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Fast Determination of Similarity Between Two
Vectors by Means of Analog CMOS Technique

Ryszard Wojtyna

Abstract—In this paper, an analog approach to determining
a resemblance between two multidimensional vectors is proposed.
As the resemblance measure, Euclidean distance is used. The
main advantage of the presented method is a very high speed of
the Euclidean–distance–measure calculations. The achieved high
speed results from the fact that most of arithmetic operations
needed to realize the calculations are carried out in parallel. This
concerns the required operations of squaring a difference of two
corresponding components of the compared vectors. Operating in
a transconductane mode (voltage difference squaring transcon-
ductors) and a current mode (output square–root extracting
circuit), our CMOS circuit is power saving. Its low–power
operation results from the fact that sub–circuits of our calculator
responsible for the squaring operations (a great number of them
in case of large multidimensional vectors) consume no power in
the absence of input signals. This takes place when corresponding
components of the compared vectors are both equal to zero.
The circuit also consumes a reasonably low amount of energy
when processing (comparing) a different from zero input data
(corresponding vector components). A simplified description of
the applied differential squaring transconductors as well as the
output current–mode square–root extraction circuit is given and
a problem of good cooperation between them is discussed and
proper solutions indicated. SPICE simulation results are shown
to be in a good agreement with the theory presented.

Keywords—Hardware signal processing, fast Euclidean dis-
tance calculation, analog CMOS circuits.

I. INTRODUCTION

ANEED for fast determining similarity between two mul-
tidimensional vectors appears in many areas of signal

processing nowadays. This concerns, among others, neural
networks implemented in hardware [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
especially so–called self–organizing ones. One of important
problems in such networks is how to learn them on silicon
in a precise and fast way. New and attractive possibilities in
this field offer methods that involve analog signal processing
techniques. Competitive learning Kohonen networks based on
WTA (Winner Takes All) and WTM (Winner Takes Most)
methods [19] are well suited for this task, especially when
applying current–mode circuits in a mixed–mode ASIC form
(Application Specific Integrated Circuit).

In the WTA and WTM methods, the first step of the learning
process is to determine a winner neuron that obtains a right
to change its weights (WTA) or also weights of neurons
belonging for some surrounding of the winner, which takes
place in the WTM approach. Determination of the winner

R.Wojtyna is with the Faculty of Telecommunication and Electrical Engi-
neering, University of Technology and Life Sciences, Kaliskiego 7, 85–796
Bydgoszcz, Poland (e-mail: woj@utp.edu.pl).

neuron is based on assessing similarity between an input vector
of the network, X , and a weight vector, Yj , associated with the
j–th neuron [19]. As a similarity measure, Euclidean distance
given by (1) can be used.

IOUTj = a

√
b
∑
i

(
VXi − VYij

)2
(1)

In (1), a and b are real valued coefficients, VXi a voltage at
the i–th input node of the network, IOUTj

a current charac-
terizing the assessed similarity between X and Yj , and VYij

a voltage representing a weight relating the i–th input node
with the j–th output neuron. Summation of the (VXi

−VYij
)2

components can be easily preformed in hardware if they are
converted to currents, because currents can be added in a single
node, according to Kirchhoff’s current law. This means that
the voltage difference, VXi

− VYij
after squaring should be

transformed to a current form. Note that (1) can be expressed
by means of two equations:

IOij
= b

(
VXi
− VYij

)2
, (2)

IOUTj
= a

√∑
i

IOij . (3)

From (2) it results that to perform the Euclidean distance
calculation we need a differential transconductance squarer
to realize this relation. In addition, we need a square–root–
extraction (SQRE) circuit operating in a current mode to
implement (3). As already mentioned, the current summation
included in (3) can be easily carried out by connecting outputs
of all differential squarers to one node, being the input of the
SQRE current–mode circuit. This is illustrated in Fig. 1.

Quality of the Euclidean distance calculation performed
according the scheme of Fig. 1 depends, first of all, on pre-
cision of the differential squaring and square–root–extraction
operations. In [14] and [15], novel CMOS circuits suitable

Fig. 1. Block diagram of the presented circuit for evaluating resemblance
of multidimensional vectors.
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to realize these tasks have been proposed. Considerations
presented in [14] and [15] concern separate operations of both
circuits and do not take into account the influence of the SQRE
circuit on the differential squarer. Two types of the squarers,
noninverting and inverting ones were examined there. In each
case, the obtained squaring precision was, unfortunately, not
very good. In this paper, a selection of best solutions among
those presented in [14], [15] and [16] have been made and
some essential improvements in the circuit structure, designing
and loading proposed. This has led to much better parameters
of the obtained analog calculator.

The paper includes six sections. In section II, the voltage
difference squaring transconductor is presented. Features of
the SQRE circuit are described in section III. Section IV is
devoted to the whole calculating circuit. Simulation results are
given in section V, and concluding remarks in section VI.

II. ANALOG CMOS CIRCUIT FOR SQUARING VOLTAGE
DIFFERENCE

Two CMOS circuits realizing the relation (2) have been
proposed in [14]. They differ in the sign of the b coefficient
in (2). For the circuit of Fig. 2, b is positive (noninverting
transconductor) which means that the IOij

current flows out
from the squarer. For the other, Fig. 3, b is negative (inverting
transconductor) and the IOij

current flows into the squarer.
Operation of both circuits is based on two differential pairs,
M1–M2 and M3–M4, which are biased by drain currents of
M5 and M6, respectively. In both circuits, transistors M11–
M12 play a current mirror role and output current of the
squaring circuits, IOij

, can be expressed by:

IOij
= I24 − I13 . (4)

Denoting by ID5 drain current of M5 (tail current of the
M1–M2 pair), by ID6 drain current of M6 (tail current of
the M3–M4 pair), by id5 differential current of M1 and M2
(current proportional to the VA − VB difference) and by id6
differential current of M3 and M4 (current proportional to the
VA − VB difference), I24 and I13 in (4) can be written as:

I24 = 0.5 (ID6 + ID5) + id6 − id5 , (5)

I13 = 0.5 (ID6 + ID5) + id5 − id6 . (6)

Taking (5) and (6) into account, (4) leads to:

IOij
= 2 (id6 − id5) . (7)

For transistors operating in strong inversion and in satura-
tion, their drain current is described by:

ID ∼= K (VGS − Vth)2 , (8)

where VGS is gate to source voltage, Vth is threshold voltage
and K a real valued coefficient.

Squaring properties on the circuits of Figs. 2 and 3 is
achieved when the pairs M1–M2 and M3–M4 operate with
small differential signals. From (8) we obtain the below given
formulas describing transconductance gain coefficients, gm12,
gm34, of the M1–M2 and the M3–M4 transistors, as functions
of the input voltages VX and VY :

gm12 = 2
√
K
√
K5 (VX − Vth) , (9)

gm34 = 2
√
K
√
K6 (VY − Vth) , (10)

where the coefficient K concerns all the M1, M2, M3, M4
transistors of the differential pairs. K5 and K6 are related to
the transistors M5 and M6, respectively.

Currents id6, id5 in (7) depend on VX and VY not only due
to the transconductance gains given by (9) and (10), but also
due to VA dependence on VX and VB dependence on VY . The
last two dependences are linear and have the form:

VB = a0 − a1VY , (11)

VA = a0 − a1VX , (12)

where a0 and a1 are real–valued positive coefficients.
From (7) it is seen that the circuit output current, IOij , takes

different from zero values only when id6 differs from id5, i.e.
when the differences VB−VA and, according to (11) and (12),
VY − VX are different from zero (like in typical differential
amplifier). Having in mind (9) and (10), id6 and id5 can be
written as:

id6 = 0.5gm34(VA − VB) =
=
√
KK6 (VY − Vth) (VA − VB) , (13)

id5 = 0.5gm12(VA − VB) =
=
√
KK5 (VX − Vth) (VA − VB) . (14)

Substituting (13) and (14) into (7), taking into account (11)
and (12) and assuming K6 = K5, one obtains:

IOij
= 2a1

√
KK5 (VX − VY )2 . (15)

As already mentioned, (15) holds provided that conditions
for small–signal operation of the differential pairs M1–M2 and
M3–M4 are satisfied.

Output current, IOij
, of the noninverting squarer of Fig.

2, is allowed only to flow out from the circuit. This implies
that transistors loading the squarer must be n-channel ones
(NMOS), connected like shown in Fig. 2. There should be
two of them because the circuit output voltage is higher than

Fig. 2. Noninverting CMOS circuit for analog squaring voltage difference.
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Fig. 3. Inverting CMOS circuit for analog squaring voltage difference.

one half of the VDD supply voltage. This is a disadvantage of
this solution. Another disadvantage is that reducing the VXi

and VYij
voltages to a value below their threshold level may

be insufficient do cut off the current consumed by the circuit
and stop taking the supply power.

Unlike in the circuit of Fig. 2, the squarer shown in Fig. 3
enables the IOij

output current to flow only into the circuit. As
a result, a p-channel transistor (PMOS) with source terminal
connected to the VDD supply voltage source can be used as
the squarer load. This solution is superior to that of Fig. 2
in two respects. First, only one transistor is required to load
the squarer which allows us to ensure good conditions for the
squarer operation. This is because the squarer output voltage is
closer to the VDD value than to the ground potential. Second,
for the VXi

and VYij
voltages being lower than threshold

values of the used NMOS transistors (M5, M6, M7 and M9),
no current is taken from the VDD supply source, as the loading
LP transistor is forced to be cut off as well. In [14] it was
shown that the relation (2) also holds for the inverting squarer.
Unlike in the previous squarer, a positive value of the output
current, IOij

, means here a current flow into the squarer. The
Euclidean distance calculator presented in section IV is based
on squaring circuits of the type of Fig. 3.

III. CURRENT–MODE SQUARE ROOT EXTRACTING CMOS
CIRCUIT

To realize to operation described by (3), a current mode
circuit shown in Fig. 4 was used. It serves as the required
square root finder (SQRE) and has been proposed in [15]. Its
output current is denoted by IOUTj and input one is a sum
of IOij currents delivered by the voltage difference squaring
transconductors operating in parallel, according to (3). This
circuit can be loaded by an NMOS transistor (LN) or a PMOS
one (PN), as IOUTj

can flow in both directions. The case with
the LN load is better because then the SQRE output voltage,
Vo, is lower and enables to increase the circuit dynamic (wider
range of the current variations). This is because the dynamic
is restricted by the VDD − Vo voltage difference.

In Fig. 4, the tail current of the M1–M2 differential pair, It,
representing the sum of I1 and I2 currents, is linearly related

Fig. 4. Analog CMOS current–mode square–root–extraction circuit (SQRE).

to the input current, Iin, which can be written as:

I1 + I2 = kIin , (16)

where k is a positive coefficient, and I1 and I2 are drain
currents of the M1 and M2 transistors, respectively, operating
in strong inversion and in saturation. This allows us to write:

I1 ∼= K (V1 − VS − Vth)2 , (17)

I2 ∼= K (V2 − VS − Vth)2 , (18)

where Vth is the transistor threshold voltage and VS source
potential of the M1–M2 differential–pair transistors.

Output current of the circuit is given by:

IOUTj
= I2 − I1 . (19)

Solving the set of equations (16)–(19) with respect to IOUTj

we obtain:

IOUTj
= (V1 − V2)

√
2kK

√
Iin −

K

2k
(V1 − V2)2 . (20)

Because only positive values of IOUTj are allowed, due to
the n-channel LN transistor that can conduct current only in
one direction, V1 cannot be lower than V2. For small signal
operation, i.e. when the following condition holds:

Iin >>
K

2k
(V1 − V2)2 , (21)

(20) simplifies to the form:

IOUTj
∼= (V1 − V2)

√
2kK

√
Iin . (22)

As can be seen from (22), output current, IOUTj
, of the

circuit shown in Fig. 4 is proportional to square root of its
input current Iin. Thus, the circuit is a current–mode rooter.

IV. LOW–POWER LOW–VOLTAGE CMOS CIRCUIT FOR
FAST ASSESSING VECTOR RESEMBLANCE

A full electrical scheme of the proposed Euclidean distance
calculator is shown in Fig. 5, where only one squaring
transconductor is shown in details for simplicity reasons.
Transistors realizing the transconductor are numbered from
1 to 12, while transistors used in the SQRE finder numbered
from 21 to 26. The LN transistor is the circuit load. Transistor
M25, being an input transistor of the SQRE circuit, is the
load of the parallel connected squaring transconductors. If the
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Fig. 5. Low–voltage low–power analog CMOS circuit for very fast vector
resemblance evaluation.

input voltages, VXi and VYij , drop below threshold voltages of
the NMOS transistors, the total supply current becomes zero.
This is an advantage and means power saving. As will be
seen in the next section, the VDD supply voltage, for which
the calculator operates with a high precision in a wide range
of input and output signal variations, is low compared to
the threshold voltage values. The VDD voltage being roughly
twice as high as the value of sum of NMOS and PMOS
threshold voltages (sum of absolute values) is sufficient to
obtain a good performance of the proposed analog calculator.

V. SIMULATION RESULTS

To verify the expected good properties of the proposed
circuits, SPICE simulations were carried out for the supply
voltage equal to VDD = 2.5V . Threshold voltages were
Vthn = 0.4655V and Vthp = −0.617V for NMOS and PMOS
transistors, respectively. Figures 6–8 concern the inverting
squaring transconductor of Fig. 3, for which the load is simpler
than for the noninverting one and creates better condition for
power–saving operation. Input voltages, VXi

and VYij
, were

changed in the range from 0 to 2.5V . Transistor sizes for this
circuit are given in Table I.

Fig. 6 shows output current, IOij , as a function of the
VXi −VYij input voltage difference (white markers). VXi was
varied from 0 to 2.5V for a constant value of VYij

= 1.25V .
To assess precision of the squaring operation, first and second
derivatives of IOij

with respect to VXi
as functions of VXi

are shown in the middle and upper plots, respectively. For
ideal squaring, the function representing the first derivative
should be linear and the one representing the second derivative
constant. From the middle and upper plots one can note that
the squaring operation is precise for VXi

ranging from about
0.75V to 1.75V . The same can be observed from the bottom
plot in Fig. 7, where apart from the transconductor charac-
teristic (white markers) also an ideal mathematical quadratic
function is shown for comparison reasons. A good similarity
between both curves is visible even for a wider input–voltage
range, i.e. for VXi

varying from 0.5V to 2V . This range
amounts 60% of the supply voltage value (VDD = 2.5V ),

TABLE I
CHANNEL WIDTH (W) AND LENGTH (L) OF TRANSISTORS INCLUDED IN

THE CIRCUIT OF FIG. 3

Transistors
M1 M2 M3 M4 M5 M6 M7

W [µm] 2.5 2.5 2.5 2.5 0.4 0.4 0.4
L[µm] 0.6 0.6 0.6 0.6 33 33 55

Transistors
M8 M9 M10 M11 M12 LP

W [µm] 50 0.4 50 2 2 2
L[µm] 0.35 55 0.35 0.5 0.5 0.5

which is a good result. In other words, effectiveness of
utilizing the supply voltage is not bad.

In the top plot of Fig. 7 we have drain–source voltages of
two PMOS transistors, M11 and M12, which make up the
output current mirror of the transconductor. The point is that
values of these voltages should be similar and their changes
should be small in order to avoid so called channel–length
modulation effect. This is one of necessary conditions for
precise operation of the mirror and, as a consequence, precise
operation of the squarer. As can be seen from the upper plot
in Fig. 7, the difference between these voltages is acceptably
small over the considered input voltage range.

Fig. 8 presents current taken from the supply voltage source
(curve marked by white squares) and power dissipated by the
transconductor (marked by black squares) as functions of the
VXi

input voltage, for VYij
being constant. The power curve

is a product of the white marked curve (actual value of the
current) and VDD = 2.5V . Both curves do not approach zero
when VXi

goes to zero because VYij
is higher than threshold

voltage of the NMOS transistors. Otherwise, both traces would
go to zero for VXi

approaching zero. In other words, this

Fig. 6. Transfer characteristics of the squaring transconductor of Fig. 3:
a) output current, IOij

, versus VXi
for VYij

= 1.25V (bottom), b) first
derivative of IOij

with respect to VXi
versus VXi

for VYij
= 1.25V

(middle), second derivative of IOij
with respect to VXi

versus VXi
for

VYij
= 1.25V (upper).
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Fig. 7. DC properties of the squaring transconductor of Fig. 3: a) output
current, IOij

, versus VXi
for VYij

= 1.25V (bottom plot, white markers),
b) mathematical quadratic function y = 1.25(VXi

− VYij
)2 (bottom plot,

black markers), c) gate–source voltage of M11 (upper plot, white markers),
d) gate–source voltage of M12 (upper plot, black markers).

figure does not show one of the important advantages of the
squaring transconductor, namely that it consumes no power
when being inactive. This is only a picture for an active state
of the transconductor. Over the input voltage range where the
squaring precision is acceptably high (from 0.5V to 1.5V ), the
consumed power is less than 13µW , which is a good result.

Simulation results concerning the square root finder (SQRE
circuit) of Fig. 4 are presented in Figures 9 and 10. Sizes
of transistors engaged in building this circuit are gathered in
Table II and differ from that presented in [15] significantly.
The transistor numbers in Table II are exactly like shown in
Fig. 3, but are different from transistor numbers used in Fig. 5
to indicate the SQRE circuit. In case of Fig. 5, these numbers
have been generated by adding 20 to numbers from Table II.
This is because in the full calculator of Fig. 5, with both the
squaring transconductor and the SQRE circuit, no number can
be used twice.

Voltages controlling the SQRE current gain are equal to
V1 = 0.88V and V2 = 1V . In comparison to the values given

Fig. 8. Current (marked by white squares) and power (denoted by black
squarers) consumed by the squaring transconductor of Fig. 3.

Fig. 9. DC transfer characteristics of the SQRE circuit of Fig. 4: a) output
current, IOUTj

, versus the input current Iin bottom plot, b) output current
square, I2OUTj

, versus the input current Iin middle plot, c) d(I2OUTj
)/dIin

derivative versus the input current Iin upper plot.

in [15], (V1 = 0.98V and V2 = 1V ), the circuit presented
in this paper exhibits a much lower sensitivity of the circuit
current gain to variations in the control voltages (six times
lower), which is an advantage. This has been reached mainly
due to changes in transistor sizes. These changes have also lead
to improvements in other circuit parameters like precision and
power consumption. In Fig. 9, transfer properties of the SQRE
circuit are presented. The bottom plot shows output current
(IOUTj

) as a function of the input one (Iin). A square root
extraction character of this curve is clearly seen. To enable
assessing accuracy of the root extraction operation, square of
the output current (I2OUTj

) versus the Iin current has been
shown in the middle plot and a derivative of the output current
square with respect to Iin, i.e. d(I2OUTj

)/dIin, as a function
of Iin is given in the upper plot.

For an ideal square root extraction, the output current square

Fig. 10. Currents (upper) and power (bottom) consumptions in the SQRE
circuit of Fig. 4 as functions of Iin: a) consumption due to the Iin current
white squares, b) consumption due to the It current black squares.
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TABLE II
CHANNEL WIDTH (W) AND LENGTH (L) OF ALL TRANSISTORS

CREATING THE SQUARE ROOT FINDER OF FIG. 4

Transistors
M1 M2 M3 M4 M5 M6 LN

W [µm] 0.6 0.6 0.6 0.6 2 4 0.6
L[µm] 6 6 1.6 1.6 0.5 0.5 1

(I2OUTj
) should be linearly dependent on the input one Iin.

From the middle plot and especially from the upper one it
is seen that this relation is highly linear for the input current
ranging from about 20nA to about 2µA. Thus, dynamic of the
output current variations, expressed as a ratio of its maximum
do minimum values, amounts 100 and is higher than that
achieved in the circuit presented in [15] and [16].

A low–power operation of the SQRE circuit is shown in
Fig. 10. The bottom plot presents power and the upper current
consumptions as functions of the input Iin current. Note
that the supply current as well as the consumed power are
increasing functions of Iin and equal zero if Iin is equal
to or less than zero. This is an important advantage of the
SQRE extracting circuit and means no power consumption in
the absence of input current, with no other efforts. This has
been reached, among others, due to loading the circuit in the
way shown in Fig. 4, i.e. by means of a grounded NMOS
transistor that plays a role of the IOUTj

receiver.
The curves denoted in Fig. 10 by white squares concern

the input M5 transistor and the others refer to the rest of the
circuit, connected with the supply VDD source by means of the
transistor M6. It is seen that the supply current and the power
consumed by the M5 transistor are lower than that consumed
by the remaining part of the circuit. This is the price we pay for
achieving high precision and wide range of the SQRE output
current variations. Total power consumption of the circuit is
a sum of the powers represented by the curves shown in the
bottom plot. As can be seen, the level of power consumed by
the proposed SQRE circuit is acceptably low when operating
with low currents.

VI. CONCLUSIONS

A problem of fast Euclidean distance calculations useful to
assess similarity between two large multidimensional vectors
was considered in this paper. New possibilities in solving this
problem offer analog techniques based on CMOS technology.
Two CMOS circuits enabling calculation of the Euclidean
distance similarity measure were presented.

One circuit is a transconductor squaring a difference of two
voltages. These voltages, denoted in Fig. 5 by VXi

and VYij
,

represent corresponding components of the compared vectors,
whose similarity is to be evaluated. The Euclidean–distance
calculator of Fig. 5 includes several operating in parallel
squaring transconductors of Fig. 3. The parallel operation of
them is the main reason why the whole circuit of Fig. 5
can work very fast even if the multidimensional vectors are
large (important advantage of the proposed circuit). The other
module in the calculator of Fig. 5 is a current mode circuit
suitable to perform a square root extraction (SQRE) on the sum

of currents delivered from the squaring transconductors. The
proposed Euclidean distance calculator is attractive, among
others, to be used in competitive learning self–organizing
networks by means of WTA (Winner Takes All) or WTM
(Winner Takes Most) training method. A lot of place in this
paper has been devoted to the problem of achieving a good
cooperation between the squarer and the SQRE circuit and
increasing precision of the squaring operations. This has been
reached by improving circuit schemes, modifying transistor
sizes and ensuring proper currents flowing through the MOS
transistors included. As a result, the presented calculator is
a fast, precise and power–saving circuit, attractive for signal
processing in hardware.
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