of R determines the number of 1-bit full-adders
in particular multi-bit adders. In the proposed TNF block a
1-bit adder composed of 26 transistors [15] has been used.
Several other solutions with even less numbers of transistors
were also considered, but in simulations the solution of [15]
was the most efficient, considering the speed and the power
dissipation.

Figures 5–7 show that quite good quality of the learning
process is possible for Rmax < 9 i.e. for the resolution of this
signal of only 3 bits. In the worst case, shown in Figure 7, the
optimal resolution of the η ·G() factor is 6 bits. As a result,
the resolution of E should be 6 as well.

In the proposed circuit all neurons in the map operate
in parallel. Simulations carried out in the CMOS 0.18µm
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Fig. 9. The influence of the C, D, E and R parameters on the shape as
well as the range of the triangular function. This Figure is a good illustration
of the flexibility of the proposed solution.

technology show that input data rate can be as high as 10
– 20 MHz, depending on the number of the network inputs,x,
and the topology. Each neuron for a single learning pattern
X with 3 elements x (n=3) performs about twenty arithmetic
operations. As a result, the map with 64 neurons performs 50e9
operations/s, dissipating the power of 50–100 mW. Larger
maps with more than 1000 neurons will achieve data rate even
as high as 1e12 operations/s in the technology which is not
the newest one. A single operation in this case means e.g.
an addition, multiplication, detection of the winning neuron,
adaptation of a single weight, etc.

Since all neurons in the map are composed of equal blocks,
therefore any reduction of the complexity of any block in
a single neuron has a great effect on the complexity of
the overall neural network. The most complex block in the
proposed TNF block is the multi-bit multiplier, which is
composed of several multi-bit adders. In this approach the
shift-and-add multiplier has been realized as an asynchronous
binary-tree structure. At the first layer of the tree particular
terms corresponding to the bits of R are summed in the
following fashion: 1 with 2, 3 with 4, and so on. All these
operations are performed in parallel. Then in the second layer
the results of the first layer are summed as follows: The output
of the pair 1-2 is added to 3-4, 5-6 to 7-8, and so on. The
number of adders at each following layer in the tree is always
reduced by half in comparison with the previous layer. In the
binary-tree approach for a resolution of the R signal of κ bits a
delay that is introduced by the multiplier equals Tadd log2 κ,
where Tadd is delay introduced by a single multi-bit adder.
This is an important advantage of this approach, as data rate
degrades only moderately with increasing the number of bits.

Fig. 10. The structure of the bits-shift block, which shifts the bits of the
R ·E product to the right, thus dividing the signal by D, which is always a
power of 2.

Division operations usually require very complex circuits.
In the proposed solution the R · E product is divided by
selected values only and therefore this circuit is very simple
and fast, as shown in Figure 10. The bits-shift operation is
performed by use of a set of switches directly controlled
by particular bits of the D variable: d0, d1, d2, ..., dp.
Note that only one bit in this variable is allowed to be equal
to 1. As a result, the division is based on the following scheme:

d0 = 1 shifts the bits by 0 bits → division by 1
d1 = 1 shifts the bits by 1 bits → division by 2
d2 = 1 shifts the bits by 2 bits → division by 4
...............
dp = 1 shifts the bits by p bits → division by 2p

One additional circuit has to be used in the bits-shift block,
which is not shown in Figure 10. Shifting the bits to the
right by p positions makes the terminals that correspond to
the p most significant bits floating. These terminals should
be connected to ground to avoid the ambiguity. This task is
realized by additional switches (one per each terminal), which
are controlled by the signals also dependent on particular bits
of the D variable. Instead of the switches, realized here as
transmission gates, a series of the AND gates can be used,
but at the expense of larger number of transistors and a little
bit larger power dissipation.

The operation of the realized TNF block is illustrated in
Figure 11. In this simulation a series of multiplications and
divisions has been performed for R decreasing from 15 down
to 0 and E decreasing from 31 down to 0, i.e. for 512
combinations. The products R·E are in the second step divided
by 32 (i.e. are shifted by 5 bits to the right). Sampling period
equals in this case 20 ns but the circuit works properly even
for 6 ns. Figure 11 shows also the supply current. The values
of the current spikes varies in-between 1 and 25 mA, while
the width of these spikes is less than 1 ns. An average energy
consumption does not exceed in this way a few pJ per a single
operation.

Figure 12 illustrates transistor level simulations of the
overall neighborhood mechanism with 8x8 neurons operating
in the Rect4 mode. This mode allows for reaching the highest
distances, as only the horizontal and the vertical directions
are allowed, as shown in Figure 4. Looking from data rate
point of view it is the worst case scenario. The top diagram
illustrates the enable signals, EN, in the first column of the
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Fig. 11. Transistor level simulations of a separate TNF block. The top
plot illustrates different values of the R and E parameters applied to the
TNF inputs. The next two plots illustrate particular stages of the TNF block.
The bottom plot illustrates the supply current. The results are presented for
VDD=1.8V.

Fig. 12. Transistor level simulations of the overall programmable neigh-
borhood mechanism for 8x8 neurons in the map together with the included
TNF blocks. The first and the second plot illustrate the enable, EN, signals
at particular stages of the neighborhood. The bottom plot illustrates a total
supply current.

map. These signals trigger the adaptation process in particular
neurons. Once the EN signal arrives at the bottom row of the
map, the propagation immediately starts in this row, as shown
in the second plot. A delay between the EN signal at the first
(1, 1) and the last (8,8) neurons in this chain equals only 14
ns. Since a delay of a single TF block does not exceed 6 ns,
the entire map is ready for the adaptation after no more than
20 ns. For the Rect8 topology this time is even shorter, as
the diagonal directions are also permitted in this case. The
remaining operations performed by the SOM take 20 – 30 ns
depending on the number of the inputs. This means that the
achievable data rate is larger than 10 – 20 MHz.

V. CONCLUSIONS

A new very fast and power efficient triangular neighborhood
function (TNF) for hardware realized Kohonen SOMs has
been proposed. The proposed circuit is a digital programmable
solution. Using digital technique makes the proposed circuit
robust against process, voltage and temperature (PVT) vari-
ation, so it is suitable for the applications working under
different conditions [12].

The presented simulation results show that even low signal
resolution at the output of the TNF block does not disturb the
learning process of the SOM. On the other hand, low resolu-
tion allows for a significant reduction of the circuit complexity
and the power dissipation. In the proposed architecture of the
SOM all neurons operate in parallel. As a result, large neural
networks can achieve the computational capacity as high as
1e12 operations/s in the CMOS 0.18µm technology.
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