
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2010, VOL. 56, NO. 4, PP. 405–410
Manuscript received October 21, 2010; revised November 2010. DOI: 10.2478/v10177-010-0054-8

Fuzzy Processing Implementation
in Dedicated Digital Hardware

Przemysław M. Szecówka and Adam Musiał

Abstract—The paper presents a concept of digital circuit
dedicated for fuzzy processing with numerical inputs and outputs.
Partially concurrent and pipelined data flow provides high
performance, with relatively low dependence on particular algo-
rithm complexity. Sample design with triangular fuzzy sets, rule
strength calculation (minimum approach) and defuzzyfication
by weighted sum of fuzzy sets centers was implemented in VHDL,
verified and synthesized for FPGA. Floating point arithmetic was
applied, including dvision performed by dedicated synchronous
machine. All modules were prepared for easy reuse/redesign.

Keywords—Fuzzy, hardware, floating point, VHDL, FPGA.

I. INTRODUCTION

FUZZY processing, since its introduction in 60’s [1],
gained prestigious position in research and industry. Huge

record of successful applications in data processing, identifica-
tion, and control placed this technology in a position competi-
tive to neural networks. Several scientific journals are devoted
strictly to this technology. Computational complexity of classic
fuzzy processor may be classified among moderate ones. It
strongly depends on number of inputs, number of fuzzy sets,
number of rules and number of outputs. For software imple-
mentation this feature means that higher complexity induces
longer processing time. From computational point of view
however, several parts of fuzzy processing may be performed
concurrently. Thus it shall be expected that when implemented
in dedicated digital hardware, fuzzy processing may remain
very fast, regardless of complexity. These features invoked an
interest in development of digital circuits performing various
kinds of fuzzy processing. The first papers, usually theoretical,
appeared in 90’s [2]–[5]. Simultaneously mixed signal devices
performing computation in analog way and programmable in
digital way were used for research [6]. Growing complexity
of programmable logic devices encouraged extensive practical
use of digital architectures [7], [8], sometimes leading to
modification of the algorithms towards easier implementation
in hardware [9]. This paper presents another variant of dig-
ital architecture dedicated to fuzzy processor with numerical
inputs and outputs. Specific features of the concept are full
floating point arithmetic approach, data flow organization with
optional pipelining and reuse/redesign capabilities. A sample

This work was supported by the grant: Detectors and sensors for measuring
factors hazardous to environment − modeling and monitoring of threats,
POIG.01.03.01-02-002/08.

P. M. Szecówka is with the Faculty of Microsystem Electronics and
Photonics, Wrocław Univeristy of Technology, Wybrzeże Wyspiańskiego 27,
50-370 Wrocław, Poland (e-mail: przemyslaw.szecowka@pwr.wroc.pl).

A. Musiał is with Clarena, Kleczkowska 45, 50-227 Wrocław, Poland (e-
mail: adam.musial@clarena.pl).

design was implemented in VHDL, verified and synthesized
for Xilinx FPGA.

II. FUZZY PROCESSING OVERVIEW

Fuzzy processing is based on rules constructed for fuzzy
sets. Fuzzy rules are formulated in a way quite similar to
classic logic. For input vector x = [x1, x2, .., xn]

T the output
y is described by the series of rules like:

IF x1 ∈ F
(l)
1 , x2 ∈ F

(l)
2 , ..., xn ∈ F

(l)
n THEN y ∈ G(l)

where l = 1...L. The difference is in fuzzy sets F1...Fn and
G applied instead of classic sets. Each fuzzy set is defined
by a function determining to what extent particular element
belongs to the set. These functions return values between
0 and 1, with boundary values compatible with classic
sets theory and intermediate values pointing to growing
connections between an argument and a set. For most of
practical applications, with numeric input and numeric
output, there are 3 steps of fuzzy processing: fuzzyfication,
calculation of rules strength and defuzzyfication (Fig. 1).

Fuzzyfication means calculation of fuzzy set functions for
each element of numeric input vector x. In this design trian-
gular functions were applied for input (Fig. 2) and singletons
for output.

Rules strength calculation provides a number F (l), which
says how far particular input vector matches each rule. In
this design the minimum approach (1) was applied. This
one is not the best solution. It may be shown that e.g.
product of fuzzy sets functions calculated for each element of
input vector, provides more accurate output. The minimum,
however is very easy to implement and does not consume
much resources.

F (l) = min(F
(l)
1 (x1), (F

(l)
2 (x2), ..., F

(l)
n (xn)) (1)

y =

∑L
l=1 F

(l)cl∑L
l=1 F

(l)
(2)

The final stage is defuzzyfication, where the numeric value
of output is calculated, according to what the rules say. Each
rule points to some fuzzy set G(l), with some central value cl.
Weighted sum of fuzzy sets centers (2) was applied. This one
provides very accurate results. It is rather expensive in the
context of hardware resources and contains division which
is hard to implement, but it is also hard to find anything
more simple providing reasonable accuracy. Thus the authors
decided to invest some effort in this solution.



406 P. M. SZECÓWKA, A. MUSIAŁ

Fig. 1. Three stages of fuzzy processing

Fig. 2. Fuzzy sets definition

III. ARCHITECTURE

The architecture is full-synchronous with single clock. The
main components roughly match elements of computation
described in previous section. For the sample design it was
presumed that there are 2 inputs, 1 output and 3 fuzzy sets
for each input/output, what makes 6 rules. All numbers are
floating point. The other inputs are global clock and reset
signals, and a strobe − external pulse starting calculation.
Data flow is pipelined and some operations are performed
concurrently.

A. Fuzzy Sets

The architecture of fuzzy sets block is presented in Fig. 3.
This block provides calculation of 3 functions describing 3
sets − SMALL, MEDIMUM and LARGE. The shape of
MEDIUM set function is triangular, with 2 symmetric slopes.
The SMALL and LARGE functions have single slopes, falling
and rising respectively. Any classic configuration of 3 sets
may be defined by 3 characteristic values S,M,L defined
in the input domain and the slope tg. General architecture
remains same. Eventually the design may be easily reused
and replicated for various configurations of 3 fuzzy sets.
Calculation of each fuzzy set function involves muxes with
comparators, subtractors, multipliers. Chains of combinatorial
logic are relatively long. Series of registers may be inserted
between consecutive stages to provide pipelined operation and
higher clock speed.

B. Rules Strength Calculation

After calculation of fuzzy sets for all inputs, the rules
strength is estimated. For the selected method (minimum),
it means that the strength of each rule is equal to the lowest
value of fuzzy set appearing in it (1). The search for minimum

Fig. 3. Fuzzy sets calculation block.

was implemented in tournament type architecture with a
single comparator and register preserving the actual master.
In consecutive clock cycles the consecutive candidates are
delivered by a mux, controlled by a counter. In a comparator
the candidate fights with the current master. If it the new
candidate is lower, it is registered and becomes the new master.
If the new candidate is higher, the previous master remains in
register. After checking all the fuzzy set values, the winner is
sent to another register and then to defuzzyfication block. The
whole process takes the number of clock cycles equal to the
dimension of input vector. This hardware however is replicated
for each rule, as it is shown in central part of schematic in
Fig. 4. Thus all rules are processed concurrently.



FUZZY PROCESSING IMPLEMENTATION IN DEDICATED DIGITAL HARDWARE 407

Fig. 4. Fuzzy sets and rules strength calculation.

Fig. 5. Defuzzyfication block.

C. Defuzzyfication

The final stage of fuzzy processing is defuzzyfication. For
the weighted sum of centers of fuzzy sets defined for the
output (2), it consists of a multiplier, two accumulations and
division block. The first accumulator adds together fuzzy set
centers multiplied by the appropriate rule strength factors

(numerator in (2)). Multiplication blocks are shown in the right
part of Fig. 4. In the consecutive clock cycles the rule strength
factors are selected from a mux and directed to multiplication.
Simultaneously another mux selects the appropriate fuzzy set
center for multiplication. The result of multiplication is stored
in register and then sent to accumulator shown in Fig. 5. The



408 P. M. SZECÓWKA, A. MUSIAŁ

key functionality of this block is accumulation of incoming
numbers. However due to the specific properties of float-
ing point arithmetic blocks, somewhat unusual architecture
was proposed. Floating point multiplication block is almost
twice faster than floating point adder. Thus the adder may
be divided to two stages, separated by a register. In such
case ca. twice higher clock frequency may be applied. This
additional register however, destroys the natural synchronicity
of traditional accumulator. When it takes two clock cycles to
add a new element, then the consecutive elements shall be
delivered every two clock cycles too. The idle clock cycle
would have to be inserted making this idea questionable.
This idle cycle however may be used to perform another
computation. In this case there is a need to calculate a simple
sum of rule strength factors (denominator in (2)). Thus the
single adder may be shared by the two accumulators. A
common blinking signal controls two muxes switching the
channels connected to the adder. Same blink line enables and
disables the synchronous latches, which store the cumulated
values. The final stage of defuzzyfication is division. This
block is definitely the most complicated part of the design.
The key part is synchronous machine providing fixed point
division, presented in Fig. 6. In consecutive stages it compares
series of bits cut from the numerator with denominator bits.
Depending on comparison result, logic 0 or 1 is sent to a shift
register containing the result of division. Simultaneously either
the original bits of numerator or result of subtraction are sent
back to the appropriate part of numerator register. In the next
clock cycle the modified (or not) numerator is shifted left and
the new comparison/subtrac. For proper operation the most
significant bit of denominator must not be 0. Thus in the very
begin the denominator shall be shifted accordingly. Special
counter memorizes the number of shifted bits and at the final
stage the result is shifted too. Various other exceptions may
occur and must be handled by additional logic. The whole
process takes a number of clock cycles slightly exceeding
the number of bits in the output value, i.e. it depends on
precision required. Floating point division block relies on this
synchronous machine to calculate the significand. Another part
of logic delivers exponent and provides the standardized shape
of output.

D. Floating Point Arithmetic
All calculations are performed for the floating-point num-

bers with 25-bit representation. The vector consists of sign bit,
18-bit significand and 6-bit exponent. Octal basis was applied,
i.e. there are 6 digits in significand. Sign-module coding of
significand was found the most effective for arithmetic and
logic operations, and in several points of fuzzy processing the
result is never negative, thus the sign bit may be removed. On
the other hand the exponent is represented by 2-complement
notation. Arithmetic modules were reused/redesigned from
other in-house developed architectures [10]–[12]. Floating
point division block was based on existing, fully verified,
sequential fixed point divider [13], combined with specific
logic added. The basic fixed-point arithmetic operations were
taken from the IEEE std logic signed and std logic unsigned
packages.

E. Timing and Synchronization

The circuit starts new calculation with external strobe signal.
The input signals are registered. Calculation of fuzzy sets
functions takes single clock cycle and is performed concur-
rently for all inputs and sets. Finding a minimum for each rule
takes the number of clock cycles equal to the number of input
vector elements. For the sample design it is 2. Simultaneous
calculation of numerator and delimiter of the defuzzyfication
fraction takes a number of clock cycles twice higher than the
number of rules plus 1 more cycle to register the final value.
In this case it makes 13. The final division is performed in
specific synchronous machine. It consumes 18 clock cycles
for calculation of 18-bit significand and 3 cycles for other
logic operations. This makes 21 clock cycles. Thus there are
3 steps of calculation, which take 37 clock cycles. It is possible
however to organize a pipelined data flow. For the presented
example the slice was set to 21 clock cycles, determined by
the division block. The first two stages may be combined to
a single step of pipeline, with 16 active and 5 idle cycles.
In such case the whole calculation takes 42 clock cycles and
every 21 clock cycles the new output is delivered. For the other
configurations of fuzzy system this setup may be modified. For
higher complexity (number of inputs and rules) superiority of
pipelined solution for massive throughput is more visible.

IV. IMPLEMENTATION

The design was implemented in VHDL [14], with all
logic signals and operations based on the std logic 1164
package from the IEEE library. A little code partitioning was
applied. All floating-point arithmetic operations were kept in
separate entities. Another specific entity was fuzzy sets block,
replicated for each input variable, with specific constants. All
the other functionality − data flow control with counters and
muxes was placed in a single, top-level module. VHDL code
was processed, simulated and synthesized for FPGA using
Xilinx ISE tools [15]. Verification plan covered individual tests
of each module and comprehensive simulation of the whole
fuzzy processor. The most exhaustive tests were applied for
arithmetic modules. In particular the fixed-point division block
was verified for all possible combinations of input bit vectors.
As a target device for synthesis process, Xilinx XC3S1000
circuit was selected − Spartan 3 series FPGA with complexity
estimated to 1 million of equivalent gates. Synthesis allocated
60% of available logic, 743 registers (4%) and seven 18-bit
multiplication blocks (29%). Shall be stated that floating point
division module consumes significant part of resources, i.e.
there is enough space for extended functionality. Maximum
clock frequency, according to static timing analysis is above
30 MHz. Eventually for the sample design the processing
speed may be estimated to 1.4 million of samples per second.

V. DISCUSSION

Main advantage of dedicated digital circuit, when compared
with the software implementation of typical computational
algorithm is the higher processing speed obtained for similar or
smaller complexity of electronics involved. Digital hardware
may be organized in several ways, depending on features of



FUZZY PROCESSING IMPLEMENTATION IN DEDICATED DIGITAL HARDWARE 409

Fig. 6. Synchronous machine for division.

the algorithm and the actual need for processing speed. If
the problem may be decomposed to a series of independent
calculations, which may be executed in parallel, the dedicated
pieces of hardware may be designed and allotted to each of
them. This approach provides the ultimate speed of processing,
sometimes independent from problem dimension or computa-
tional complexity. Other solution is required when operations
are not independent, i.e. some of them must be executed
one after another. Parallel processing is not possible, however
the appropriate set of processing units may be designed and
connected serially, to form a pipeline. For the massive stream
of data to process, the speed is equal to parallel approach.
Common disadvantage of these two concurrent architectures
is a cost of implementation, growing with the complexity of
calculations. Sometimes the high performance is not affordable
and/or not necessary, encouraging selection of some low-
cost variant. If the same operation shall be performed on all
elements of the input vector or the intermediate results shall
be processed again in similar manner, a single processing unit
may be reused for a set of operations. This kind of architecture
is somewhat similar to microprocessor approach. But the
processing unit, optimized for the required operations, together
with simultaneous access to data stored in unlimited number
of registers allows such low-cost solution to outperform the
software approach.

The three kinds of a hardware approach presented above
shall be perceived as simplified, canonic solutions. The real

world applications, including this design, are usually some
combinations of all of them. Calculation of fuzzy sets is a good
example of parallel solution. These operations are independent
and very short. It is possible however to redesign this part to
a single unit with two queued inputs − one for consecutive
elements of input vector and another for parameters of fuzzy
sets defined for particular inputs. Another example of parallel
operation is rule strength calculation block, replicated for
each rule. Simultaneously the internal part of this block itself
operates in slow, sequential manner, handling elements of
input vector one after another. It is possible to redesign this
part to a tree of comparators, working substantially faster. The
last stage of computation is division module, which is a good
example of architecture, which is naturally sequential and hard
to redesign for parallel operation. Pipelined approach is used
for the whole design. It was divided to two parts performing
two steps of pipeline. These two steps must be executed one
after another and simultaneously they have reasonably bal-
anced time of execution. The bottleneck for processing speed
is division module. For the presented design and for other
similar configurations of fuzzy system to be implemented, the
division consumes more than 50% of overall time required for
processing of single data. Thus the division block alone shall
occupy its own stage of pipelining and there is absolutely no
need to speed-up e.g. the rule strength calculation blocks. It
may be considered however to design a single block handling
all the rules one afer another and/or a single fuzzy set block for



410 P. M. SZECÓWKA, A. MUSIAŁ

all inputs. For some combinations of fuzzy system complexity
these changes would bring some savings on logic resources
without any loss on processing speed.

VI. CONCLUSIONS

An architecture of logic circuit dedicated to fuzzy pro-
cessing was proposed. Sample design was implemented in
VHDL, verified and synthesized for FPGA. The code was
prepared in a way providing easy and fast redesign for any
variant of fuzzy processor with numeric input and output.
High allocation of FPGA resources was observed. Shall be
stated however that most of them were allotted for division
module working on floating point numbers. This module
is singular for single output of fuzzy system, regardless of
its complexity. In-house developed floating point arithmetic
was applied. This approach remains questionable as usually.
Perhaps it is not necessary, but it simplifies migration of
typical fuzzy algorithms from software to hardware, regardless
of particular details, and eliminates problems with range of
intermediate values. Thus it was shown that in spite of floating
point arithmetic applied fuzzy processing may be physically
implemented in contemporary 1M gates FPGA, leaving some
space for extension or other tasks. Regardless of arithmetic
applied − floating or fixed point, the synchronous machine
for division remains notable element of this design.

The clock speed of 30 MHz, revealed by static timing
analysis is not very high but quite reasonable for this kind
of design and for very low number of clock cycles consumed
for processing a single input. Processing speed − 1.4 M
samples per second is competitive to personal computers and
DSPs. At the current stage, clock frequency may be increased
by redesign of modules calculating fuzzy set functions −
applying more registers leading to elimination of the idle
cycles in pipelined mode. Another option for increasing speed
is redesign of arithmetic modules to fixed point.

REFERENCES

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, no. 8, 1965.
[2] G. Ascia, V. Catania, and M. Russo, “Vlsi hardware architecture for

complex fuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 7, pp. 553–570,
1999.

[3] D. L. Hung, “Dedicated digital fuzzy hardware,” IEEE Micro, vol. 4,
pp. 31–39, 1959.

[4] A. Jaramillo-Botero and Y. Miyake, “A high speed parallel architecture
for fuzzy inference and fuzzy control of multiple processes,” in Proc.
Third IEEE Conference on Fuzzy Systems, vol. 3, Orlando FL, 1994,
pp. 1765–1770.

[5] J. I. M. Torre, J. P. Deschamps, and M. F. Centeno, “Synthesis tools for
dedicated fuzzy hardware,” in Proc. Fifth IEEE International Conference
on Fuzzy Systems, vol. 1, 1996, pp. 570–574.

[6] G. Louverdis and I. Andreadis, “Design and implementation of a fuzzy
hardware structure for morphological color image processing,” IEEE
Trans. Circuits Syst. Video Technol., vol. 13, no. 3, pp. 277–288, 2003.

[7] N. Masmoudi, M. Hachicha, and L. Kamoun, “Hardware design of pro-
grammable fuzzy controller on fpga,” in Proc. Fuzzy Systems Conference
(FUZZ-IEEE ’99), vol. 3, 1999, pp. 1675–1679.

[8] S. Sanchez-Solano, A. J. Cabrera, I. Baturone, F. J. Moreno-Velo, and
M. Brox, “Fpga implementation of embedded fuzzy controllers for
robotic applications,” IEEE Trans. Ind. Electron., vol. 54, pp. 1937–
1945, 2007.

[9] S. Cai, X. Chen, Q. Wang, and M. Yin, “Fpga implementation of
generalized fuzzy operations,” in Proc. Fifth International Conference
on Fuzzy Systems and Knowledge Discovery, Shandong, 2008, pp. 560–
564.

[10] J. Góra, P. M. Szecówka, and A. R. Wołczowski, “Fft based emg
signals analysis on fpgas for dexterous hand prosthesis control,” in Man-
machine interactions, K. A. Cyran et al., Ed. Springer, 2009, pp. 655–
662.

[11] P. M. Szecówka, G. Sługocki, and T. P. Gotszalk, “Fast and high
resolution frequency meter based on fpga,” Elektronika, vol. 10, pp.
16–19, 2009.

[12] A. R. Wołczowski, P. M. Szecówka, K. Krysztoforski, and M. Kowalski,
“Hardware approach to the artificial hand control algorithm realization,”
Lecture Notes in Computer Science, vol. 3745, pp. 149–160, 2005.

[13] P. M. Szecówka, A. Charytoniuk, and R. Najbert, “Automated imple-
mentation of feedforward neural network in digital integrated circuit,”
in Proc. 10th international conference MIXDES, 2003, pp. 164–167.

[14] “VHDL Language Reference Manual,” IEEE Std No. 1076, 2000.
[15] “ISE Web Pack,” Xlinx, 2009.


