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Real Time Processing of Networked Passive
Coherent Location Radar System

Mathew John, Michael Inggs, and Dario Petri

Abstract—A Passive Coherent Location (PCL) Radar system,
consisting of spatially distributed transmitters and receivers is
currently being integrated at the University of Cape Town (UCT).
The paper investigates the feasibility of real-time processing of
PCL system signals using Graphic Processing Units (GPUs),
specifically a study of two distinct clutter cancellation algo-
rithms: ECA (Extensive Cancellation Algorithm) and NLMS
(Normalised Least Mean Square). Clutter cancellation is the most
computationally demanding part of PCL signal processing. This
investigation compares the processing speed-up achieved by GPU
over CPU implementations, with very encouraging results.
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I. INTRODUCTION

THE doubling of the number of transistors every 18
months (known as Moore’s law [1]) and the demand for

sophisticated computer game consoles have come together in
the form of Graphic Processor Units (GPUs) and a repackaged
version for research computing, known as the General Purpose
GPU (GPGPU). Research on PCL systems, which gained
popularity as a countermeasure to stealth and as a possible
way to reduce demands on precious RF spectrum, calls for
massive computational power. Large amounts of data have to
be processed in real-time, using floating point representations.
The processing is susceptible to parallel computation.

The PCL system that is currently used [2], [3] is based
on the Universal Software Radio Peripheral (USRP) [4] as
the front-end receiver and data pre-conditioner. Two clutter
cancellation algorithms – the Normalised Least Mean Square
(NLMS) [5] and Extensive Cancellation Algorithm (ECA) [6]
have been coded. The GPU used is the Nvidia GTX480 FX [7]
and the development environment is Compute Unified Device
Architecture (CUDA) toolkit 3.1 [8]. The data processed was
collected from near Cape Town International Airport from
targets of opportunity.

The paper begins with an overview of the PCL system
being implemented at UCT, for deployment in the Western
Cape. The objective of this is to demonstrate whether PCL can
compete at some level of performance with more traditional
Air Traffic Control Radar [3], [9]. We continue to discuss the
two algorithms implemented, and conclude by reporting on
some of the timings achieved with respect to conventional,
single thread processing.
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II. PCL SYSTEM

The PCL system currently under investigation utilises the
USRP and is connected to a PC via USB 2.0 at a decimated
rate of 32 MBps (or 4 MHz per channel) for both the reference
and surveillance channel. The acquisition code is in C++ and
the sequential nature of the process limits the scope for parallel
processing at the acquisition end. Figure 1 gives a system level
diagram of the set-up.

The earlier RF Module available with the USRP has not
demonstrated good frequency selectivity and is handicapped
by a poor noise figure and a limited dynamic range. In
addition, the RF units used for the surveillance and reference
channels do not have synchronised local oscillators, so the
frequency offset has to be determined and removed in signal
processing. An improved RF front-end will be implemented
in future measurements.

The preliminary CPU implementation of the processing
chain, including clutter cancellation exhibited high compu-
tational intensity. The paper focusses on the parallel imple-
mentation of the parts of the PCL Radar processing chain in
a heterogeneous computing platform [10]. Individual stages
are identified for parallel processing by classifying processes
based on arithmetic intensity and requirement for flow control.
Processes that fit into the parallel processing architecture of
a GPU (a highly vectorised processor) are implemented in
the GPU and sequential processes are performed in CPU
itself. The primary aim of the implementation is acceleration
of the signal processing chain. The processes selected for
parallel computation in GPU are Direct path Interference(DPI)
and clutter cancellation (NLMS or ECA) and Amplitude

Fig. 1. PCL system consisting of a USRP front-end connected to a PC
(Top-left corner image-Courtesy: Onera,France).
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Fig. 2. Target detection (circled) at (60,-350) using GPU with DVB-T data
and NLMS.

Range Doppler (ARD) Processing. Constant False Alarm Rate
(CFAR) detection and tracking is part of ongoing research
work [11].

III. GPU IMPLEMENTATION

The processing stage of the PCL system can be divided
into two: DPI cancellation and clutter removal, and Matched
filtering. These are described in the following subsections. In
this section, the CPU is mentioned as host and GPU as device
in accordance with Nvidia terminology [10].

A. Direct Path Interference Cancellation and Clutter Removal

The surveillance channel of PCL radar system contains a
strong DPI component together with time-delayed reflections
from clutter sources. These unwanted signals correlate with
the reference channel, masking weak reflections from moving
targets. In addition to physical and spatial techniques, an
efficient algorithm has to be implemented for DPI cancellation
and clutter removal. Two different algorithms, i.e. the NLMS
and the ECA, can be used depending upon the source of
illumination selected. We have tested both DVB-T (Digital
Video Broadcasting-Terrestrial) and FM (Frequency Modu-
lation) broadcast signals. The two algorithms are discussed
below.

1) NLMS algorithm: The NLMS algorithm [5] is a compu-
tationally efficient algorithm with good results. The filtering
model is defined by Haykin [12]. The order of the filter
and the filter coefficient µNLMS [12] are the inputs to the
algorithm. The CPU implementation of NLMS was coded in
ANSI C [2]. Individual processes were identified and step
by step migration to the GPU platform was performed with
priority for maximum speed-up. The processing is carried out
in the GPU with the virtue of both global and shared memory
for the floating point operations, with customised kernels for
individual operations. The calculation of the error correction
factor [13] and calculation of the adaptation factor [12] are
the main processes implemented in GPU.

Optimization of the code is performed based on strategies
mentioned in [10]. Data transfer between individual stages
are performed by internal transfer within the GPU reducing
memory operations between the host and the device.

Fig. 3. Target detection (circled) at (60,-350) using CPU with DVB-T data
and NLMS.

The NLMS algorithm is found better suited for DVB-T
based PCL system. Figure 3 shows detection based on DVB-
T data on CPU. The ARD plot for the same data on GPU is
shown in Figure 2 which are found to be identical. The data
used was captured near Pisa, Italy.

Table I provides a comparison of CPU and GPU processing
time for NLMS algorithm. The order of filter and the data
size, which is the total number of samples from both reference
and surveillance channel are the major factors in Table I
that determines processing time and speed-up factor. Speed-up
factor is the ratio of CPU processing time to GPU processing
time. Though data size determines the effective speed-up, it is
observed that the variation of speed-up factor with data size is
minimal. The reason for this is the number of parallel threads
executed in parallel, in few of the individual process is equal
to the order of the filter and is independent of the data size.

2) Extensive Cancellation Algorithm: ECA (Extensive
Cancellation Algorithm) is a signal projection algorithm based
on the Colone clutter cancellation algorithm [6]. The algorithm
is based upon on building up a reference matrix and shifting
it in Doppler. The CPU implementation of the ECA was using
the Armadillo [14] library and was extremely time consuming
and the scope for GPU acceleration is found crucial at this
point.

The reason for the computation intensity of ECA is the
calculation of estimation error calculation defined by Haykin
[12] in equation 1.

e = sR −X
(
XHX

)−1
XHsR (1)

In equation 1, X refers to the clutter subspace matrix
[12] and sR, the received signal and e represents the re-

TABLE I
NLMS TIME CONSUMPTION-CPU VS GPU

Data Size Order of CPU Time GPU Time Speed-Up
(No Samples) the filter (sec) (sec) Factor

409.6K Samples 100 1.94 0.22 8.85X
819.2K Samples 100 3.96 0.45 8.80X
2048K Samples 100 8.81 1.14 7.72X
409.6K Samples 200 3.63 0.45 8.06X
819.2K Samples 200 7.31 0.91 8.03X
2048K Samples 200 18.46 2.28 8.1X
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Fig. 4. Speed-up factor for GPU based complex matrix inversion for various
matrix sizes.

ceived signal with zero-Doppler component cancelled.The
algorithm has a complexity of O

[
NM2 +M2logM

]
[13]

where M=(Number of Range bins × Number of Doppler bins)
and N is the number of Data Samples.

The GPU implementation starts with the identification of
processes that can be processed using parallel GPU threads.
Algebraic operations using large data size are selected for
GPU implementation. Based on this strategy, the ECA can be
divided into three phases. Features of GPU implementation
within each phase are discussed here.

1) Building of clutter subspace matrix X
a) The calculation of time intervals from the sampling

frequency (409.6 kHz used for data capture). The
processes is done using a custom kernel to perform
the division on real data.

b) The calculation of elements in matrix X done using
complex vector multiplication using cuBlas [15].

2) Calculation of Multiple matrix product(
X
(
XHX

)−1
XHsR

)
a) XH is calculated as the hermitian transpose of

the complex matrix X . X has a dimension of
(No Samples × (Doppler-bins × Range-bins))
and hence XH is of dimension ((Doppler-bins
×Range-bins)) × No Samples). Hermitian trans-
pose is accomplished by customising the real
matrix transpose code from CUDA SDK with a
subroutine for complex matrix inversion.

b)
(
XHX

)
is performed using shared matrix multi-

plication extended for complex matrix multiplica-
tion.

c)
(
XHX

)−1
was the highest time-consumption por-

tion of processing and is done fully in the GPU.
d) X

(
XHX

)−1
XHsR is realised with the same

kernel designed for use in step (b).
3) Estimation error e [12] is calculated by Complex vector

subtraction.

The GPU based hermitian transpose and parallel complex
matrix inversion can be used as a standalone functions for
other Digital Signal Processing(DSP) applications. Figure 4

TABLE II
GPU TIMING – ECA WITH SUB-PROCESSES FOR RANGE BINS=48

Process Data Size (No Samples) Time(sec)
Reference Matrix Building 160K Samples 1.10

Shifting Reference 160K Samples 1.2
Matrix in Doppler

Double Precision 160K Samples 1.86
Hermitian Transpose

Double Precision 160K Samples 0.38
Complex matrix inversion

Double Precision cuBlas 160K Samples 0.38-0.42
Complex matrix multiplication

Double Precision Complex 160K Samples 0.28
Vector Subtraction

shows the speed-up achieved by GPU complex matrix inver-
sion. The comparison is with respect to C++ implementation
in single threaded Intel Quad core with 4G RAM. Other pro-
cesses in ECA, preceding equation 1 are creation of reference
matrix X and its Doppler translation. Table II splits the ECA
into the major processes involved and illustrates the processing
time for each stage.

The Armadillo [14] library also had limitations in increasing
the number of range bins and the increase in range bins caused
tremendous increase in processing time. The PCL system
under deployment is expected to have a range coverage of 100
– 200km and the CPU code was unable to process such large
matrix sizes. The GPU implementation solved all the above
mentioned problems and the speed up achieved, increased with
increase in the number of range bins. Table III compares CPU
and GPU timing with increase in the number of range bins.

TABLE III
ECA TIME CONSUMPTION-CPU VS GPU FOR 240K SAMPLES

Range Bins CPU Time (sec) GPU Time(sec) Speed-Up factor
32 17.97 8.38 2.14X
48 32.2 10.18 3.16X
64 57.9 14.35 4.03X
80 98.1 16.81 5.83X
96 172.4 21.10 8.17X

B. Matched Filtering
Matched filtering is the stage of PCL signal processing

where, target detection is obtained in an Amplitude-Range-
Doppler(ARD) plot. The stage can be considered as the search
for the time-delayed and Doppler-shifted versions of the ref-
erence signal. This is achieved by correlating the surveillance
signal with Doppler-shifted versions of the reference signal
to form a bank of filters matched to every possible Doppler
frequency of interest. ARD is calculated based on equation 2
defined in Willis book [13].

∣∣Ψ(τ, ν)2
∣∣ =

∣∣∣∣∣
N−1∑
n=0

e(n)d∗(n− τ)ej2πνn/N

∣∣∣∣∣ (2)

where Ψ denotes the time-delay of interest and denotes the
Doppler-shift of interest [13].
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The ARD is calculated using Long Integration Time(LIT)
algorithm. In the GPU implementation of matched filtering,
three kernels or GPU subroutine are written to realize equation
2 which are discussed in the following sections.

1) Dot-Product Calculation: Calculation of the dot-product
of d∗(n − τ) and the echo signal e(n) in equation 2 is
performed in the following steps.

• The conjugated version of the direct signal and echo
signal is copied from host to device variables.

• The number of threads per block and blocks per grid
are set depending upon GPU initialized using execution
syntax [10].

• The GPU kernel set as a global function [10] is called
and the vector multiplication is executed in parallel with
individual threads in the GPU.

• The dot product is retained in the GPU for Fast Fourier
Transform (FFT) processing.

2) FFT Calculation: CUFFT library [16] is used to calcu-
lated complex to complex one dimensional in place FFT [16]
mentioned in equation 2. The GPU FFT kernel constitutes the
following steps.

• The FFT input and output are declared in cufftcomplex
data type and the FFT size

• The parameters in the CUFFT plan [16] are FFT size
depending upon frequency resolution required.

• When the function is called the plan is executed and the
output is obtained as a device variable.

3) Absolute Value Calculation of the ARD: Absolute value
calculation is done using a kernel that is similar to dot-product
calculation with suitable change in the variables for conversion
to a logarithmic scale.

For the ARD Calculation, the DPI and clutter cancelled echo
signal is sent to the GPU by a device to device transfer, or
within the same device. Optimisation of the code was done
by converting all data transfer between the kernels by device
to device transfer which further increase the total speed-up.
Table IV compares the ARD processing gain in the GPU. It
is observed that the speed-up factor increase with increase
in the number of range bins and data size up to a factor of
18.67X for 300 range bins and 819.2K Samples. The data
size is equivalent to 2 seconds of observation at a data capture
frequency of 409.6 kHz. This value can be used as an optimum
value for PCL system considering a range resolution [13] of
700 m/range bin giving an effective range of 210km which is
sufficient for the expected maximum range.

TABLE IV
ARD TIME COMPARISON-CPU VS GPU

Process- Data Size CPU Time GPU Time Speed-Up
Range Bins (No Samples) (sec) (sec) Factor
ARD-100 409.6K Samples 6.38 0.82 7.79x
ARD-100 819.2K Samples 19.70 1.54 12.8x
ARD-100 2048K Samples 52.62 3.68 14.3x
ARD-300 409.6K Samples 20.83 2.48 8.4x
ARD-300 819.2K Samples 81.99 4.39 18.67x
ARD-300 2048K Samples 161.7 9.24 17.5x

We note that the CPU could well be optimised to produce better results
using multithreading

Care must be taken when making comparisons between
CPUs and GPUs. In most cases, the CPU code is single
threaded, and does not exploit the multicore nature of most
PCs. It is likely that a very careful implementation of the
code on the CPU would produce a significant improvement in
performance.

C. Optimisation Measures

• To minimise data transfer between the host and the
device, the output at intermediate stages is retained in the
device and is used by the next process. Only the control
variables for that particular process is transferred from
the host. Hence device to device transfer is exploited to
the maximum.

• Sequential process like loops with comparatively less iter-
ations are performed in the CPU .This includes delaying
reference signal in ARD processing.

• CUFFT [16]can calculated FFT for up to 8 million data in
a single instance. But the intention of program is to track
the target at each second which corresponds to nearly 400
thousand Samples/ ARD surface. This data rate is used
for test deployment using FM illumination. But testing
using DVBT data was at a sample rate of 8 Million
samples /ARD surface utilising the maximum throughput
of the the device.

• Instruction throughput is achieved by utilising the same
kernel for few vector operations. But most of the kernels
are custom written for that particular operation.

IV. TESTS AND RESULTS

Table I, Table III and Table IV compares the processing
time between a CPU and a GPU for different data size and
for different processes. The speed-up achieved is comparable
to real-time PCL software implementation at the University of
Warsaw using Nvidia GTX 280 [17].

Data from Flexible Extensible Radar Simulator (FERS) [18]
was used to validate range and Doppler Calculation. The
algorithm was tested for different target sizes. The results
were satisfactory with clear detections for both big and normal
targets.

A. Algorithm Comparison

The Comparison between NLMS and ECA algorithm has
to be done with respect to two aspects – Computational
Efficiency and Clutter Cancellation Efficiency:

TABLE V
GPU TIME COMPARISON-NLMS AND ECA

Algorithm Data Size (No Samples) Time(sec)
NLMS 409.6K Samples 0.45
NLMS 2048K Samples 2.28
ECA 409.6K Samples 9.52
ECA 2048K Samples 48.17
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Fig. 5. GPU speed-up factor for PCL signal processing. We note that the
CPU (Intel Quad core) could well be optimised to produce better results using
multithreading.

1) Computational Efficiency : Table V compares GPU
processing time for NLMS and ECA. The NLMS algorithm
was able to achieve 1.5 times real time processing in a single
GPU. The ECA algorithm is computationally more demanding
than NLMS. But the ECA as a batch process is better suited for
parallel computation. The number of parallel threads that can
be implemented for NLMS algorithm is depended on the order
of the filter which extends up to 200 only. But the number of
parallel threads in the ECA depends largely on the size of the
the captured data and hence will achieve better speed-up factor
than NLMS. The graph illustrating total speed-up achieved
by GPU implementation for the entire PCL signal processing
chain in Figure 5 validates this point. The higher speed-
up factor achieved by ECA also provides evidence for the
scalability of the algorithm in a multi-GPU platform enabling
real-time processing.

The CPU used is an Intel Quad core single threaded with
4GB of RAM. In Figure 5, a NLMS filter of order 100 and
ECA with a range bin of 112 is used together with ARD
processing for 200 range bins and 300 Doppler bins.

2) Clutter Cancellation Efficiency: Though computation-
ally efficient, under strong clutter environment, the the NLMS

Fig. 6. Target (circled) at (24,30) detected in ECA processing.

Fig. 7. Target masked by Clutter in NLMS processing.

algorithm was not effective in preventing the masking effect
of clutter on weak targets for FM illumination.

Figure 6 shows a target detected at 30km in ECA. The
source of illumination was FM. NLMS processing was done
in the same data set, but the weak target is masked by clutter
in the ARD plot shown in Figure 7. Algorithm comparison
with respect to long range detection (>100km) is mentioned
in Subsection IV-B.

Furthermore, The NLMS filter should be adapted to the
source of illumination each time for efficient DPI and clutter
cancellation. This reduces the reliability of NLMS algorithm
in dynamic testing conditions. ECA is independent of source
or change in testing conditions, and hence preferred for PCL
system due to the robustness of the algorithm.

B. Test Deployment

Preliminary deployment of the system was done near Cape
Town International Airport in December 2010. The source
of illumination selected was FM and target detection using
both NLMS and ECA algorithms was achieved and shown in
Figure 8. The presence of clutter in zero Doppler after the
extent of cancellation range-bins can be observed in Figure 8.
The processing time for individual processes within ECA
corresponds to the data in Table II. The data was processed
in sets and split ARD’s where obtained. The target under
observation is a landing flight and the change in Doppler

Fig. 8. Target detection (circled) detection using ECA with FM illumination.
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Fig. 9. Overlapping of actual flight path (Line Style ‘+’ and colour blue)
on calculated flight path (red) in compound ARD between –12Hz and –42Hz
Doppler [3].

and range was observed from the split ARD’s. The need for
increasing the FFT resolution was identified at this stage. The
results were compared to the actual flight path obtained from
a DBS transponder on the aircraft and a commercial receiver.

Figure 9 shows the overlapping of actual flight path on
the compound ARD, made by overlapping individual ARD
frames. The calculated flight path from the PCL system and
the actual flight were found to be identical.

An optimized version of the algorithm was used for second
phase deployment and the the ARD obtained is shown in
Figure 10. Multiple targets were detected at short range (30 –
35km) and the figure also shows target detections at 130km.
NLMS algorithm was able to detect the short range targets but
the target at 130km was visible only with ECA processing.
This provides evidence for the superior clutter cancellation
efficiency of ECA. Ongoing work is focusing on comparing
the Signal to Clutter Ratio (SCR) of both algorithms.

V. CONCLUSIONS AND FUTURE WORK

The results obtained have to be considered with respect
to two aspects: Computation time and reliability. Real-time
processing of PCL data with the NLMS algorithm can be
realised at less computational cost than the ECA. However,
since ECA is based on signal projection, it eliminated the
need for adapting the filter to the source of illumination

Fig. 10. Multiple targets (circled) detected in short-range (20,90) and long-
range (130,90) after clutter cancellation using ECA [3].

used, and is more reliable. The clutter-cancellation ability
of ECA was found superior to NLMS when it comes to
strong-clutter environment and long-range detection providing
evidence for the robustness of ECA. The processing speed-up
achieved can be further increased by upgrading to a multi-GPU
platform. Ongoing work on this plan, focusses on splitting
the captured data into separate GPUs such that scalability
of the processing in a cross-platform computing environment
can be achieved. Streamlining the ARD to real-time plotting
software, improvements in ECA in a multi-GPU environment
and improving the adaptivity of the NLMS algorithm is the
plan and scope for future work in this field.
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