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Electromagnetic Signal Propagation in a Lorentz
Dispersive Medium

Adam Ciarkowski

Abstract—This work is concerned with the propagation of
rapidly oscillating electromagnetic (EM) signal in a Lorentz dis-
persive medium. The problem considered here is 1-dimensional
and its exact solution is described by a contour integral defined in
a complex frequency plane. With the use of uniform asymptotic
techniques, approximate representation for the total field consist-
ing of the Sommerfeld and Brillouin precursors and the main
signal is obtained. The effect of the rate of envelope changes, as
well as of carrier frequency on the shape of the total signal is
examined.
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I. INTRODUCTION

ATemporal dispersive medium is the medium whose re-
fraction index n =

√
ϵµ is frequency dependent. Respon-

sible for this feature is the polarization phenomenon, induced
in the medium by time varying, exterior electric field. As a
result, the relative electric permittivity ϵ varies with frequency.
Magnetic properties of the medium do not interfere, and
hence the relative magnetic permeability µ may be considered
constant.

Except for the special medium – vacuum, all remaining me-
dia are dispersive. When studying electromagnetic phenomena
usually we do not take dispersion into account. At relatively
low frequencies such an assumption is fully justified, since
polarization variations exactly follow electric forces induced
by the varying electric field. At higher frequencies, however,
this process is more complex, because of inertia of dipoles in
the medium (see [1]). A widely used model for a dispersive
medium has been proposed by Lorentz. Its complex refraction
index takes the form:

n(ω) =

(
1− b2

ω2 − ω2
0 + 2iδω

)1/2

. (1)

Here, b2 = 4πNe2/m is the plasma frequency of the medium,
N , e and m are the number of electrons per unit volume, elec-
tron charge and its mass, respectively, δ is a damping constant
and ω0 is the resonant frequency (comp. [1], Sec.7.10). The
real and imaginary parts of the complex index of refraction
of a dispersive medium with Brillouin choice of medium
parameters: ω0 = 4.0 × 1016s−1, b =

√
20.0 × 1016s−1,

δ = 0.28× 1016s−1 is shown in Fig. 1.
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Fig. 1. Real and imaginary parts of the complex index of refraction of
an exemplary dispersive medium as functions of angular frequency ω for
Brillouin choice of medium parameters: ω0 = 4.0×1016s−1, b =

√
20.0×

1016s−1, δ = 0.28× 1016s−1.

The beginnings of the analysis of electromagnetic prop-
agation in dispersive media date back to the beginning of
the twentieth century. Fundamental works on EM signals
propagation in a Lorentz medium are due to Sommerfeld [2]
and Brillouin [3], [4]. The authors showed that in addition to
the main signal propagating in the medium, two precursors
are formed that precede the signal. The front of the fastest
(Sommerfeld) precursor propagates in the medium with the
velocity of light. The instantaneous oscillation frequency of
the precursors and their local damping are directly related to
the locations in the complex frequency plane of corresponding
saddle points in the integral description of the signal. Those
locations vary with space and time, and are governed by the
saddle point equation, requiring that the phase function in the
integrand be stationary. Analysis of that equation showed that
there are two pairs of dominant saddle points, distant and near
ones, responsible for the first (referred to as Sommerfeld) and
the second (Brillouin) precursors, respectively.

Initially, the analysis of the integral solution for the dis-
persive field was rather troublesome, due to the fact that the
integrand variations are very fast, and at that time there was
a lack of efficient examination methods. After asymptotic
techniques were developed, a powerful analytical tool got
feasible, and the study of a signal evolution in a dispersive
medium experienced significant acceleration. One of the ad-
vantages of the asymptotic approach is that the problem has
simplified, but still analytic representation. Moreover, each
physical signal, irrespectively of its magnitude, has its own
mathematical representation, and therefore its behavior may
be analyzed as its different parameters are varied. Such an
analysis has a practical meaning. E.g. in order to be able
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to differentiate between the head of the main signal and the
heads of its precursors on EM signal arrival, the form of the
composite signal should be known.

Usually solutions obtained with the use of simple asymp-
totic methods are sufficiently accurate for different values of
the parameters. However, for some parameter configurations
they break down. This happens when corresponding different
“critical” points coalesce on each other. To overcome this in-
convenience “uniform” asymptotic methods were introduced,
as extensions of the “non-uniform” ones. (comp. [5], [6]). In
the present context, the uniform asymptotic approach allows
for full description of the head of the Sommerfeld precursor,
evolution of the Brillouin precursor, and smooth transition
from that precursor to the main signal.

The issues of uniqueness, causality and regularity of a
pulse propagating in a dispersive, nonuniform medium are
discussed in [7]. Detailed analysis of dispersive propagation is
given in two monographs, [8] and [9]. The former deals with
dispersive processes in fluids, the latter – with electomagnetic
propagation. Still however, some problems given in [9] and
later publications remain controversial, and are subject of
critical discusion (see e.g. [10] and [11]). Other recent results
on precursors in dispersive media can be found in [12],
[13] and [14]. One of the inconsistences in [9] is that the
representation of the Sommerfeld precursor at its front does
not follow the behavior predicted by Sommerfeld. Here, a
different precursor representation is presented. Our result fully
agrees with the Sommerfeld prediction. Also the transition
from the Brillouin precursor to the main signal is here treated
in a different manner. We take advantage of earlier works,
[15], [16], [17] and [18] to collect the particular component
fields into a compound signal. The dynamics of that signal is
presented for different values of the parameters.

II. PROBLEM FORMULATION AND ITS EXACT SOLUTION

Assume that at the moment t = 0 the signal is produced
in the plane z = 0. Because the considered 1-dimensional
problem depends on z-coordinate only, the field is uniform
in all directions perpendicular to the z-axis. It is described
by a harmonic signal, modulated by the function with finite
rise-time

A(0, t) =

{
0 t < 0
tanh(βt) sin(ωct) t ≥ 0.

(2)

The function A(0, t) can be any coordinate of the electric
or magnetic field, or the Lorentz potential. Large positive
coefficient β determines how rapidly the signal turns on, and
ωc is a carrier frequency. It is also assumed that no EM sources
are present at z → ∞.

In general, the problem consists in finding the field in the
half-space z > 0 and time t > 0. The solution to this mixed
initial-boundary value problem for Maxwell equations takes
the form [15]

A(z, t) =
1

2π

∫ ia+∞

ia−∞
g(ω ;β, ωc) exp

[
i
z

c
Ψ(ω, θ)

]
dω, (3)

where the constant a is greater than the abscissa of absolute
convergence for A(0, t). The amplitude and phase functions

g(ω ;β, ωc) and Ψ(ω, θ), respectively, are given by

g(ω ;β, ωc) =

1

2

{
i

β
B
[
− i(ω − ωc)

2β

]
+

1

ω − ωc

− i

β
B
[
− i(ω + ωc)

2β

]
− 1

ω + ωc

}
(4)

and
Ψ(ω, θ) = ω[n(ω)− θ]. (5)

The beta function is defined by the psi function as

B(s) = 1

2

[
ψ

(
s+ 1

2

)
− ψ

(s
2

)]
. (6)

(For the definition and properties of the psi function see [19],
Sec. 6.3.) The beta function is related to the envelope of
A(0, t) via the Fourier transformation∫ ∞

0

tanhβteiωt dt =
1

β
B
(
− iω

2β

)
− i

ω
. (7)

Finally,

θ =
ct

z
(8)

is a dimensionless parameter that characterizes a space-time
point (z, t).

III. ASYMPTOTIC SOLUTION

The uniform asymptotic representation for the Sommerfeld
precursor is given by ([15])

AS(z, t) ∼ − exp {−λ Im[ψ(ω+
s , θ)]}

× {Re[G(ω+
s ;β, ωc)]J1[−λ Re(ψ(ω+

s , θ))]+

Im[G(ω+
s ;β, ωc)]J2[−λ Re(ψ(ω+

s , θ))]}, (9)

where

G(ω+
s ;β, ωc) =

√
Re[ψ(ω+

s , θ)]

ψωω(ω
+
s , θ)

g(ω+
s ;β, ωc), (10)

λ = z/c, (11)

and J1(·) and J2(·) are Bessel functions of the order 1 and 2,
respectively.

The pair of distant simple saddle points, ω+
s (θ) and ω−

s (θ),
are varying in the complex frequency plane symmetrically with
respect to the imaginary axis. Their location is governed by
the saddle point equation (see [15])

n(ω) + ωn′(ω)− θ = 0. (12)

Let us examine the precursor dependence on the speed
parameter β. If β is steadily increased starting from its
relatively small values, the oscillations in Fig. 2 are increased
by the same factor, while the shape of the precursor is
preserved. If, however, β takes much higher values, such as
β = 1.0 × 1019s−1 or more, the precursor shape is clearly
changed (see Fig. 3), and the oscillation amplitudes virtually
remain at the same relatively high level as β further increases.

It is seen from Fig. 4 that there are three characteristic re-
gions of G(ω+

s ;β, ωc) variation. If for fixed ω+
s the parameter
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Fig. 2. Dynamic behavior of the Sommerfeld precursor in the Lorentz
medium described by Brillouin choice of parameters. Here: ωc = 2.0 ×
1016s−1, λ = 5.0× 10−15s and β = 1.0× 1014s−1.
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Fig. 3. Dynamic behavior of the Sommerfeld precursor in the Lorentz
medium described by Brillouin choice of parameters. Here: ωc = 2.0 ×
1016s−1, λ = 5.0× 10−15s and β = 1.0× 1019s−1.

1. ´ 10161. ´ 10171. ´ 10181. ´ 10191. ´ 1020
0

0.0005

0.001

0.0015

0.002

0.0025

0.003
Re G

Im G Β

Fig. 4. Dependence of the real and imaginary parts of the function
G(ω+

s ;β, ωc) on the parameter β. Calculated for θ = 1.0001 and ωc =
2.0× 1016s−1.

β is relatively small then the real part of function G(ω+
s ;β, ωc)

is virtually zero and the essential contribution to the precursor
is due to its imaginary part. This contribution increases in
value with rising β until about β = 4.0×1017s−1. This is the
first region in which the precursor oscillation is governed by
the Bessel function J2. In the second, transitory region, the
real part of G grows rapidly, and at about β = 2.0× 1019s−1

it settles down at a virtually constant level. The imaginary
part reaches its maximum and then steadily decreases to zero.
Here the Bessel function J1 takes over. Finally, in the third
region the real part of G remains nearly unchanged and the
imaginary part vanishes. Now J1 dominates and that of J2
is to be neglected. One can verify that with increasing θ, the
third region broadens, thus pushing the second region in the
direction of smaller β.

A. Special Case

Assume that β → ∞ and θ ≃ 1+. Then g(ω+
s ;β, ωc) ≈

−2ωc

√
2(θ − 1)b−2, and (9) reduces to

AS(z, t) ≈
ωc

√
2(θ − 1)

b
J1(λb

√
2(θ − 1)).

It is readily seen that this result fully agrees with the repre-
sentation

AS(z, t) ≈ 2π

τ

√
t

ξ
J1(2

√
tξ), (13)

obtained by Sommerfeld on the grounds of integral considera-
tions and valid for the initial signal described by the Heaviside
unit step function ([4], Eq. (33)). Here, we have employed
Sommerfeld’s notation:

t = t− z

c
ξ =

b2z

2c
τ =

2π

ωc
.

One can note that the asymptotic representation found in [9]
does not agree with (13).

We now turn to the Brillouin precursor. Its behavior is
dependent on the dynamics of a different pair of saddle points,
also being subject to the equation (12). As θ is increased
from the value 1, these points, to be denoted by ω+

b and ω−
b ,

approach each other along the imaginary ω-axis from below
and from above, respectively. At some θ = θs they coalesce at
a point on the axis, thus forming one saddle point of the second
order. As θ is further increased they depart from the axis
and move symmetrically in the right and left ω half-planes,
respectively. The asymptotic representation for the Brillouin
precursor is given by (see [18])

AB(z, t) ∼ 2πieλρb(θ)

(
c0(θ)

λ1/3
Ai[λ2/3γb(θ)

2]

+
c1(θ)

λ2/3
Ai′[λ2/3γb(θ)

2]

)
, (14)

where
ρb =

1

2

[
Ψ(ω+

b )−Ψ(ω−
b )
]
, (15)

and
γb = [

3

4
|ϕ(ω+

b )− ϕ(ω−
b )|]

1/3 eiα, (16)
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Fig. 5. Dynamic behavior of the Brillouin precursor in the Lorentz medium
described by Brillouin choice of parameters. Here: ωc = 2.0 × 1016s−1,
λ = 5.0× 10−15s and β = 1.0× 1014s−1.
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Fig. 6. Dynamic behavior of the Brillouin precursor in the Lorentz medium
described by Brillouin choice of parameters. Here: ωc = 2.0 × 1016s−1,
λ = 5.0× 10−15s and β = 1.0× 1019s−1.

with α = 0,−π/2 if θ < θs or θ > θs, respectively. The
expansion is described by the Airy function and its derivative.
It remains valid for any γb(θ), including γb = 0, where the
simple saddle points coalesce into one saddle point of the
second order. Thus the expansion is uniform in γb, and hence
in θ.

The dependence of the Brillouin precursor on β is similar as
in the Sommerfeld precursor. As before, for relatively small
values of this parameter the magnitude of the precursor is
proportional

to β. With growing β the precursor magnitude reaches a
saturation level and further increase of β practically does
not change the precursor magnitude. Exemplary forms of the
Brillouin precursor for β differing by three orders are shown
in Fig. 5 and Fig. 6.

Explanation for this precursor behavior is similar as in the
previous case. A is seen from Fig. 7, at lower values of β
the coefficient c1 dominates over c0 and hence the precursor
behavior is described by the derivative of the Airy function. At
large values of β, the coefficient c0 prevails, and the dynamics
of the precursor is described by the Airy function itself.

The final signal component is the main signal. Essential in
obtaining the smooth transition from Brillouin precursor to
the main signal is a proper handling of the case in which the

1. ´ 1014 1. ´ 1015 1. ´ 1016 1. ´ 1017 1. ´ 1018
Β

-0.1

0.1

0.2

0.3

2Πi
c0 HΘ; ΒL
����������������������������

Λ1�3

2Πi
c1 HΘ; ΒL
����������������������������

Λ2�3

Fig. 7. Plots of 2πiλ−1/3c0(θ) and 2πiλ−2/3c1(θ) against the speed
parameter β at θ = 1.502. Here, ωc = 2.5×1016s−1 and λ = 3.0×10−15s.
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Fig. 8. Dynamic behavior of the total dispersive signal in the Lorentz medium
described by Brillouin choice of parameters. Here: ωc = 1.3 × 1016s−1,
λ = 5.0× 10−15s and β = 1.0× 1019s−1.

deformed contour of integration crosses the pole at ω = ωc,
and either saddle point ωsp = ω+

b or ωsp = ω+
s approaches

the pole. Resulting formula for the main signal contribution is
given by (see [17])

Am(z, t) ∼ Re

{
eλρm

[
i

2
erfc

(
iγm

√
λ

2

)

− e
λγ2

m
2

√
2πλ

(
1

γm
+

1

(ωsp − ωc)
√

−Ψωω(ωsp, θ)

) , (17)

Here,

ρm = Ψ(ωc, θ), γm =
√
2[Ψ(ωsp, θ)−Ψ(ωc, θ), (18)

and erfc stands for the complementary error function.
In Fig. 8 through Fig. 10 the full dispersive signal is shown,

as found for different carrier frequency ωc in the main signal.
It is seen that when approaching the frequency region of
anomalous dispersion the main signal is attenuated, an at the
same time the precursors contribution is enlarged.

IV. CONCLUSIONS

The effect of dispersion on signal propagation in a medium
is shown. In a mature dispersive regime, in addition to the
main signal two precursors are generated. Their magnitudes
strongly depends on the rate at which the envelope of the
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Fig. 9. Dynamic behavior of the total dispersive signal in the Lorentz medium
described by Brillouin choice of parameters. Here: ωc = 1.7 × 1016s−1,
λ = 5.0× 10−15s and β = 1.0× 1019s−1.
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Fig. 10. Dynamic behavior of the total dispersive signal in the Lorentz
medium described by Brillouin choice of parameters. Here: ωc = 3.0 ×
1016s−1, λ = 5.0× 10−15s and β = 1.0× 1019s−1.

main signal changes. Their relative contents also vary with
the carrier frequency of the main signal.

Smooth representation of the total signal was obtained with
the help of uniform asymptotic techniques. In case of simpler,
non-uniform techniques it is impossible to properly represent

the head of the Sommerfeld precursor, transition from the
increasing to the oscillation part in the Brillouin precursor and
the smooth transition from that precursor to the main signal.

REFERENCES

[1] J. D. Jackson, Classical Electrodynamics, 3rd ed. John Wiley, 1999.
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