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Deployment of an Agent-based SANET

Architecture for Healthcare Services
Christopher Chiu and Zenon Chaczko

Abstract—This paper describes the adaptation of a computa-
tional technique utilizing Extended Kohonen Maps (EKMs) and
Rao- Blackwell-Kolmogorov (R-B) Filtering mechanisms for the
administration of Sensor-Actuator networks (SANETs). Inspired
by the BDI (Belief-Desire-Intention) Agent model from Rao
and Georgeff, EKMs perform the quantitative analysis of an
algorithmic artificial neural network process by using an indirect-
mapping EKM to self-organize, while the Rao-Blackwell filtering
mechanism reduces the external noise and interference in the
problem set introduced through the self-organization process.
Initial results demonstrate that a combinatorial approach to
optimization with EKMs and Rao-Blackwell filtering provides an
improvement in event trajectory approximation in comparison to
standalone cooperative EKM processes to allow responsive event
detection and optimization in patient healthcare.

Keywords—BDI Agent Framework, Extended Kohonen Maps
(EKM), healthcare infrastructures, Rao-Blackwell filtering, Sen-
sor Actuator Networks (SANETs).

I. PURPOSE OF SANET INFRASTRUCTURES

THE inspiration of using a distributed SANET infrastruc-

ture using biomimetic principles is the active monitoring

of patients in health facilities. Traditional health communica-

tion models are reliant on passive identification systems, such

as alert buzzers and pagers, to alert clinicians on the current

status of a patient outside of intensive care. The necessity

for an evolvable, self-healing network that encapsulates mon-

itoring and control processes for a health care institution will

augment existing healthcare practice by tracking the wellbeing

of a patient into their recovery.

Healthcare middleware infrastructures are designed with a

standardized exchange protocol and mechanism for interac-

tion, such as HL7 [1], so it is logical that the design of

the SANET infrastructure takes this in mind. The issue of

efficient and concise data exchange for resource constrained

systems, which can actively track and monitor changes in

events is important as a quality attribute. Coupled with a

meta- heuristic dynamic function using Extended Kohonen

Maps for the neural network, a comparison is made on the

benefits of optimization of neural networks to reduce noise

introduced into the system. Therefore, the focus of this paper

is to propose an systemic infrastructure suitable for SANET

environments [2], [3], with an algorithmic foundation based

on Rao-Blackwell-Kolmogorov optimization in the Sun Java

environment.

The SANET healthcare infrastructure model must be de-

signed with hard real-time criticality in mind, while also
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TABLE I
QUALITY ATTRIBUTES OF COSA-BASED INFRASTRUCTURES

Attribute Description

Feature • Utilizing an Extended Kohonen Map (EKM)
Mapping by Kohonen [4], [5], the self-organizing map

partitions sensory-aware spaces discretely; thus the
generalization capability arises from its self-
organization during map training [6].
Map resolution is improved in frequently
encountered stimuli regions, thus mimicking
biological sensory perceptions where reinforced
practice allows for prediction of anticipated events.

Multi- • Formulated as a non-linear multi-variate regression
variate problem [7]–[9], the main issue is that
Regression training samples must be regularly collected for
Techniques error sampling rates. The sampling process is

simplified by providing qualitative feedback at the
end of the executing control sequence [9]. This
technique ensures smoothness when local minima
or maxima results are encountered, such that sensor
variations are minimized.

Data • The filtration process is coupled with multivariate
Filtration regression to eliminate noise within the system
Process process [10]. This allows for the systemic transition

from a global awareness of reaching the target
objective from within the local domain knowledge
space. This allows for a further refining process
of the data collection model and enhances the final
result of the regression algorithmic samples.

Multi- • Reinforcement learning heuristics, based upon
Objective non-deterministic biological concepts, provides a best
Meta- effort optimum routing and clustering organization
Heuristics solution depending on the current situation [10].

The feedback loop is closed to ensure that knowledge
from the environment is retained, such that the
predictive models that determine future clustering and
routing paths can represent system state behavior and
concurrent data repositories.

being fault-tolerant and incorporate redundancy to ensure

the data responses and feedback is delivered within finite

limits. Thus, the infrastructure must achieve strict Quality of

Service (QoS) qualitative requirements [11], [12], inclusive

of scalability, robustness, security, privacy and efficiency. The

SANET infrastructure should support the process of software

development by facilitating integration of components and

reducing the accidental complexities related to heterogeneous

environments in health institutions. The Cooperative-Oriented

Sensors Actuators model (COSA) by Chaczko [13] is used to

represent a SANET neighborhood and its moderation by two

global aspects: the accuracy of a node’s position and the node’s

immunity to error propagation. The algorithmic categories are
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TABLE II
INTERCONNECTIVITY BETWEEN HOLONIC COMPONENTS

Connection Component Type

Connector Facilities • The remote procedure calls or remote
within Components method invocation between agent nodes or

cluster heads.

Horizontal Models • Request brokers or publish-subscribe
of Infrastructure mechanisms between sensory components
Services in same platform.

Vertical Models • Common semantics and context
of Domain Paradigm awareness, and high-level reusable

services for multiple platforms for sensor
and actuator control.

ordered according from local to global domain concerns in

Table I.

A. Basis of BDI-based Holonic Infrastructures for SANETs

The biomimetic approach used in the experimental model

is based on the need for SANET architectures to manage

infrastructures on a distributed level. Large-scale infrastruc-

tures such as healthcare monitoring are an ideal candidate

for the holonic model, as service orientation is focused on

a patient-centric environment [12], [14], hence the motivation

of utilizing a BDI-based agent holonic infrastructure to model

the patient’s needs and concerns as an individual agent-based

holon. The agent’s desires and intentions are captured and re-

alized within the holon entities in practice, so that the sensory

determination is executed in a real-time task control process. In

Figure 1, distributed data space concerns are addressed through

Tuple Space [15] implementations that need to be supported

in a SANET component middleware system, such as how a

patient’s location can be notified by the doctor or next of kin,

depending on the current patient’s status. Holonics follows

the multiverse concepts of elemental slicing of a core entity

of representing the structures and interconnections between

internal entities [14] elaborated in Table II.

In Table III and Figure 2, the biomimetic model perspec-

tive can be projected onto a 3D space based on the POE

Classification Model [14], [16]. The POE model represents

the different levels of organization, with POE standing for

Phylogeny, Ontogeny and Epigenesis.

Fig. 1. Tuple space paradigm consists of distributed Memory Spaces overlaid
on multiple actuator platforms [14].

TABLE III
POE MODEL AND SANET CORRELATIONS

Dimension Context and Correlation

Phylogeny • Biological Context: Entail evolution of species
genetics.
• SANET Correlation: This relates to the
implementation of heuristic tracking algorithms
(Cooperative EKMs) for an individual surgical
training exercise.

Ontogeny • Biological Context: Concerned with cellular growth
process, multi-cellular organization, cellular division
and differentiation from the parent to child cells.
Each child cell processes a copy of the original
genome.
• SANET Correlation: The perspective of calculating
EKM activation energies for the simulator to
provide feedback to the trainee.

Epigenesis • Biological Context: This involves the adaptation and
learning processes. The nervous, immune and
endocrine systems are characterized by epigenesis.
• SANET Correlation: This space corresponds to the
facets or aspects of specialist trainee feedback by
responding to stimuli and weights adaption feedback.

II. DOMAIN ANALYSIS OF SANETS

A. Cooperative EKMs with R-B Optimization

Procedural controls are formed as a discrete set of com-

mands to be used by reinforcement learning algorithms [5]

to be selected from a library of heuristic functions for a

distributed network in a healthcare concern. Reinforcement

learning is driven by continuous control space functions [4],

as indirect-mapping methods provide fluid decision choices

than direct mapping. The accuracy in sensory stimuli control is

important where external factors directly affect the network’s

robustness and reliability, combined with Rao-Blackwell opti-

mization, allows for developing a feature map approach using

co-operative EKMs with indirect mapping to improve the

responsiveness of the tracking process [4], [10].

Event predication can be achieved using linear trajectory

models in Euclidean space [9]. However, multi-dimensional

problems outside of Euclidean space are sacrificed as a result,

inclusive of network interference and ensuring energy effi-

ciency. By not factoring the domain concern of including the

problem set into a singular process model, the problem scope

increases exponentially [14]. The solution is to transform the

views and decompose them into a singular map of the highest

activation energies or stimuli, which is achieved once the

maximum value of the integration matrix is calculated for

all EKMs for each of the input stimuli received from the

Fig. 2. POE classification (phylogeny, ontology, epistemology) [15], [16].
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TABLE IV
EXTENDED KOHONEN MAPPING TECHNIQUES

Mapping Mapping Methodology
Method

By Direct • Node inputs are mapped to sensory stimuli, with
Mapping indirect-maps of sensory stimuli linked to a node
Method with the utilization of control parameters, including

energy discharge, signal strength and node roles as
ordinary node, cluster head or location anchors.

By • Continuous sensory stimuli space is mapped to the
Indirect- node; instead of direct-mapping that map
Mapping continuous sensory stimuli space to the actual
Method directives. Quality evaluators determine optimum

clustering using Rao-Blackwell optimization [13]
criteria.

SANET’s environment. Insufficient sensory controls can result

in unexpected or undesirable outcomes, leading to possible

faults in navigating a route to the gateway [4], [5]. When

EKMs are established in the weighted-sum ensemble, a similar

problem of unsolvable outcomes also takes place. This can

be solved by using an indirect EKM mapping method in

conjunction with Rao-Blackwell Optimization, whereby the

control vector is manipulated indirectly via a control parameter

space [4].

The environmental concern shown in Figure 3: Co-operative

EKM Process [10]or a given SANET domain can be summa-

rized in the following statement tasks:

• For initial state described by input vector u(0) in input

space U, inclusive of the sensory perception;

• Adapt sequence of control vectors c(t), t=0. . .t-1, in

sensor control space C and solve activation energies;

• With resultant goal state elaborated by u(T) ∈ U that

adapts the structure for a desired objective, thus reacting

to the stimulus and changing the input state.

• Perform Rao-Blackwell optimization on the weighted

values, with the final estimator is used for evaluating

effectiveness of the neuron weights.

Using a multi-objective approach with co-operative EKMs

as the modeling function has been adopted, with a reinforce-

ment learning technique chosen on the basis of the situation

or context [4]. Interleaved EKMs that cooperate and compete

to self-organize can enable a node to optimize in managing

clustering and routing dynamically, whereby the node’s output

control is less than the total variable control available. Eu-

clidean and weighted-sum ensemble methods have detrimental

outcomes, even though a continuous sensory control space is

implemented [9].

B. Multi-Objective Meta-Heuristic Algorithm (MMA)

The paradigm of meta-heuristics is taking the optimum

yielded results of selected heuristic methods that are suitable

for the problem domain in a healthcare environment. In

particular, nature-inspired functions are most suitable when

considering the learning capability of the healthcare network

that is suitable for patient prediction models. Unlike with

trajectory functions, which are concerned with local thresholds

to yield a result, bio-inspired functions take a holistic view

TABLE V
POE-STAGED EXPERIMENTAL PROCESS

POE Stage Experimental Process

Stage 1: Model • This stage is about performing an Unsupervised
Domain Learning Heuristic on the environment. This
Environment involves modeling the environmental concerns to
(Phylogenical) determine how the data should be organized for

optimum clustering and routing mechanisms.
• The current experiment considers the use of
EKMs to model the SANET environment from
the input sensory perception at the beginning.

Stage 2: Train • This stage is about performing a Reinforcement
for Environment Learning Heuristic. This allows the environment
(Ontological) to be aware of its context, and learn from its own

experience and that of its cooperative actors.
• The experiment incorporates genetic algorithmic
heuristics to achieve learning capability. Classical
techniques such as brute-force analysis is
computationally inefficient, and is infeasible to
consider all outcomes that lead to an optimum
solution, only the best-effort solution in time.

Stage 3: Refine • This stage is about factorizing the Training Set.
Training Set This optimizes the training set for a given learning
(Epigenetical) heuristic to a singular vector, reducing

invariability for long-term forecasting.
• The current experiment considers generalized
optimization techniques to reduce noise and other
variability in the training set. This is necessary to
select an ideal candidate that establishes the
fitness condition for the SANET environment,
such as maintaining the minimum energy
condition and optimizing bandwidth.

of the dynamic, evolving system. In essence, by combining

a multi-dimensional approach to analyzing a given dataset,

we can enhance the regenerative learning capability for any

given heuristic optimization model. Current experiments for

SANET modeling examine genetic algorithms and Particle

Swarm Optimization (PSO) [17] as they both implicit-based

reinforcement learning methods that attempt to seek a long

term advantage through a representation set of scalar rewards.

A filtration process is then applied to the mapping data to

clear erroneous and randomized data introduced as a result of

the algorithmic calculations, allowing for a clearer weighting

adaption once a response is made to the stimuli.

The application of the heuristic algorithm follows the ap-

proach of applying EKM principles with R-B optimization

to the problem domain in SANETs [13], [17]. This requires

the modeling map to be translated into a training vector to

be processed against a scalar rewards vector, which reflects

the optimum energy or routing condition; depending on the

current environmental concerns of the SANET network.

The number of evolutions to determine an acceptable result

will affect the quality of the process, but there requires a

balance between obtaining a quality evaluation, which re-

quires more processing time and is power intensive, with

minimizing the time to process the heuristic function for

resource conservation. The implementation method for meta-

heuristic functions in the experimental model is established

procedurally in Figure 4 and Table V.
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Fig. 3. Co-operative EKM Process [10].

III. EXPERIMENTAL MODEL

The evaluation of co-operative EKMs with R-B optimization

on SANETs is executed using the framework conceived by

Chaczko, et al [10]. The Jadex framework by University of

Hamburg, shown in Figure 5: Jadex Simulation Environment

[13] allows for convenient monitoring and tracking of SANET

events by pre-assigning event trajectories in the network field

in an interactive manner.

A. General Assumptions

• The topology of the SANET surgical training system is

two-dimensional, so altitude is constant and negligible

between nodes.

• All nodes are powered at 100% capacity. Energy dissipa-

tion is calculated using inverse square law.

• The event trajectory is not predefined; so start and end

points are calculated randomly using Fast Mersenne-

Twister method.

• The network is considered to be interference free; as such

RF communication is not evaluated in the experimental

model.

B. Experimental Method

The experiment is completed with the methodology by

establishing the following simulation constraints:

1) A population of n nodes is distributed randomly via

Fast Mersenne-Twister, in a two-dimensional network

of 100m×100m. Node populations tested include:

a) 100;

b) 250;

c) 500;

d) 1000;

e) 2000;

f) 3000;

g) 4000;

h) 5000.

2) An event trajectory is executed from a point in the

network area; of which the test path course is either:

• Linear Path: A linear path consists of an event

trajectory where the entry and exit point from the

area is of constant gradient.

• Arc-formation Path: Arc-formation consists of an

event trajectory where the entry and exit point

will either be increasing or decreasing in gradient,

forming a circle segment.

• Pseudo-random Path: A pseudo-random path using

the Mersenne-Twister method combines 2(a) and

2(b) at various points throughout the trajectory, until

it reaches the exit point.

3) The algorithm selects the route from the node in range

of the approximate trajectory to be established to the

sink; such that the closer the algorithm is to calculating

the event path, the more optimum the route will be to

establish successful negotiations.

• Co-operative EKMs with Particle Swarm Optimiza-

tion (PSO): Co-operative EKMs use an indirect-

mapping SOM map to train the control parameters

in which to converge at the final trajectory point; in

such a fashion to actively train the neural network

to seek positive outcomes to determine a route to

the sink.

• Co-operative EKMs with R-B Optimization: In con-

junction with Co-operative EKMs, a filtrating mech-

anism is applied to the weights adaptation map using
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Fig. 4. Multi-objective meta-heuristic process [10].

the Rao-Blackwell optimization method to assist in

the event tracking functions.

In conjunction, the reinforcement learning heuristic

applied to the SOM map as a training vector set, and

a vector test set is applied to maintain accuracy of

path estimation. Using Particle Swarm Optimization

[17], the shortest Euclidean distance between the

specific trajectory point and the nearest node is

nominated within the routable path to the sink or

health repository.

4) The experiment is executed for 1000 iterations to cal-

culate the mean rate of identification of the trajectory’s

target point, when the event exits the area:

• A maximum margin of error is a 2m × 2m area

where final approximate point is found.

• A successful identification is where the final end-

point is within a 95% confidence interval of the

entire SANET network. Any estimation outside of

this threshold is identified as failed.

IV. EXPERIMENTAL RESULTS

The results demonstrate that in comparison to co-operative

EKMs with PSO and Rao-Blackwell optimization, the final

results are positive when pseudo-random trajectory tracking

is required. While standard Co-operative EKMs perform ade-

quately in the given scenarios; co-operative EKMs with Rao-

Blackwell optimization demonstrates a perceptible improve-

ment in the identification rate over standard co- operative EKM

algorithms. This is evident with a greater node population, as

the granularity of determining a nearest neighboring node to

Fig. 5. Jadex simulation environment [13].

Fig. 6. Experimental results of detection success.

route is reduced for the fixed size of the network. As shown

in Figure 6: Experimental Results of Detection there is a 50%

relative improvement in the average mean detection rates with

Rao-Blackwell optimization for the pseudo-random trajectory

compared to standard co-operative EKMs. As co-operative

EKM with R-B optimization demonstrate improvement over

passive learning techniques, current prediction rates are suf-

ficient for routing estimation capability, which indicate the

process of refining the training set for remodeling is necessary

to improve routing conditions.

The analysis of co-operative EKMs as shown below in Table

VI and VII, when assessed in terms of performance of pseudo-

random tracking, requires more analysis into the algorithmic

procedure. In particular, the thresholds established for deter-

mining positive or negative learning reinforcement is an issue

that needs to be evaluated for an in-depth assessment. The

tolerance levels used to calculate the thresholds is important,

as subtle variations in tolerance may yield undesirable results.

As a case in point, reducing tolerance levels too far will result

in the inflexibility of the algorithm to adapt to changes the

event trajectory; the corollary is that generous tolerance levels
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TABLE VI
COMPARATIVE ASSESSMENT AND EVALUATION

CO-OPERATIVE EKMS WITH PSO

Assessment Evaluation

Quantitative • Demonstrates an indirect-mapping EKM can
Assessment provide detection to optimize for local obstruction

and global target identification concerns in
a distributed sensor space.

Qualitative • Results show a smoother tracking mechanism to
Assessment monitor events in real-time, compensating for

random events [4], [6].
• Co-operative EKMS with PSO, in conjunction
with an enhanced training set refinement
mechanism, yields more consistent results as due
to an optimal training vector

will yield undesirable tracking results when noise or faulty

nodes produce invalid data.

Furthermore, the use of Clifford algebraic forms can be used

in a SANET system in terms of extending the geometric form

of the network’s geometric structure [9], [18]. The quaternions

of the network can be extended for 4 dimensional rotation

groups, which serves as an ideal base for energy conservation

and core attributes of a SANET network. Although the current

simulation framework does not incorporate Clifford algebraic

forms as an optimization technique, the modular design of

the simulation environment will enable incorporation of this

technique in the next iteration of the healthcare framework.

As a consequence, the potential of Co-operative EKMs with

R-B optimization to identify events within a SANET network

is evident; but as with all passive learning heuristic methods,

a heuristic ensemble approach using MMA is necessary to

train the algorithm to evaluate and determine the tolerance

thresholds that are most suitable for the current conditions.

The implementation of co-operative EKMs with alternative

heuristic algorithms such as genetic algorithms will need

to be considered in future to evaluate improvement in the

mean identification rate. Furthermore, a feedback mechanism

incorporating training set factorization is required to minimize

error rates and ensure a consistent set of data outcomes, and

allow for more fluid responses in the routing and tracking

network functions.

V. ANALYSIS OF RESULTS

A. Hybrid Holonic Infrastructure Domain Mapping

The consideration of the Holonic Hybrid infrastructure

corresponds with the needs of the healthcare infrastructure,

with holons represented as individual resource concerns of

which the holonic infrastructure encapsulates the pool of

shared resources for the entire network, and the teleholons

represented as the collaboration or synchronization between

resource holons. As such, it addresses healthcare management

from two central views:

• Holonic Concerns: Horizontal perspectives for a single

cluster; such as the individual concerns and status of a

patient in the care of a clinician in charge.

• Teleonic Concerns: Vertical perspectives for clusters and

external networks, such as the facilitation and negotiation

TABLE VII
COMPARATIVE ASSESSMENT AND EVALUATION

CO-OPERATIVE EKMS WITH R-B OPTIMISATION

Assessment Evaluation

Quantitative • Shows that the filtration method can yield
Assessment a noticeable improvement of 50% in detection rates

for randomized routes.
• The improvement in detection success is a result of
the Rao-Blackwell estimator used when optimizing
the neural weights, compensating noise introduced.

Qualitative • Cooperative EKMs do not adjust to interference or
Assessment noise introduced into the system, such that the final

detection may be overcompensated and leads to
poor results.
• Results show that Co-operative EKMs combined
with R-B Optimization improves the tracking
process by reducing noise and interference within
the feedback loop [14], [15].

of health records between wards or specialist units, as

when a patient handover takes place between staff shifts.

B. Cooperative EKMs with R-B Optimization Validation

The notable variability in the identification rate indicates

a need to improve the quality of training mechanisms to

reinforce positive selection processes, so the aggregation of the

final routing selection is optimal for the system environment.

Furthermore, the implementation of refining the training set

is necessary to ensure that the SANET modeling functions

do not introduce internally generated erroneous data that will

impact on the system’s ability to make future predictions based

on historical trends. The relative improvement of 50% on

traditional cooperative EKMs is significant to note; with the

aim being a yield in the trajectory projection to ensure results

are within the 95% confidence interval in tracking projections.

In particular, further examination is required to determine the

trade-off between yielding an efficient route which will be

more computationally intensive, or a best-effort route that will

be more energy conservative. However, the distributed nature

of SANETs means that computational calculations can take

place for each routing hop, so that while the local calculations

are considered for each route, a global picture is established for

the entire route to the gateway or central healthcare repository.

VI. CONCLUSION

The method of adaptive SANET management for health-

care monitoring with co-operative EKMs coupled with Rao-

Blackwell optimization functions is beneficial, with the current

results demonstrating indirect-mapping EKM generating more

proficient routing and clustering conditions when compared

to direct-mapping EKMs. Furthermore, the control parameters

of the indirect-mapping EKM can be enhanced with Rao-

Blackwell algorithms to allow convergence and better opti-

mization, with choices in the reinforcement learning technique

providing context-aware outcomes to improve the reinforce-

ment learning capability for patient monitoring in health

institutions.
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