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Influence of the Aperture Edge Diffraction Effects
on the Mutual Coupling Compensation Technique

in Small Planar Antenna Arrays
Mariusz Zamłyński and Piotr Słobodzian

Abstract—In this paper the quality of a technique to com-
pensate for mutual coupling (and other phenomena) in small
linear antenna arrays is investigated. The technique consists in
calculation of a coupling matrix, which is than used to determine
corrected antenna array excitation coefficients. Although the
technique is known for more than 20 years, there is still very
little information about how different phenomena existing in a
real antenna arrays influence its performance. In this paper two
models of antenna arrays are used. In the first model the effect of
mutual coupling is separated from the aperture edge diffraction.
In the second model antenna both mutual coupling and aperture
edge diffraction effects are included. It is shown that mutual
coupling itself can be compensated very well and an ultralow
sidelobe level (i.e. –50 dB) could be achieved in practice. In the
presence of diffraction effects –46.3 dB sidelobe level has been
attained, but radiation pattern can be controled only in narrow
angle range (i.e. up to ±60°).

Keywords—Active element, mutual coupling, antenna array,
diffraction.

I. INTRODUCTION

THE practical realization of a low sidelobe antenna array
is not an easy task. The key problem arises at the stage

of antenna array pattern synthesis. The classical, simplified
approach to the synthesis, which is based on the pattern
multiplication rule [1], can be successfully used only for large
antenna arrays or when the antenna radiation pattern shape
is not too complicated, and too demanding. The deficiency
of the classical approach stems from the simplified antenna
array model, which ignores mutual coupling between radiating
elements and diffraction by edges of the finite array. In this
case the antenna array pattern is expressed in terms of the
so-called isolated element pattern. When a low sidelobe level
(SLL) and/or deep nulls in desired directions are required the
active element pattern should be used in the synthesis [2].
The conventional pattern synthesis techniques (e.g. Chebyshev,
Taylor, Villeneuve, etc.) do not take into account the active
element pattern and therefore a method for compensation of
the aforementioned simplification is required.

Steyskal and Herd [3] proposed one of the most effective
methods for compensation of undesired effects. In this method
excitation coefficients, obtained by means of the conventional
beam synthesis techniques, are multiplied by a coupling ma-
trix, which provides compensation for mutual coupling. Such
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approach was validated positively on the experimental way
by many researchers [4], [5], [3]. However, the experimental
determination of the coupling matrix is burdened with errors
originated from diffraction effects and measurement accuracy
itself. Once the coupling matrix is determined, its practical
implementation within a “non-ideal” feeding network can
further decrease (in a random way) the effect of compensation.
All these effects introduce some degree of uncertainty into the
experimental validation.

In this paper a different approach to the validation of the
method for mutual coupling compensation is proposed. In our
work an antenna array is modeled in two ways. In the first
case, the mutual coupling effects are separated from other
undesired phenomena. The separation is obtained by modeling
an antenna array over an infinite perfectly conducting ground
plane by means of a full wave Method of Moments based
software. In this case the influence of diffraction effects on
radiation patterns of an antenna array is completely eliminated.
In the second case the antenna array is modeled in the
presence of aperture edge diffraction, using a finite substrate
and ground plane. In addition, an ideal feeding network is
modeled as a set of separated voltage sources and impedances
to eliminate influence of coupling through the feeding network.
Both the antenna array models have been used to verify the
quality of the mutual coupling compensation technique and
the importance of diffraction effects has been demonstrated.

II. A LINEAR PHASED ARRAY IN THE PRESENCE OF
MUTUAL COUPLING

In order to explain the approach to compensation for mutual
coupling we will briefly introduce the theory of a linear
antenna array in the presence of mutual coupling. We will
show only an outline of the theory presented in [3]. The ideal
radiation pattern Fi(u) (where u = sin(θ)) of a linear antenna
array, shown in Fig. 1, is given by

Fi(u) = f(u)

N∑
m=1

am · Em(u) (1)

or in an equivalent matrix form as

Fi(u) = aT ·E(u) · f(u) (2)

where f(u) is the isolated element radiation pattern. The
excitation coefficients am are calculated using the conventional
beam synthesis techniques.
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Fig. 1. Geometry of an uniform N element linear array.

In the presence of mutual coupling each radiating element
has different radiation pattern, which is measured or simulated
in the presence of the remaining array elements and is called
the active element radiation pattern. During this measure-
ment/simulation a single element is driven and other elements
are terminated in matched loads (Fig. 2).

The active element pattern can be determined using a
simplified theoretical model presented by Steyskal and Herd
[3]. In this approach it is assumed that a contribution of m-th
element to the radiation pattern of n-th element is proportional
to the isolated element pattern. In this case, the active element
pattern gn(u) can be expressed by

gn(u) ≈ f(u)
N∑

m=1

cnm · Em(u) for n = 1, . . . , N (3)

where cnm is the coupling coefficient and Em(u) is the
incident field at m-th element from direction u. Equation (3)
may be expressed in equivalent matrix form as

g1(u)
g2(u)

...
gN (u)

 ≈


c11 · · · c1N
c21 · · · c2N

...
. . .

...
cN1 · · · cNN




E1(u)f(u)
E2(u)f(u)

...
EN (u)f(u)

 (4)

or
G(u) ≈ C ·E(u) · f(u) (5)

Using (2) and (5) the ideal array radiation pattern can be
expressed by

Fi(u) ≈ Fc(u) = aT ·C−1 ·G(u) (6)

From (6) we can derive the compensated excitation coeffi-
cients, namely:

as = aT ·C−1 (7)

The central problem of this method is the determination of
the unknown coupling matrix C. There are several methods
to solve this problem:

• the Fourier decomposition [4], [6], [3],
• the least-squares approximation method [4],
• the method of moments [5],

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 2. Geometry for determination of the active element radiation pattern.

• the scattering matrix method [6], [3],
• the beamspace technique [7],
• the QR factorization [8].

In this work we propose a modification of the method
described in [5]. As can be seen, equation (3) may be written
in the following general form

bn =

N∑
m=1

cnmwm for n = 1, . . . , N (8)

where bn is the known approximated function and wm is the
weighting function. Both the functions can assume various
forms, and several possible variants of these functions have
been shown in Table I. The unknown coefficients cnm can be
found using the Galerkin method [9], [10], which leads to the
following systems of linear equations

W ·Cn = Bn for n = 1, . . . , N (9)

where

W =


< w1, w1 > · · · < wN , w1 >
< w1, w2 > · · · < wN , w2 >

...
. . .

...
< w1, wN > . . . < wN , wN >

 (10)

Cn = [cn1 cn2 . . . cnN ]
T (11)

Bn = [< bn, w1 > < bn, w2 > · · · < bn, wN >]
T (12)

Solving for Cn in (9) gives the approximate solution to (8).
The 1st variant of functions has been proposed and used

[5]. This variant provides the best approximation of the active
element radiation pattern, but on the other hand, does not guar-
antee the best solution to the mutual coupling compensation
problem. The other variants (2nd – 4th) have been proposed
by the authors of this paper, and the 4th variant yields usually
better results than the first one, as will be shown in the next
section.
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TABLE I
DIFFERENT VARIANTS OF THE APPROXIMATED FUNCTION USED TO

DETERMINE THE COUMPLING COEFFICIENTS

Variant Approximated Weighting
number function bn function wm

1 gn(θ) f(θ) · Em(θ)

2 gn(u) f(u) · Em(u)

3 gn(θ)/f(θ) Em(θ)

4 gn(u)/f(u) Em(u)

III. VERIFICATION OF THE MUTUAL COUPLING
COMPENSATION TECHNIQUE

The model presented in the previous section has been veri-
fied based on simulation results of an antenna array obtained
by the full-wave FEKO solver. The antenna array used in
simulations consists of 8 probe feed microstrip patch elements
operating at 2.45 GHz. These elements form a linear array
extending in the E-plane (see, Fig. 3). The patch dimensions
are W = 54.36 mm, L = 33.98 mm, Lf = 10.06 mm and d
is the uniform element spacing. The array has been designed
on 1.524 mm thick Isola IS680 (εr = 3) dielectric substrate,
modeled as an infinite layer. The probe diameter is 1 mm. The
feed position on a patch element has been optimized to obtain
very good impedance matching (for the isolated element). In
turn, the active element does not have to be matched to the
feeding network, since this does not affect the mutual coupling
level.

Mutual coupling between two patches positioned collinearly
along the E-plane is presented in Fig. 4. We will use different
spacing between adjacent patches of the antenna array to
illustrate how the level of mutual coupling influences the
technique for mutual coupling compensation. Mutual coupling
shown in Fig. 4 has been determined using the scattering
matrix parameters as

MCnm =
|snm|2

1− |snn|2
(13)

This definition removes the effect of impedance mismatching
and reflects only the level of power penetrating between
patches.

The excitation coefficients for the ideal antenna array were
calculated using a Villeneuve technique [11]. Table II shows
the best method for mutual coupling compensation for the
assumed SLL and the element spacing (refer to Table I for
the method designation).

The selection criterion of the best method is based on the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 3. Geometry of the array used in simulations.

TABLE II
OPTIMAL VARIANT OF THE METHOD FOR MUTUAL COUPLING

COMPENSATION

Elements Optimum method
spacing SLL = −30 dB SLL = −40 dB SLL = −50 dB

0.35λ0 4 4 4

0.4λ0 4 4 4

0.45λ0 1 4 4

0.5λ0 4 4 4

0.55λ0 1 4 4

0.6λ0 4 4 1

0.65λ0 4 4 4

0.7λ0 3 3 1

TABLE III
RMS ERROR FOR THE OPTIMAL VARIANT OF THE MUTUAL COUPLING

COMPENSATION TECHNIQUE

Elements RMS Error [dB]
spacing SLL = −30 dB SLL = −40 dB SLL = −50 dB

0.35λ0 0.1029 0.3180 1.3096

0.4λ0 0.1620 0.4566 0.8675

0.45λ0 0.1742 0.4638 0.6907

0.5λ0 0.5626 0.7227 0.9889

0.55λ0 0.1265 0.3050 0.7895

0.6λ0 0.1600 0.4157 2.7038

0.65λ0 0.2850 0.5717 1.5348

0.7λ0 0.2184 0.6037 1.6286

RMS error, calculated as

RMS =

√√√√ 1

P

P∑
p=1

er2(θp) (14)

where

er(θ) =
{
Fc(θ)− Fi(θ) for Fi(θ) > SLL− 30
0 for Fi(θ) ≤ SLL− 30

(15)

Fc(θ) and Fi(θ) are compensated and ideal antenna array
patterns (in dB), respectively. The definition of the error
function in (15) is used to make our criterion insensitive to a
significant increase in RMS at very deep nulls directions.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

  

Fig. 4. The E-plane mutual coupling determined between two patches used
to build the antenna array.
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The results in Table II show that in most cases the best
solution is provided by the 4th variant. Since the coupling
matrix depends only on physical properties of an antenna array,
the optimum variant of the method should be independent of
sidelobe level. If this condition is not satisfied then optimum
coupling matrices, calculated for different sidelobe levels, are
similar. For example, for 0.45λ0 element spacing and SLL =
−30 dB the difference between the RMS error for 4th and 1st
variant is only 0.0154 dB.

Table III shows the minimum RMS error obtained by
variants referred in Table II. Generally, the technique for
mutual coupling compensation provides very good results for
sidelobe levels as low as −40 dB. A consequence of mutual
coupling between radiating elements is that the complex
weights (amplitude and phase) applied to every element are
in error [5]. Therefore, for ultralow sidelobe levels, such as
−50 dB, the RMS error is greater, because such low SLLs
require higher accuracy of excitation coefficients [12].

The Galerkin method used to determine the coupling matrix
provides a good approximation of the active element radiation
pattern (i.e. gn(θ)) for −75◦ < θ < 75◦. The degradation of
mutual coupling compensation results from the fact that the
basis functions used in Galerkin’s scheme formulation are not
suitable beyond that range of angles. This fact is particularly
important for 0.5λ0 elements spacing and causes the RMS
error to increase sharply.

A. Results for Infinite Ground Plane

In order to study the effect of mutual coupling on the
sidelobe level and the effectiveness of the technique for
mutual coupling compensation, radiation patterns for several
linear antenna arrays of different geometry were calculated.
The radiation pattern of these arrays were calculated using
three different methods: multiplication rule (ideal pattern),
full wave analysis without excitation coefficients compensation
(uncompensated pattern) and full wave analysis with excitation
coefficients compensation (compensated pattern). Figures 5
and 6 show examples of ultralow sidelobe level radiation
patterns.

The compensation procedure causes equalization of sidelobe
level and makes nulls deeper and closer to theoretical ones.
If an ideal array pattern contains sidelobes significantly lower
than SLL, they will not be restored. For example an array with
0.6λ0 elements spacing contains a pair of −80 dB sidelobes
(see, Fig. 5). Therefore, error of mutual coupling compensation
for this antenna array is very high.

Generally, the effect of mutual coupling is weak in antenna
arrays with a large element spacing. On the other hand, the
discrete array is very sensitive to any distortion. This distortion
causes, for example, filled nulls of an uncompensated array
pattern (see, Fig. 6).

The mutual coupling effect itself does not cause degradation
of the radiation pattern for patch antenna arrays with sidelobe
level up to −30 dB and elements spacing greater than 0.4λ0,
because high accuracy of excitation coefficients is not required
[12]. For example, the radiation pattern of the array with an
element spacing of 0.5λ0 and SLL = −30 dB is presented
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Fig. 5. Comparison of ideal, uncompensated and compensated radiation
patterns of the antenna array for 0.6λ0 elements spacing.
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Fig. 6. Comparison of ideal, uncompensated and compensated radiation
patterns of the antenna array for 0.7λ0 elements spacing.
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Fig. 7. Comparison of ideal, uncompensated and compensated radiation
patterns of the antenna array for 0.5λ0 elements spacing.

in Fig. 7. The uncompensated radiation pattern contains filled
nulls, but the required sidelobe level has been achieved.

IV. INFLUENCE OF DIFFRACTION EFFECTS ON
COMPENSATION TECHNIQUE

In a real small planar antenna array the radiation pattern is
also distorted by diffraction on the antenna array edges. The
technique for mutual coupling compensation, described above,
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Fig. 8. Simplified visualization of influence of diffraction on radiation pattern
of the microstrip patch antenna.

dp

. . .

dp

dp
dp

0.5λ0

Fig. 9. Geometry of an antenna array over finite ground plane.
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Fig. 10. Comparison of compensated radiation patterns of the antenna array
for different isolated radiation patterns, dp = 0.25λ0 and SLL = −50 dB.

fails to take the diffraction phenomenon into account. This
fact is often pointed out as the main reason for a discrepancy
between the expected compensated radiation pattern and the
measured one [7], [13], [14].

In general, the total radiation pattern of a single microstrip
patch antenna in the presence of diffraction effects may be
expressed as [15], [16]

E = Eb + Ed1(Ei1) + Ed2(Ei2) (16)

where Eb is the electric field radiated by the microstrip patch
antenna over an infinite ground plane, Ed is the edge diffracted
electric field, and Ei is the electric field in points of the
diffraction (see, Fig. 8). The radiation pattern of a linear
antenna array may be calculated in a similar way.

In order to investigate the influence of diffraction on the
performance of the mutual coupling compensation technique
a radiation pattern of the antenna array over a finite ground
plane has been tested. The antenna array under investigation
is shown in Fig. 9. The element spacing d has been set to
0.5λ0. The distance between edges of the ground plane and
the outermost radiating element has been denoted by dp. In
this case the direct application of equation (6) to determine the

TABLE IV
NORMALIZED EXCITATION COEFFICIENTS OF THE COMPENSATED

ANTENNA ARRAYS FOR dp = 0.25λ0 AND SLL = −50 dB

No.

Element on Element on Average
large ground plane infinite ground plane active element
Amp. Phase Amp. Phase Amp. Phase
[dB] [°] [dB] [°] [dB] [°]

1 −16.31 24.86 −20.29 −4.29 −19.83 0.37

2 −8.34 2.84 −9.13 −3.03 −8.83 −0.98

3 −2.47 2.84 −2.67 1.04 −2.58 −1.99

4 −0.16 −2.72 −0.19 −2.82 −0.17 −2.46

5 0 0 0 0 0 0

6 −2.64 1.72 −2.78 0.04 −2.78 −0.16

7 −8.19 5.50 −8.90 0.65 −8.81 0.51

8 −16.16 26.58 −20.00 1.02 −19.77 1.50

compensated antenna array radiation pattern is not so obvious,
since the definition of the isolated element is not clear as in the
case with an array over an infinite ground plane. In order to
mitigate this problem the following definitions of the isolated
element can be taken into account:

• a single element placed in the middle of an antenna array
ground plane,

• the average active element pattern [7], [17],
• a single element placed over infinite ground plane.

The first definition is intuitive, but the central location of
the element results only in a partial contribution to the total
diffracted field, and hence is not fully justified. The second
definition allows the whole diffraction effects to be indirectly
included in the antenna array radiation pattern description.
This definition has been successfully applied in [7]. The third
definition has been proposed by the authors of this paper.
This definition could seem improper since it did not include
the diffraction phenomenon. However, the results of analysis
have shown that the third definition is equally good as the
first one do. It can be shown that a proper choice of the
definition of the isolated element has a significant impact
on the mutual coupling compensation technique (see, Fig.
10). The radiating element over infinite ground plane and the
average active element provide virtually identical compensated
radiation patterns (see, Table IV for a comparison of the
resulting compensated excitation coefficients).

Also, the results of analysis have confirmed that the size of a
ground plane has significant impact on the performance of the
mutual coupling compensation technique. When the distance
between edges of a ground plane and the outermost radiating
elements is very small then the radiation pattern is strongly
distorted by the diffraction effects. This phenomenon is clearly
visible for pattern angles higher than ±60◦, as can be seen
in, Fig. 11 and 12. In this case the ideal radiation pattern of
an antenna array (in the presence of the diffraction effects)
has been calculated using multiplication rule and the average
active element pattern. Radiation patterns of the compensated
and uncompensated antenna arrays are almost identical for a
small ground plane and angles higher than ±60◦ (see, Fig.
12). This is caused by the fact, that for angles higher than
±60◦ the main contribution to the radiated field comes from
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Fig. 11. Comparison of ideal, uncompensated and compensated radiation
patterns of the antenna array for dp = 0.25λ0 and SLL = −50 dB.
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Fig. 12. Comparison of ideal, uncompensated and compensated radiation
patterns of the antenna array for dp = 0.1λ0 and SLL = −50 dB.

edges of the ground plane. This radiation is not included in
the antenna array model described by (3)–(6).

For larger ground planes influence of the diffraction effect
is smaller and the compensation technique is more effective
due to lower radiation contributed by edges of the finite
ground plane. The sidelobe levels of ideal, uncompensated and
compensated antenna arrays has been compared in Table V.
As we can see, the SLL hardly depends on the size of the
ground plane. However, the compensated radiation pattern is
closer to the ideal one for larger ground plane.

V. SUMMARY AND FUTURE WORK

A technique to compensate mutual coupling and other
phenomena in small antenna arrays was described and verified.
The method works very well for arrays whose radiation
patterns are not distorted by edge diffraction effects. In this
case an ultra low sidelobe level (i.e. −50 dB) can be achieved
in a wide range of element spacing in small linear antenna
arrays.

It has been shown that the described mutual coupling
compensation technique can be also used in presence of the
aperture edge diffraction effects. However, only a narrow
angular range of the radiation pattern (near the mainlobe)
can be controlled. In this case an ultra low sidelobe level
(i.e. −46 dB) can be achieved, but the shape of the radiation
pattern can not be fully controlled.

TABLE V
COMPARISON OF SLLS OF IDEAL, UNCOMPENSATED AND COMPENSATED

ANTENNA ARRAYS FOR DIFFERENT GROUND PLANE SIZE

dp
SLL [dB]

Ideal Uncompensated Compensated

0.1λ0

−30.00 −29.22 −28.88

−40.00 −36.18 −37.26

−50.00 −41.22 −45.22

0.25λ0

−30.00 −29.66 −30.25

−40.00 −34.63 −38.87

−50.00 −36.99 −46.32

Future work will be focused on detailed investigation into
the impact of the diffraction effects on the radiation patterns
of planar antenna arrays. The aim will be to develop a method
for synthesis of small planar antenna array in the presence of
mutual coupling and diffraction effects.
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