
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2011, VOL. 57, NO. 3, PP. 271–277
Manuscript received June 19, 2011; revised September 2011. DOI: 10.2478/v10177-011-0036-5

Document Clustering – Concepts,
Metrics and Algorithms

Tomasz Tarczynski

Abstract—Document clustering, which is also refered to as text
clustering, is a technique of unsupervised document organisation.
Text clustering is used to group documents into subsets that
consist of texts that are similar to each orher. These subsets
are called clusters. Document clustering algorithms are widely
used in web searching engines to produce results relevant to a
query. An example of practical use of those techniques are Yahoo!
hierarchies of documents [1]. Another application of document
clustering is browsing which is defined as searching session
without well specific goal. The browsing techniques heavily relies
on document clustering. In this article we examine the most
important concepts related to document clustering. Besides the
algorithms we present comprehensive discussion about represen-
tation of documents, calculation of similarity between documents
and evaluation of clusters quality.

Keywords—Document clustering, text mining, kmeans, hierar-
chical clustersting, vector space model.

I. INTRODUCTION

DOCUMENT clustering is a special version of data clus-
tering problem. Data clustering is defined as an organiza-

tion of a set of object into disjoined subsets called clusters (see
[2]). The assignment should be made in such a way that objects
within a cluster are similar to each other. In text clustering
instead of using some general objects we use documents.
Clustering algorithms are often used in web search engines
to automatically group web pages into categories which can
be browsed easily by a user.

The main purpose of using document clustering is to find
documents relevant to a given query. To obtain such results
a query must be formulated first. It is not always easy to
define it. The example of such hard to define query is how to
formulate a query if a user wants to retrieve articles describing
the most important recent events in the world. Defining the
query as ’recent most important events’ probably would not
return anything useful, unless there would be an article that
is similarly titled, this would also not guarantee the success
because this article could be written 10 years ago. In such a
case the user does not know exactly what he is looking for.
This concept is called browsing. More formally it is defined
as a search session without well specified goal (see [3]). This
goal is being usually defined during the browsing process. The
user’s purpose might be also changed during the browsing
process. The concept of browsing uses text clustering as a
main subroutine of whole process. Those clustering algorithms

T. Tarczynski is with the Department of Applied Informatics, Warsaw
University of Life Sciences, ul. Nowoursynowska 159, 02-767 Warsaw, Poland
(e-mail: tomek.tarczynski@gmail.com).

usually differ a bit from the other ones because they must meet
other requirements.

Nowadays document clustering is becoming even more
important, mostly because databases containing the documents
are growing rapidly. That might cause two kinds of problems.
First of them is the time needed to perform a search. Time
complexity of most clustering algorithm depends linearly or
quadraticaly on the number of documents which makes .
The second issue is connected with an accuracy of results.
Increase in number of documents increases the probability that
document will be assigned to the wrong cluster.

Fig. 1. An illustration of clustering results of objects that can be described
using two attributes. Each of the elipses represenst different cluster containing
similar objects.

This paper is divided into 6 sections. Section 2 presents the
definitions and notations that are used in this paper, while
Section 3 presents different representations of documents.
Section 4 describes the concept of similarity and evaluation
of cluster quality. Section 5, which is the main part of this
paper, covers different algorithms used for clustering. Section
6 presents conclutions.

II. DEFINITIONS AND NOTATIONS

The following conventions are used throughout the docu-
ment. Capital letters are used to denote sets, while the lower-
case letters are used for vecors are scalars. Let D be a set
of all documents that are to be clustered. It is assumed that
this set is always a finite set with cardinality n. Depending on
the context dj can denote the jth document or the vector that
represents the jth document (representation of documents is
explained in the next section). C is the set of clusters, while
Ci refers to the ith cluster. The cardinality of set C is equal
to k. Let T be the set of all possible words that can occur in

272 T. TARCZYNSKI

documents. This set is also finite and the cardinality of this set
is dentoed by t. It is assumed that the size of this set does not
depend on the number of documents. Most of the time this
set is referred to as dictionary.The ith word in the dictionary
is denoted by ti. The number of occurences of the word ti
in the document dj is denoted by nij , while nj is the total
number of words in the jth document. Symbol ||x|| refers to
the length of vector x and |A| denotes the cardinality of the
set A. A set of clusters produced during a clustering process
is called clustering results.

III. REPRESENTATION OF A DOCUMENT

Computers process numbers much better than documents
and therefore documents are usually represented using num-
bers. Many different models that represent documents were
proposed. The most widespread representation of documents
is called Vector Space Model, which was presented by Salton,
Wong and Yang in [4]. In this model the documents are
represented by nonnegative sparse vectors in a t-dimensional
space. Such vectors will be denoted by dj , where j denotes
the jth document in the set.

dj = (w1j , w2j , ..., wtj) (1)

where wij is the weigth of ith term in jth document. Each
term usually refers to a single word from the dictionary,
but some algorithms like Phrase-Intersection clustering use
phrases instead of single words. In such a case the dictionary
would consist of phrases and t would denote the number of
possible phrases.

There are several ways of calculating those weights, but
typically term frequency-inverse document frequency method
is used (see [5]). In this method each weight is a normalized
product of two components: ’term frequency’ and ’inverse
document frequency’. Term frequency is calculated as a nor-
malized number of occurrences of the term in the document.
The term frequency of the i-th term in the j-th document, Tij ,
is defined as:

Tij =
nij
nj

(2)

Term frequency represents how often a word is used in a
document, the more often the higher the weight. To distinguish
common words, which do not say anything useful in the
context of document clustering, from the important words
inverse document frequency is used. The more documents
contain particular word the lower the value of this term, the
number of occurences of this word within single document
is not relevant, only whether the word occured or not. This
term is calculated as a logarithm of the inverse of a fraction
of documents in which this word occurred. For the i-th word,
the inverse document frequency, Ii, is defined as:

Ii = log

(
n

|{j : ti ∈ dj}|

)
(3)

There is a common problem associated with similar equa-
tions namely division by 0. To overcome this problem two
approaches are possible. The idea of the first one is to add 1

to the denominator, but it changes the results. The second one,
which is more common, is to assume that words that do not
occure in any documents are removed. Inverse term frequency
solves a problem with common words, which should not have
any influence on the clustering process. If a word occurs in all
documents then the nominator and denominator are equal and
the value of the whole term is 0. It removes the influence of
words such as: ’a’, ’the’, ’so’, ’are’, etc. According to [4] the
a model without Itf has lower precision and recall1 by 14%
on average. The improvement was measured over the standard
term frequency weighting. More about the VSM can be found
in [6] and [7].

IV. DOCUMENT SIMILARITY AND EVALUATION OF
CLUSTER QUALITY

The first part of this section discusses the document sim-
ilarity measures. Presented similarity measures assumes that
documents are represented using VSM. Similarity measures
are one of the key parts of almost every clustering algorithms.
They can be used not only to determine the similarity between
two documents but also to calculate the smilarity between a
document and a cluster and between two clusters. The most
popular document similarity measures, according to [8], are
Cosine, Dice, Jaccard. They are all based on the dot product,
the only difference is the normalization factor. It is worth
noticing that if the vectors are normalized then cosine and
dice measures produce the same result.

Simc(dj , dq) =

∑
i wij · wiq√∑
i w

2
ij ·
∑

i w
2
iq

(4)

Simd(dj , dq) =
2
∑

i wij · wiq∑
i w

2
ij +

∑
i w

2
iq

(5)

Simj(dj , dq) =

∑
i wij · wiq∑

i w
2
ij +

∑
i w

2
iq −

∑
i wij · wiq

(6)

It is common to calculate document dissimilarity (distance)
instead of the similarity. This is a bit different approach to
the same problem, because instead of saying how similar
the documents are we are saying how different they are.
Usually the Euclidian distance is used in this approach (see
[9]), although some other metrics like Manhattan distance or
Minkowski distance can be used, but they are not so commonly
used as they are in data clustering.

Document similarity measures can be extended to a measure
resemblance of all documents in a cluster. The whole group of
such measures is called intra-cluster similarity measures (see
[10]). The most widely used intra-cluster similarity measure is
group average similarity. It is defined as an average of pairwise
similarity of documents in the cluster, it is given by:

d(Ci) =

∑
dj ,dq∈Ci

sim(dj , dq)

|Ci|2
(7)

If we use a cosine as a document similarity measure then
somewhat suprisingly this formula can be significantly simpli-
fied. To simplify this formula we need to introduce the concept

1These terms are explained in the next section.

DOCUMENT CLUSTERING – CONCEPTS, METRICS AND ALGORITHMS 273

of a centroid. The centroid of a cluster is a vector that is used
to represent the whole cluster, it is defined as an average of
all vectors that represent documents in a cluster, in this paper
we denote the centroid of the ith cluster by ci.

ci =
1

|Ci|
·
∑

dj∈Ci

dj (8)

The centroid does not have to have normalized length, in fact
it almost never does. It can be easily proved that the intra-
cluster similarity is equal to the squared length of a centroid
vector.

d(Ci) = ||ci||2 (9)

The calculation of the similarity between two clusters can
be simplified to the calculation of the similarity of their
centroids. Another approach was presented in [11], where
Olsen introduced new clusters similarity measuring metrics:
single link, average link, complete link and median. They
were defined as the minimum distance between documents
in two clusters, an average distance, a maximum distance and
a median of distances (see also [3]).

The last part of this section is devoted to external quality
measures. In contrast to the previously mentioned measures
these ones need an external knowledge about real classes.
This assumption prevents from using them in an clustering
algorithm as a criterion function. Those measures reflect the
similarity between real classes and the ones obtained in the
clustering process.

One the most fundamental measure is the entropy, which is
based on the termodynamical entropy. The entropy of a single
cluster is defined as:

Ej = −
∑
i

pij · ln(pij) (10)

Where pij is the probability that a document which is in the
cluster j belongs to the class i. Here we assume that 0·ln(0) =
0. To obtain the quality of all clusters the weighted sum of
entropies of all clusters must be calculated. The weight is equal
to the size of the cluster.

E =
1

n

∑
i

Ei · ni (11)

F measure, was first introduced by C. J. van Rijsberge in
[12], is a different external quality measure. To understand
this measure two concepts must be introduced. First of them
is precision. Precision(i,j) can be interpreted as a probability
that randomly chosen document from jth cluster belongs to
the ith class. The second concept is called recall and it can
be interpreted as a probability that randomly chosen document
from the ith class belongs to the jth cluster.
The F-measure of the cluster j and class i is calculated as
harmonic mean of precision and recall, which is given by:

F (i, j) =
2 ·Recall(i, j) · Precision(i, j)
Precision(i, j) +Recall(i, j)

(12)

The F-measure of whole cluster result is given in the following
form

F =
1

n

k∑
i

ni
maxj F (i, j)

(13)

Fig. 2. An illustration of recall and precision. Black dots represent documents
that are in one category and the white ones represent documents that are in
another category. Dots that are in an ellipse corespond to the documents in
one cluster. Recall of this cluster is equal to 2

3
and the precision is equal to

3
4

.

More about F-measure and other quality measures in infroma-
tion retrieval can be found in [13]

V. CLUSTERING ALGORITHMS

This section describes the most important clustering al-
gorithms. Each of presented algorithms fits into one of two
categories: hierarchical clustering and non-hierarchical clus-
tering (see [14]). Non-hierarchical clustering algorithms are
often called flat methods or partitional methods. Hierarchical
methods in contrast to the partitional methods do not create a
single clustering result, but the whole hierarchy of clustering.
There are two basic approaches to hierarchical clustering. First
of them is hierarchical agglomerative clustering (HAC) and the
second one is hierarchical divise clustering (HDC).

A. Hierarchical Agglomerative Algorithms

Hierarchical methods are often believed to produce better
clustering results (see [15]), but their main disadvantage is
the complexity. The lower bound on time complexity in
hierarchical clustering is O(n2). The results obtained by a
hierarchical clustering algorithm can be viewed at different
levels. Each of the levels can be seen as separate clustering
result with different number of clusters, although those levels
are strongly connected because the result on each level is based
on the result on previous level. This hierarchy of results is
usually graphically presented using a tree. This tree is called
dendrogram. It is a tree with a single node at the top and
n nodes at the bottom. Each of the nodes that are on the
bottom represent a cluster with a single document in it. At
the beginning of the agglomerative approach each document
is in its own cluster, so in the first level number of clusters is
equal to n. In each iteration the two most similar clusters are
merged. This process continues until only one cluster is left.
That strategy is also called bottom-up approach. Exhaustive
survey on agglomerative hierarchical methods can be found in
[14]. More about the efficiency of HAC can be found in [16].
The traditional agglomerative algorithm can be summarized as
follows:

1) Compute the similarity matrix A, whose entry [aij] is
the similarity between ith and jth cluster.

2) Merge the two most similar clusters.

274 T. TARCZYNSKI

3) Update the similarity matrix (only the column that
represents new cluster must be updated)

4) Repeat steps 2 and 3 until all documents are in one
cluster.

Fig. 3. Sample dendrogram. Looking from the bottom-up approach in the
first iteration documents D1 and D2 were merged into one cluster, in the
second one documents D3 and D4 were grouped into one cluster. In the
third iteration cluster containing D1 and D2 was merged with cluster that
contains D3 and D4 and finally in the last iteration all documents were put
into one cluster.

B. Bisecting K-means

Bisecting K-means is a hierarchical divisive algorithm,
which was introduced in [15]. Bisecting K-means should not
be confused with K-means algorithm which is partitional
algorithm. The divisive strategy is in some sense a reverse of
the agglomerative technique. At the beginning of the algorithm
there is only one cluster which contains all documents. In
each iteration a chosen cluster is divided into two clusters.
The process stops when each cluster contains only a single
document. The bisecting K-means is described below:

1) Choose a cluster to split.
2) Apply K-means clustering with k = 2 to this cluster.

(bisecting step)
3) Repeat the bisecting step ITER times and choose the

split that produces clustering with the highest overall
similarity.

4) Repeat all steps until the desired number of clusters is
obtained.

Empirical research in [15] shows that ITER = 5 is a good
compromise between the quality and the time complexity.
The increase of the ITER parameter would increase both the
quality and the time complexity. This algorithm is very flexible
because steps 1 and 2 can be implemented in many different
ways. The most intuitive way to choose a cluster in step 1
is to choose the largest cluster. That was the method used
in [15]. The other possible approaches mentioned in [15] are
take the cluster with the least overall similarity, use a criterion
based on both size and overall similarity. The bisecting step
is even more adjustable since any nondeterministic partitional
clustering algorithm can be used in this step, although taking
K-means seems reasonable because it is a simple and effective
algorithm. The K-means algorithm itselft can be also adjusted
in many ways, what will be described in the next subsection.

Another huge advantage of this algorithm is that it can be
seen as either flat clustering or hierarchical clustering method.
Using it as a partitional clustering might even produce better
results because the obtained results can be improved using
K-means algorithm on the desired number of clusters. In this
case the bisecting K-means would just lead to finding centroid
for clusters.

C. K-means

K-means clustering (see [17], [18]) is the most widely used
partitional clustering technique. Its popularity is due to its
simplicity and good results. The general description of k-
means algorithm is as follows:

1) Choose k – the number of clusters
2) Choose k points as a center of clusters
3) Assign each document to the nearest cluster
4) If stop criterium is met then stop
5) Recalculate center of clusters
6) Go to the step 3

Choosing k in the first step depends strongly on the dataset
and motivations that are behind clustering, although some
systematic approaches for choosing the number of clusters are
given in [19]. The points in the second step are usually chosen
at random for simplicity, but some modifications such as k-
means++ [20] might be used. A comprehensive survey on dif-
ferent methods for initializing the K-means clustering can be
found in [21]. Authors compare there 11 different initializing
methods. From those experiments it might be concluded that
the best initializing methods are the ones proposed in [22],
[23] and [24]. In order to assign a document to the nearest
cluster any of the similarity measure mentioned in chapter 3
can be used. The stop criterion is usually defined as a stop
when no documents have been moved from one cluster to
another. In the standard k-means algorithm, the center of a
cluster is calculated as a centroid of the documents in that
cluster, but many modifications to this point were proposed.
One of them is the k-medians algorithm which calculates in
this step the median instead of the mean, this median does not
have to be an actual document because median of each term is
calculated separately. Another modification was presented as
the k-medoid algorithm where one of the documents is chosen
to be a center of a cluster. This document is usually chosen
as a document with the lowest pairwise dissimilarity.

D. Algorithms Based on Criterion Functions

Many partitional clustering algorithms are based on op-
timization of a global criterion function. In some of these
algorithms the criterion function might be exchanged easily.
Examples of those algorithms are CobWeb [25] and AutoClass
[26]. Such algorithms consist of two main components. One
of them is the criterion function used for an optimization
and the second one is the algorithm itself. Many different
clustering algorithms can easily be created if a list of criterion
functions and optization algorithms are available because every
combination of the optimization algorithm and the criterion
function creates new clustering algorithm.

DOCUMENT CLUSTERING – CONCEPTS, METRICS AND ALGORITHMS 275

In this chapter we will focus mostly on the criterion function
instead of algorithms, because according to [9] and [27] greedy
strategy produces comparable results to the results obtained
using more complicated algorithms. These more complicated
algorithms include concepts like iterative schemes based on
hill-climbing methods, spectral-based optimizers and so on.
The reader more interested in these algorithms are reffered to
[28], [29], [30], [31], [32] and [33].

A great survey on criterion functions can be found in [9],
Table contating all criterion functions tested in [9] is presented
below.

f1 maximize
k∑

r=1

nr

 1

n2r

∑
di,dj∈Cr

cos(di, dj)

 (14)

f2 maximize
k∑

r=1

∑
di∈Cr

cos(di, Cr) (15)

f3 minimize
k∑

r=1

nr · cos(cr, c) (16)

f4 maximize

k∑
r=1

nr

(
1
n2
r

∑
di,dj∈Cr

cos(di, dj)

)
k∑

r=1
nr · cos(cr, c)

(17)

f5 maximize

k∑
r=1

∑
di∈Cr

cos(di, Cr)

k∑
r=1

nr · cos(cr, c)
(18)

f6 minimize
k∑

r=1

cut(Sr, S − Sr)∑
di,djinCr

cos(ci, cj)
(19)

f7 minimize
k∑

r=1

cut(Vr, V − Vr)
W (Vr)

(20)

where c denotes the centroid of all documents, Vr is the set
of vertices assigned to the rth cluser. and W (Vr) is the sum
of the weights of the adjacenct lists of Vr.

Here we describe an idea that is behind each of these
functions:
f1 – it is weighted sum of the average pairwise similarities

between the documents in each cluster. The weights are
normalized due to the size of the cluster.

f2 – it is the sum of the cosine between each document and
the centroid of the cluster of this document.

f3 – it is the sum of the cosine between each centroid of
clusters and the centroid of all documents.

f4 – it is a quotient of f1 and f3.
f5 – it is a quotient of f2 and f3.
f6 – it is edge-cut of each partition scaled by the sum of the

cluster’s internal edges.
f7 – it is normalized edge-cut of the partitioning.

The entropy was used as a measure of quality of the results.
Extensive experiments made on 15 different datasets showed
that none of these functions is a superior to the others, although
some functions performed better. In almost all tested f2,

f4 and f5 outperformed all other functions. The difference
between the quality of those functions was not significant.
It is interesting that some functions, which seem to be very
similar like f1 and f2, produced very different results. The
results varied by up to twenty percent.

E. Word-Intersection Clustering

Oren Zamir in [34] outlined that reducing the number of
returned documents not necessarily makes browsing easier for
user. He claims that efficient document clustering might be
used as a good method for navigating through a large collec-
tion of documents, furthermore it might find some patterns that
would be normally missed. Zamir also created a 6 point list of
requirements for clustering algorithm in context of document
browsing.

1) Ease-of-browsing: Results must be presented in such a
way that user immediately can decide whether some
content is useful or not.

2) Speed: The clustering should be fast enough to create
results within seconds.

3) Scalability: The method should be able to cluster large
set of documents.

4) No preprocessing: The algorithm should not rely on
the preprocessing, because it is applied to dynamically
generated set of documents.

5) Client side execution: The system should be able to
process the clustering algorithm on the client side. It is
motivated by a fact that server might not have enought
computation power to produce clustering for each user.

6) Snippet-Capable: The algorithm should not require
whole documents, but only small snippets of those
documents. Due to client side execution this requirement
is necessary, beacuse transfering whole documents could
be more time consuming that the algorithms itself.

Word-Intersection Clustering is a hierarchical agglomerative
algorithm with a few new concepts. First of them is that
clusters are characterized by the set of words that are in every
document in the cluster. This automatically solves a problem
with the description, because those common words might be
used as a description of a cluster. The numbers of words
that are shared by all the documents in the cluster is called
cohesion and it is denoted by h(Ci). Another new concept
is the score function s(c), which expresses the decreasing
marginal signigicance of the cohesion.

s(Ci) = |Ci| ·
1− exp (−βh(Ci))

1 + exp (−βh(Ci))
(21)

The most important new feauture of this algorithm is Global
Quality Function which quantifies the quality of a clustering.
It is defined as:

GQF (C) =
f(C)

g(|C|)
∑
Ci∈C

s(Ci) (22)

Where the f(C) is a function that is proportional to the
normalized number of clusterd documents. A document is
considered to be clustered when the size of the cluster that

276 T. TARCZYNSKI

contains is greater than 1, while the g(|C|) is an increasing
function in the number of clusters.
The algorithm itself can be summarized as:

1) Put all documents in different clusters.
2) If there are no two clusters whose merge would increse

GQF halt.
3) Merge two clusters that icreases GQF the most.
4) Go to the step 2.
The experiments made in [34] showed that this algorithm

is faster that the classical hierachical agglomerative algorithm
with the cosine similarity measure, which is referred in that
paper as COS-GAVG. In addition the quality of the results ob-
tained by word-intersection clustering was significantly better
than the resuls produced by COS-GAVG. These results prove
that this algorithm is very promising.

VI. CONCLUSIONS

In this article we have presented the most important con-
cepts related to document clustering. Our research confirmed
that there is no superior text clustering algorithm. Document
clustering algorithms vary in both the complexity and the
quality of results. Hierarchical algorithms in general are
considered as the ones that performs better than the flat
methods, but on the other hand partitional algorithms are much
faster. It seems that the most promising algorithms are hybrid
methods like bistecting k-means. This algorithm outperformed
partitional clustering algorithms without significant increase
in complexity. The clustering algorithm should be chosen
depending on the available time, hierarchical algorithms are
well suited for a precomputation, while partitional algorithms
are good for an online computation.

The complexity of clustering algorithms will play a crucial
role in the future, this will be due to continuous increse in
the number of ducuments. On the other hand the speed of
the computers will increase more slowly because the Moore’s
law2 is considered to be broken. This premises lead to the
conclusion that parallel and distributed clustering algorithms
should be more stressed in the future. Many parallel data
clustering algorithms were already designed (see [35], [11],
[36]), but not much has been done in the field of parallel
document clustering.

Beside the complexity another potential problem is asso-
ciated with higher demands on the quality. These demands
might lead to the development of a more linguistic approach
to the document clustering problem. Present algorithms do not
take into account an order of the words in a sentence. In some
cases the order of words might be relevant in the process of
clustering. This task is extremely hard to implement, because
each language has its own grammar rules which determine
whether the order in particular case is important or not.

REFERENCES

[1] Y. Labrou and T. Finin, “Yahoo! as an ontology: using yahoo! categories
to describe documents,” in Proceedings of the eighth international

2Moore’s law states that the number of transistors that can be placed on
integrated circuits, without any additional costs, doubles every two year

conference on Information and knowledge management, ser. CIKM ’99.
New York, NY, USA: ACM, 1999, pp. 180–187. [Online]. Available:
http://doi.acm.org/10.1145/319950.319976

[2] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”
ACM Comput. Surv., vol. 31, pp. 264–323, September 1999. [Online].
Available: http://doi.acm.org/10.1145/331499.331504

[3] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey,
“Scatter/gather: a cluster-based approach to browsing large document
collections,” in Proceedings of the 15th annual international ACM
SIGIR conference on Research and development in information
retrieval, ser. SIGIR ’92, New York, NY, USA, 1992, pp. 318–329.
[Online]. Available: http://doi.acm.org/10.1145/133160.133214

[4] G. Salton, A. Wong, and C. S. Yang, “A vector space model for
automatic indexing,” Commun. ACM, vol. 18, pp. 613–620, November
1975. [Online]. Available: http://doi.acm.org/10.1145/361219.361220

[5] G. Salton and C. Buckley, “Term weighting approaches in automatic
text retrieval,” Cornell University, Ithaca, NY, USA, Tech. Rep., 1987.

[6] S. K. M. Wong, W. Ziarko, V. V. Raghavan, and P. C. N. Wong, “On
modeling of information retrieval concepts in vector spaces,” ACM
Trans. Database Syst., vol. 12, pp. 299–321, June 1987. [Online].
Available: http://doi.acm.org/10.1145/22952.22957

[7] X. Tai, M. Sasaki, Y. Tanaka, and K. Kita, “Improvement of
vector space information retrieval model based on supervised
learning,” in Proceedings of the fifth international workshop on
on Information retrieval with Asian languages, ser. IRAL ’00,
New York, NY, USA, 2000, pp. 69–74. [Online]. Available:
http://doi.acm.org/10.1145/355214.355224

[8] G. Salton, Ed., Automatic text processing. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1988.

[9] Y. Zhao and G. Karypis, “Empirical and theoretical comparisons
of selected criterion functions for document clustering,” Mach.
Learn., vol. 55, pp. 311–331, June 2004. [Online]. Available:
http://portal.acm.org/citation.cfm?id=990375.990398

[10] H. J. Zeng, Q. C. He, Z. Chen, W. Y. Ma, and J. Ma, “Learning to cluster
web search results,” in Proceedings of the 27th annual international
ACM SIGIR conference on Research and development in information
retrieval, ser. SIGIR ’04, New York, NY, USA, 2004, pp. 210–217.
[Online]. Available: http://doi.acm.org/10.1145/1008992.1009030

[11] C. F. Olson, “Parallel algorithms for hierarchical clustering,” Parallel
Comput., vol. 21, 1995.

[12] C. J. van Rijsbergen, Information Retrieval, 2nd ed. Newton, MA,
USA: Butterworth-Heinemann, 1979.

[13] J. Makhoul, F. Kubala, R. Schwartz, and R. Weischedel, “Performance
measures for information extraction,” in In Proceedings of DARPA
Broadcast News Workshop, 1999, pp. 249–252.

[14] A. El-Hamdouchi and P. Willett, “Comparison of hierarchic
agglomerative clustering methods for document retrieval,” The
Computer Journal, vol. 32, pp. 220–227, jan 1989. [Online]. Available:
http://dx.doi.org/10.1093/comjnl/32.3.220

[15] M. Steinbach, G. Karypis, and V. Kumar, “A comparison
of document clustering techniques,” 2000. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.1505

[16] W. H. Day and H. Edelsbrunner, “Efficient algorithms for agglomerative
hierarchical clustering methods,” Journal of Classification, vol. 1, pp.
7–24, 1984. [Online]. Available: http://dx.doi.org/10.1007/BF01890115

[17] G. A. Wilkin and X. Huang, “A practical comparison of two k-means
clustering algorithms,” BMC Bioinformatics, vol. 9, p. S19, 2008.
[Online]. Available: http://www.biomedcentral.com/1471-2105/9/S6/S19

[18] J. Wu, H. Xiong, and J. Chen, “Adapting the right measures for
k-means clustering,” in Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining,
ser. KDD ’09, New York, NY, USA, 2009, pp. 877–886. [Online].
Available: http://doi.acm.org/10.1145/1557019.1557115

[19] M. Chiang and B. Mirkin, “Experiments for the number of clusters
in k-means,” in Progress in Artificial Intelligence, ser. Lecture Notes
in Computer Science, J. Neves, M. Santos, and J. Machado, Eds.
Springer Berlin / Heidelberg, 2007, vol. 4874, pp. 395–405. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-77002-2 33

[20] D. Arthur and S. Vassilvitskii, “k-means++: the advantages
of careful seeding,” in Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms, ser. SODA ’07,
Philadelphia, PA, USA, 2007, pp. 1027–1035. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1283383.1283494

[21] R. Maitra, A. Peterson, and A. Ghosh, “A systematic evaluation of
different methods for initializing the k-means clustering algorithm,”
IEEE Transactions on Knowledge and Data Engineering, 2010.

DOCUMENT CLUSTERING – CONCEPTS, METRICS AND ALGORITHMS 277

[22] G. W. Milligan and P. D. Isaac, “The validation of
four ultrametric clustering algorithms,” Pattern Recognition,
vol. 12, no. 2, pp. 41–50, 1980. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0031320380900011

[23] P. S. Bradley and U. M. Fayyad, “Refining initial points
for k-means clustering,” in Proceedings of the Fifteenth
International Conference on Machine Learning, ser. ICML ’98,
San Francisco, CA, USA, 1998, pp. 91–99. [Online]. Available:
http://portal.acm.org/citation.cfm?id=645527.657466

[24] B. Mirkin, Clustering for Data Mining: A Data Recovery Approach.
Chapman and Hall/CRC, 2005.

[25] D. H. Fisher, “Knowledge acquisition via incremental conceptual clus-
tering,” Mach. Learn., vol. 2, pp. 139–172, September 1987. [Online].
Available: http://portal.acm.org/citation.cfm?id=639960.639990

[26] P. Cheeseman and J. Stutz, “Advances in knowledge discovery
and data mining,” U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth,
and R. Uthurusamy, Eds. Menlo Park, CA, USA: American
Association for Artificial Intelligence, 1996, ch. Bayesian classification
(AutoClass): theory and results, pp. 153–180. [Online]. Available:
http://portal.acm.org/citation.cfm?id=257938.257954

[27] S. Savaresi, D. L. Boley, S. Bittanti, and G. Gazzaniga, “Choosing the
cluster to split in bisecting divisive clustering algorithms,” in Second
SIAM International Conference on Data Mining, 2000.

[28] M. Meila and D. Heckerman, “An experimental com-
parison of model-based clustering methods,” Mach. Learn.,
vol. 42, pp. 9–29, January 2001. [Online]. Available:
http://portal.acm.org/citation.cfm?id=599609.599627

[29] G. Karypis, E. Han, and V. Kumar, “Chameleon: Hierarchical clustering
using dynamic modeling,” Computer, vol. 32, pp. 68–75, August 1999.
[Online]. Available: http://dx.doi.org/10.1109/2.781637

[30] D. Boley, “Principal direction divisive partitioning,” Data Min. Knowl.
Discov., vol. 2, pp. 325–344, December 1998. [Online]. Available:
http://portal.acm.org/citation.cfm?id=593421.593471

[31] H. Zha, X. He, C. Ding, H. Simon, and M. Gu, “Bipartite
graph partitioning and data clustering,” in Proceedings of the tenth
international conference on Information and knowledge management,
ser. CIKM ’01, New York, NY, USA, 2001, pp. 25–32. [Online].
Available: http://doi.acm.org/10.1145/502585.502591

[32] C. H. Zha, H. Zha, X. He, C. Ding, H. Simon, and M. Gu, “Spectral
relaxation for k-means clustering,” in Advances in Neural Information
Processing Systems. MIT Press, 2001, pp. 1057–1064.

[33] I. S. Dhillon and D. S. Modha, “Concept decompositions
for large sparse text data using clustering,” Mach. Learn.,
vol. 42, pp. 143–175, January 2001. [Online]. Available:
http://portal.acm.org/citation.cfm?id=370660.370699

[34] O. Zamir, O. Etzioni, O. Madani, and R. M. Karp, “Fast and intuitive
clustering of web documents,” in In Proceedings of the 3rd International
Conference on Knowledge Discovery and Data Mining, 1997, pp. 287–
290.

[35] M. Dash, S. Petrutiu, and P. Scheuermann, “Efficient parallel hierarchical
clustering,” in International Europar Conference, 2004.

[36] Y. Song, W. Chen, H. Bai, C. Lin, and E. Chang, “Parallel spectral
clustering,” Machine Learning and Knowledge Discovery in Databases,
pp. 374–389, 2008. [Online]. Available: http://dx.doi.org/10.1007/978-
3-540-87481-2 25

[37] Y. Liu, J. Mostafa, and W. Ke, “A fast online clustering algorithm for
scatter/gather browsing,” 2007.

[38] D. R. Cutting, D. R. Karger, and J. O. Pedersen, “Constant interaction-
time scatter/gather browsing of very large document collections,” in
Proceedings of the 16th annual international ACM SIGIR conference
on Research and development in information retrieval, ser. SIGIR
’93, New York, NY, USA, 1993, pp. 126–134. [Online]. Available:
http://doi.acm.org/10.1145/160688.160706

