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Near-Perfect Reconstruction Oversampled

Nonuniform Cosine-Modulated Filter Banks

Based on Frequency Warping and Subband Merging
Marek Parfieniuk and Alexander Petrovsky

Abstract—A novel method for designing near-perfect recon-
struction oversampled nonuniform cosine-modulated filter banks
is proposed, which combines frequency warping and subband
merging, and thus offers more flexibility than known techniques.
On the one hand, desirable frequency partitionings can be better
approximated. On the other hand, at the price of only a small
loss in partitioning accuracy, both warping strength and number
of channels before merging can be adjusted so as to minimize
the computational complexity of a system. In particular, the
coefficient of the function behind warping can be constrained to
be a negative integer power of two, so that multiplications related
to allpass filtering can be replaced with more efficient binary
shifts. The main idea is accompanied by some contributions
to the theory of warped filter banks. Namely, group delay
equalization is thoroughly investigated, and it is shown how to
avoid significant aliasing by channel oversampling. Our research
revolves around filter banks for perceptual processing of sound,
which are required to approximate the psychoacoustic scales well
and need not guarantee perfect reconstruction.

Keywords—warped near-perfect reconstruction oversam-
pled non-uniform cosine-modulated filter bank, allpass fil-
ter/transformation, subband/channel merging, frequency warp-
ing, critical bands, Bark scale.

I. INTRODUCTION

NON-UNIFORM filter banks (FBs) are of considerable

interest in digital signal processing, because they allow

the frequency range to be partitioned into unequal subbands,

which harmonizes with many real-world signal sources and

phenomena, like human hearing. Over the years, a number of

approaches have been proposed1 for constructing non-uniform

FBs, which can be broadly classified into the following

categories: putting together independent filters with unequal

bandwidths [1], arranging uniform FBs into an unbalanced

tree of multiresolution signal decomposition [2], [3], mixing

subbands of several uniform FBs which work in parallel [4],

[5], warping uniform responses [6], [7], recombining outputs

of a uniform FB [8] or simply adding them [9]–[11] in order

to form wider subbands. Because each of these techniques has

both advantages and drawbacks, all find applications, and there

is still an interest in developing new subband decompositions

which offer different design opportunities.
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1For the sake of brevity, only more recent works are cited in this introduc-
tion, which provide many more references.

Among the mentioned, warping can be considered most

flexible, as obtainable partitionings are not constrained by

a uniform grid. As this is especially advantageous in ap-

proximating the critical bands of hearing [12], [13], warped

systems were used mainly in perceptual processing of sound

signals [14]–[20]. Other areas of their applications are multiple

description coding [21] and signal analysis [22].

In this paper, we propose to extend frequency warping with

subband merging [9], [11], which results in even more design

freedom. Namely, warping strength and number of channels

before merging can be adjusted so as to reduce the compu-

tational complexity of a system without affecting accuracy

of frequency partitioning. In particular, the allpass function

behind warping can be constrained to use multiplications by

negative integer powers of two, which can be implemented

efficiently as hardwired binary shifts.

Unlike most authors, who study warped DFT FBs, we

consider warped systems with cosine modulation [16]. Their

practical advantage is that channel sequences are real-valued

for inputs with the same property, which is natural and makes

implementation of subband processing easier than in the case

of complex values [23]. Nevertheless, some of the presented

design insights apply also to warped DFT FBs. Similarly, even

though our idea is introduced in the context of approximating

the critical bands, it applies to other specifications for fre-

quency partitioning.

The rest of the paper begins with introducing warped cosine-

modulated FBs in Section II. In Section III, the idea of using

both frequency warping and subband merging is presented,

and our design methodology is described. Then, Section IV

demonstrates practical examples of obtainable systems. In

order to make the paper self-contained, some results of the

theory of warped FBs, including authors’ contributions, are

elaborated in the appendices.

II. WARPED COSINE-MODULATED FILTER BANKS

A. Means of Nonuniform Frequency Partitioning

The transfer functions of the analysis and synthesis filters of

an M -channel warped cosine-modulated FB can be described

using the following expressions:

Hk(z) = akbkUk

(

A−1(z)
)

+ akbkVk

(

A−1(z)
)

, (1a)

Fk(z) = akbkUk

(

A−1(z)
)

+ akbkVk

(

A−1(z)
)

, (1b)

where k = 0, . . . ,M − 1,

ak = ej(−1)k
π
4 , (2)
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bk = W
−(k+ 1

2
)(L−1

2
)

2M , (3)

Uk(z) = P (zW
k+ 1

2

2M ), (4)

Vk(z) = P (zW
−(k+ 1

2
)

2M ), (5)

and W2M denotes the 2M th root of unity. The overbar

indicates complex conjugate.

The real-coefficient lowpass prototype filter P (z) of length

L has a cutoff frequency ωc = π/2M independent of warping

strength. As explained in Appendix D-C, it can be designed

using methods developed for uniform FBs, see e.g. [24].

The only difference between the above expressions and

those for uniform cosine-modulated FBs, see [25], is the

inverse allpass function A−1(z), instead of z, in (1). From an

implementation point of view, this corresponds to replacing

each of unit delays in a given uniform system with a stable

and causal allpass filter A(z) [26], [27]. This, so-called,

allpass transformation is responsible for deforming the original

magnitude responses in accordance with the phase response

φ(ω) of the filter, as explained in Fig. 1.

The technique resembles the frequency transformations for

digital filters [28]. From a mathematical point of view, bilinear

conformal mapping of the unit circle onto itself is established,

so that the frequency scale undergoes warping2, and subbands

change both their widths and positions. It can be shown

that warped subband decompositions are related to signal

expansions in terms of Laguerre sequences [15].

An Rth-order allpass filter, whose IIR transfer function can

always be factorized into first-order sections:

A(z) =

R
∏

r=1

(

αr+z−1

1+αrz−1

)

, (6)

has the phase response

φ(ω) = −Rω + 2

R
∑

r=1

arctan |αr| sin(ω−argαr)
|αr| cos(ω−argαr)−1 , (7)

which is a nonlinear function of frequency ω. The system is

stable as long as all |αr| ≤ 1.

Higher-order and complex-coefficient warpings offer great

design flexibility, as they allow bandwidths to change non-

monotonically and to narrow and widen alternately [7], [13],

[29], [30]. However, they are not only computationally de-

manding but also increase both algorithmic delay and memory

requirements of FBs, as shown in Appendix A. Thus, first-

order real-coefficient allpass filters are much more practical,

especially because monotonic increase/decrease in bandwidths

they merely provide is sufficient to quite well approximate the

psychoacoustic scales [12], [14]. The present paper focuses on

first-order warpings and is aimed at proving that by extending

them with subband merging, it is possible to greatly enhance

design freedom without side-effects.

For clarity, we use α without a subscript to denote the

coefficient of a first-order allpass function used to warp an FB.

The greater absolute value of the coefficient, the stronger

2In some papers, see e.g. [22], the term “frequency warping” is used to
refer to frequency mappings that have nothing to allpass filters.

warping, as illustrated in Fig. 1. If α = 0, then the allpass

filter is simply the unit delay, and hence the corresponding

transformation has no effect on the original FB. Negating α
causes the reflection of the phase response, so that warping

reverses in frequency.
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Fig. 1. Essence of warping.

B. Implementation Structure

Figure 2 (a) shows a scheme for implementing the systems

of interest3, which resembles the well-known polyphase struc-

ture for uniform modulated FBs [25], as prototype filtering is

separated from modulation. The latter is represented using the

M × 2M rectangular matrices:

[CA]kn = 2 cos
[

π
M

(

k + 1
2

) (

n− L−1
2

)

+ (−1)k π
4

]

(8a)

[CS]kn = 2 cos
[

π
M

(

k + 1
2

) (

2M − 1− n− L−1
2

)

−(−1)k π
4

]

,

(8b)

even though can be implemented using a fast algorithm.

However, there are notable differences compared to uni-

form FBs. Sampling rates of channel signals are changed

outside the system, not at prototype filtering. The chain of

N = L−1 delays related to the latter becomes an allpas chain.

Reconstruction of the fullband signal is followed by a group

delay equalization with a filter CN (z), which is equivalent to

a series of N copies of a filter C(z) that reverses the phase

modification caused by a single allpass filter A(z):

A(z)C(z) ≈ z−D (9)

for some positive integer D.

In order to make the scheme of Fig. 2 (a) more general,

we have supplemented it with delays for avoiding multiple

frequency mapping, which are necessary only in the case of

a higher-order warping, R > 1 in (6), as Appendix A explains.

3Subband merging is omitted from the picture for clarity.
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Fig. 2. Structure for warped cosine-modulated FBs and alternative schemes for reconstructing signals passed through an allpass filter chain.

More details on both subsampling and equalization are

given in the following sections. Here, it is worth noticing that

Figs. 2 (b) and (c) show alternative structures that combine

equalization with reconstruction of a fullband signal [31], [32].

Appendix C thoroughly explains why it is better to use the

synthesis part based on an allpass chain with equalization at

its output, as shown in Fig. 2 (a).

Such a scheme is consistent, memory-efficient, and needs

designing only one equalization filter. We exploit its great ad-

vantage that aliasing analysis and design of the filter bank core

can be separated from optimizing group delay equalization.

This can be considered an innovation over the known works,

where all these issues are combined into a single, complicated

optimization problem [7], [33]–[35]. In our approach, there

are more design tasks, but they are simpler and require neither

advanced solvers nor heavy computations.

C. Rules for Selecting Subsampling Ratios

In the systems under consideration, critical sampling with-

out causing distortions is impossible. This is because they are

nonfeasible-partition FBs [11], in which the cutoff frequencies

of subband filters do not match any frequency partitioning

given by the spectra replication that is related to reducing the

sampling rate by an integer factor. As a result, aliasing caused

by subsampling cannot be canceled out at synthesis.

Nevertheless, perfect reconstruction can be well approxi-

mated by using a selective prototype to attenuate minor alias-

ing terms and by preventing significant terms from arising at

all. This requires channel subsampling ratios to be constrained

in accordance with bandwidths and locations of subbands,

which possibly result from merging narrower ones.

In [36], we have derived the following inequalities:
⌊

nk

2fUk

fs

⌋

≥ Sk ≥
⌈

nk−1
2fLk

fs

⌉

,

1 ≤ nk ≤
⌊

fUk

fUk−fLk

⌋

,
(10)

which assume that the signal of the kth channel is real-

valued, occupies a frequency range from fLk to fUk and

from −fUk to −fLk, and is initially sampled at a frequency

fs, which then is reduced to fsk. The expressions determine

ranges of the subsampling ratio Sk = fs/fsk for which there

is no significant irreversible aliasing. Of course, the greatest

permissible value of Sk is of interest to us.

It is also noteworthy that both lower and upper frequen-

cies, fLk and fUk, respectively, must incorporate (at least

partially) transition bandwidths after warping, which vary with

frequency, as illustrated in Fig. 1.

The approach is described in more details in Appendix D.

Even though it is necessary because of the properties of

warped systems, it also follows the current trend of avoid-

ing aliasing by oversampling in applications where severe

modifications of subband signals cause aliasing cancellation

to fail [5], [10]. As shown in Section IV, the technique

performs well in practice. Signal distortion related to subband

decomposition can easily be made insignificant compared to

main processing effects, at the price of only slight redundancy

within subband data.

D. Group Delay Equalization

After an allpass transformation, an FB becomes an IIR

system, whose group delay varies with frequency. If the

system was a near-perfect reconstruction FB, its core (the
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central part of Fig. 2 (a) with channel processing omitted) still

introduces marginal distortion, provided that subsampling has

been modified as described in Section II-C. Thus, the existence

of the core can be neglected [37], and we can assume that there

is only the direct connection of two symmetric allpas chains.

In each patch from input to output, there is a cascade of N
allpass filters A(z), whose phase response, AN (z), determines

that of the warped FB [31].
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Figure 3 shows the group delays of the cascades related to

the FBs of Section IV. A circle indicates the group delay of

an FB before the allpass transformation. Deviation from this

value increases with intensifying warping, whereas changing

the sign of α flips the curve vertically.

In Appendix B, several approaches to designing group delay

equalizers are evaluated, which are mainly oriented to revers-

ing the phase modification caused by a single allpass filter. If

a cascade needs to be handled, such phase-correcting circuits

can be connected in series, but using a single equivalent

equalizer results in lower delay and makes error evaluation

easier.

We propose to design such aggregate FIR equalizers by

trimming and time-reversing the impulse response of the

cascade [38]. Even though the response is infinite, it has a well

determined significant fragment, as illustrated in Fig. 4. Thus,

it can be assumed that only the samples with indexes from 0 to

NSF exist, which determine a finite-order polynomial almost

equivalent to the original transfer function:

AN (z) ≈

NSF
∑

n=0

a(n)z−n. (11)

By reversing the order of the samples, a FIR filter is obtained

that approximates the series connection of the inverse transfer

function and delays:

CN
TRIM(z) =

NSF
∑

n=0

a(NSF − n)z−n ≈ AN (z−1)z−NSF . (12)

Since AN (z−1) = A−N (z),

TTRIM(z) =AN (z)CN
TRIM(z)

≈AN (z)A−N (z)z−NSF = z−NSF .
(13)

Obviously, the deviation of the product on the left-hand side

from the pure delay depends on the residual after trimming.

The last significant sample can be determined as that after

which all absolute values are less than some threshold. For

brevity, careful optimization of the threshold subject to distor-

tion constraints is left as a subject for a separate paper. For

our purposes, it seems sufficient to prove that determining it

roughly allows equalizer properties to be estimated accurately,

and to show that ǫSF = 10−4 suits our design examples.

This is done empirically by evaluating four different allpass

cascades such as magnitude distortions, group delay ripples,

and equalizer order of TTRIM(z) vary with ǫSF. Figure 5

shows this for the allpass cascades with α = −0.75 and

of lengths from 50 to 500. This is the strongest warping of

interest to us, as its coefficient can be implemented with two

binary shifts and one addition.

It can be observed that equalization accuracy, in terms

of both the maximum magnitude ripple, max∆|TTRIM(ejω)
and the peak-to-peak group delay, τTRIMpp, increases quickly

with decreasing the threshold. On contrary, delay related to

such equalization, determined as the average group delay

τTRIMavg ≈ NSF, is almost independent of threshold value.

For slighter warpings, distortions and delay are lower for

a given cascade length, but the shapes of curves are preserved.

In particular, ǫSF = 10−4 determines the knees in the distor-

tion curves and ensures that group-delay ripples after equaliza-

tion are not greater than several samples for low frequencies

and quickly decrease with frequency to a fraction of sample.

The corresponding magnitude distortion behaves similarly and

does not exceed a few hundred dB. Thus, for a wide range of

α and N , the proposed threshold value allows for accurately

estimating the order and thus complexity of a trimming-based

equalizer that introduces magnitude distortion comparable to

that expected of the filter bank core and corrects group delay

accurately. This is all what is necessary in our research, as

will be shown in the rest of the paper.
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Fig. 5. Properties of equalizers designed using the trimming approach as functions of the threshold ǫSF.

Equalized signals are delayed by NSF samples. As Fig. 6

shows, the delay grows linearly with adding stages to a cas-

cade, at the rate determined by the warping coefficient. Thus,

the problem of considerable delay arises for strong warpings

and/or long cascades.

In such cases, equalization requires many computations, as

significant parts are long. Some operations can by saved by

omitting from the end of CN
TRIM (z) below-threshold samples

that precede the significant ones, so that the filter is shortened

to length L̃SF. As shown in Fig. 7, achievable savings depend

on warping strength.

Dividing the number of significant samples by the cascade

length results in the number of equalization coefficients that

are associated with a single allpass filter. Fig. 8 clearly shows

that dealing with whole cascade is much more efficient than

stage-by-stage equalization.

If an application requires a warped FB to process signals

without causing distortions, the delay is much more problem-

atic than computational load, as it cannot be overcome by

adding resources.

Finally, it should be noted that the trimming approach to

design of equalization filters was independently considered by

Löllmann, see e.g. [39], but in the context of DFT FBs with

the troublesome synthesis structure of Fig. 2 (b) and without

giving as general insights about the technique as our plots

provide.

Fig. 6. Signal delay in allpass cascades equalized using the trimming
approach (ǫSF = 10−4).

Fig. 7. Ratio between length of significant part and delay as a function of
warping strength and cascade length (ǫSF = 10−4).

Fig. 8. Performance of the trimming approach (ǫSF = 10−4). Please be
aware that the viewpoint is different from Figs. 6 and 7.

E. Complexity Estimation

Warping significantly increases the multiplicative complex-

ity of an FB. As channels are differently subsampled, compres-

sors and expanders of sampling rate cannot be moved inside

a system, in order to reduce the rate of both prototype filtering

and modulation as it is typically seen in polyphase structures.

Additional computational loads also appear, which are related

to allpass filtering and to group delay equalization.

Therefore, for each sample of the fullband signal,

µA = µAP + µFIR + µMOD (14)
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Fig. 9. Maximum error surface for fs = 16 kHz.

and

µS = µA + µEQ (15)

multiplications are performed in analysis and synthesis parts

of an FB, respectively.

The prototype filtering obviously requires µFIR = L multi-

plications. The prototype order also determines the complexity

of the allpass chain, µAP = L − 1, provided that first-order

filters are used and each of them is implemented using one

multiplication, as shown in [40].

The computational load of group delay equalization, µEQ, is

more difficult to determine, because it depends also on warping

strength and the structure selected for performing the task.

Assuming that the approach of Section II-D is used, µEQ =
µAP + L̃SF.

Similarly, the cost of cosine modulation, µMOD, depends

not only on the number of channels, but also on the algorithm

used. For our purposes, the estimate µMOD = M log2 M is

adequate, as explained in Section III-C.

It should be noted that the number of channels indirectly

affects µFIR and µAP. Namely, subband merging requires the

overlap among base subbands to be limited to only adjacent

ones [11], so that for more channels, a more selective and thus

longer prototype is necessary.

If the filter is designed using the Kaiser window function,

its order necessary to have a stopband attenuation of δ for

a transition bandwidth of ∆f (expressed using normalized

frequency) can be estimated as [24]

N ≈
−20 log10(δ)− 7.95

14.357∆f
. (16)

For a given cut-off frequency, ∆f must be selected to give the

roll-off factor, ρ in [24], not greater than 1, in order to limit

subband overlap as necessary.

In Sections III-C and IV, the above facts will be used to

evaluate the complexities of particular FBs.

III. ENHANCING DESIGN FREEDOM BY SUBBAND

MERGING

A. Motivation

In the existing literature on FBs that mimic the human ear,

see e.g. [2], [12], [14], the critical bands are approximated

roughly. Mapping form the linear frequency axis to the Bark

scale looks well only in terms of the ratio between bandwidth

and center frequency of a subband. Obtainable frequency

partitionings do not actually match the edges determined by

Scharf [41]. The only exception we have noticed is [13].

Even though such an approach is considered satisfactory,

the related design methods by itself cannot give better results.

Thus our main idea was to develop a technique which allows

a desirable frequency partitioning to be approximated accu-

rately in terms of subband edges.

Additionally, the method should be more efficient than

simply putting together independent modulated filters. Even

though warped systems outperform such a solution, they are

still much more computationally demanding than critically

sampled FBs. Probably for this reason, multiplicative complex-

ity of warped FBs was not thoroughly analyzed in papers by

others, and there were no attempts to decrease it. Especially,

to the best of our knowledge, nobody before us considered

adjusting the warping coefficient value and number of channels

so as to allow efficient implementation of the key blocks

of a warped system. Infinite-precision multiplication-based

implementation of the allpass chain was assumed, and warping

coefficient was tuned carefully [12], [13], instead of trying to

look for a way to employ extremely efficient multiplierless

allpass filters.

We propose to address the problems of both accuracy and

complexity by extending frequency warping with subband

merging. The idea is to design a less or more warped FB

with more channels than there are subbands in the desirable

frequency partitioning, and then merge its subbands in order to

approximate the reference ones. So far, such an approach has

been applied only to uniform systems [9], [11], but without

much success. In the case of warped ones, it seems much more

beneficial, as shown in the following. Even though we limit

our considerations to first-order warpings, the technique can

be used in higher-order cases.

B. Approximating a Desirable Frequency Partitioning

In our approach, the fundamental question is how to assign

channels of a warped FB to groups to be merged. We propose

to simply group a sequence of subbands such that the lower

frequency of the first of them and the upper frequency of the

last are closest to the edges of a given reference subband.

There is nothing to prevent a single subband from approxi-

mating a reference one by itself, but ambiguity arises when

one subband is assigned to two groups. FBs for which the

problem occurs are unable to well approximate the desirable

partitioning, regardless of a way the ambiguity is solved, so

they should be rejected from consideration.

The main design task is to determine such a warping coeffi-

cient value and number of channels, α and M , that subbands

of the corresponding FB, after merging, accurately match

a desirable frequency partitioning. This requires approximation

accuracy to be measured, for which purpose we use maximum

(MAX) and root-mean-square (RMS) error metrics based on

the bandwidth-weighted deviation of the upper frequency from

the reference one:

ǫMAX = max
k=0...M̃−2

|fUk−f̂Uk|

|f̂Uk−f̂Lk|
, (17)
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Fig. 10. Contour plots of ǫMAX for different sampling frequencies.

and

ǫRMS =

√

√

√

√ 1
M̃−1

M̃−2
∑

k=0

(

fUk−f̂Uk

f̂Uk−f̂Lk

)2

, (18)

respectively, where M̃ ≤ M denotes the number of channels

after merging. The lower and upper edges of the kth subband

obtained from merging are denoted by fLk and fUk, respec-

tively, whereas the hats indicate the edges of the corresponding

reference band.

Such measures are much more restrictive than those of most

of previous papers, as mentioned in Section III-A.

Having specified the measures, we can see how they depend

on α and M . As an example let us consider approximating the

critical band of hearing [41], the edges of the 22 first of which

can be found in the second column of Table I. Scanning a wide

range of parameter values: −0.9 ≤ α ≤ 0 and 20 ≤ M ≤ 200,

results in error surfaces like that of Fig. 9. The experiment has

been repeated for four sampling frequencies that are used in

sound processing: 8, 16, 32, and 44.1 kHz, i.e. for different

numbers of critical bands in the frequency range. The obtained

surfaces of the maximum error are visualized in Fig. 10 using

contour plots. They are wedge-like bounded because there

are ambiguities in subband merging for the omitted pairs of

parameter values.

Evidently, using both merging and warping needs less chan-

nels to achieve the same accuracy as only merging at α = 0.

For a fixed number of channels, intensifying warping improves

accuracy, but only to some degree: too much warping worsens

the approximation. If the number is small, employing warping

is necessary to make approximation possible. For a fixed

warping, accuracy can always be improved by adding more

channels. The greater sampling frequency, the more channels

are necessary to achieve desirable accuracy. From another

point of view, the larger difference between the narrowest and

widest reference bandwidths, which is caused by widening the

frequency range, the more warping outperforms merging.
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Only the general trends are characterized above. As the

errors oscillate, there are many local minimums, separate or

forming grooves. It is clear that the same accuracy can be

achieved using different combinations of warping strength and

number of channels, which correspond to points irregularly

distributed over the parameter plane.

Fig. 11 shows, for 8 and 16 kHz sampling rates, the

intersections of both RMS and MAX error surfaces with the

planes determined by the warping coefficient values for which

allpass filters can be implemented without multipliers, i.e. 0,

−1/2, −1/4, and −1/8. The observations already made are

confirmed, but the plots also prove that the errors are highly

correlated, so our attention can be focused only on the second

of them. Evidently, the critical bands can be approximated

as accurately as necessary even with a constrained value of

the warping coefficient. Because local minimums exist, the

minimum necessary number of channels is much lower than

that resulting from the general trend of error convergence.

Thus, the only reliable optimization technique is to carefully

evaluate all potentially interesting points of the set, especially

its front and subsets determined by particular values of α or

M that are advantageous from an implementation point of

view. By comparing FBs that correspond to such points, with

respect of group delay, frequency selectivity and complexity,

the system can be determined that best balances response

quality with implementation requirements.

It seems impossible to analytically describe and solve such

a design task. However, preparing data and plots can easily

be automatized and takes no more than several minutes with a

PC computer. Then, human intuition is necessary for selecting

the best compromise.

C. Minimizing Complexity

In order to find the system of the minimum possible compu-

tational load for a given accuracy of frequency partitioning, an

error plot must be analyzed together with that of multiplicative

complexity. Fig. 12 shows the latter plot for both analysis

FB and full subband analysis-synthesis system with group

delay equalization. Computational loads were estimated as

described in Section II-E, with omitting the term related to

the allpass-chain if a multiplierless implementation is possible.

This is why there are grooves in the generally smooth surfaces.

There are marked the parameter combinations which give

accuracies of 0.15 (dotted line) and 0.3 (solid line) at minimum

complexity (number of channels, in fact) for the warping

strengths of our primary interest.

The experiment confirms our intuition that for a given parti-

tioning precision, the complexity of a system can be minimized

by making a compromise between warping strength and the

number of channels, i.e. by trading off the computational load

related to the allpass transformation for that of the modulation.

The former is predominant when frequency partitioning is

based on warping (the number of channels to be merged

is comparable with that of the desirable subbands), whereas

the latter plays a key role in merging-based designs (many

channels compensate for slight warping). Pure merging is

not the best solution, even though it simplifies design and

implementation, as there are no the side-effects of the allpass

transformation.

If phase equalization can be neglected, it is advantageous to

minimize the number of channels at the cost of the strongest

warping. If group delay has to be equalized, a compromise

between warping and merging is necessary to minimize the

computational load. In the latter case, obtainable savings in

multiplications are lower but still evident. Precise evaluations

can be found in Section IV.

It is noteworthy that the parametric equalization circuits of

Appendix B-B can be implemented without multiplications

if the allpass coefficient is a power of two. On the other

hand, efficient algorithms for cosine modulation of complexity

O(M log2 M), see e.g. [25], usually can be constructed only

for certain numbers of channels (a power of two or a divider

of prototype length). As our approach allows for constraining

the number without deteriorating frequency partitioning much,

it facilitates employing fast algorithms.

However, such modulation schemes seem not very advanta-

geous for the systems under consideration. In the next section

it is shown that avoiding aliasing by channel oversampling, as

we propose, results in only slight redundancy within subband

data. On average, only 2–3 subband values are generated for

each sample of a fullband signal. The values are sums of

small subsets of outputs of the modulation stage, and subset

cardinalities are comparable or even lower than log2 M . As

fast implementations with intricate data flows generally do

not support skipping operations, most of outputs would be

computed without a need. Thus, we have concluded that it is

most practical to straightforwardly compute inner-products of

rows of the matrices (8) and sample vectors. It can be easily

implemented as a simple MAC-based computational scheme,

in which it is easy to identify and skip operations related

to an unnecessary output. Moreover half of 2M multiplica-

tions related to an inner-product can be saved by exploiting

(anti)symmetries of matrix rows. For such an implementation,

the estimate µMOD = M log2 M seems even inflated.

IV. DESIGN EXAMPLES

The results of the previous sections have been used to

design four FBs that approximate the critical bands at 16 kHz

sampling rate. Their magnitude responses before and after

merging are represented in Fig. 13 by dashed and solid lines,

respectively. The vertical lines represent the bounds of the

critical bands. The figure also shows the magnitudes, |T (f)|,
and group delays, τ(f), of the distortion transfer functions

of the subband analysis-synthesis systems with group delay

equalization4. Design parameters, prototype orders and error

values accompany the plots, whereas the details of merging

and subsampling are given in Table I.

The prototypes have been designed using the Kaiser window

approach [24]. In order to limit the algorithmic delay, L was

set to 4M . For such a constraint, limiting overlap between

subbands before merging as required in Section II-E results in

stopband attenuation about 60 dB.

4Unequalized group delays differ marginally from those in Fig. 3.
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Fig. 12. Complexity surfaces of an analysis FB and of the corresponding equalized analysis-synthesis system (µAS = µA + µS).

The FBs correspond to different tradeoffs between warping

strength and number of channels. Their parameters were se-

lected by identifying the first local minimums in the maximum

error plots in Fig. 11. Except the most warped one, the FBs

are characterized by similar approximation accuracies, group

delays, and distortion levels. The main difference between

systems is how transition bandwidth depends on the subband

number. The less warping, the less it increases with frequency.

In the system with α = −1/8, both narrow and wide subbands

are characterized by similar transition bandwidths, whereas in

the FB without warping, there is no difference at all. The latter

case can be considered unnatural in some applications.

Warping allows the overlap between subbands to be made

proportional to their bandwidths, so that prototype length can

be shortened without affecting stopband attenuation. This also

affects the total oversampling ratio, which is abbreviated as

TOR and computed as the sum of the reciprocals of channel

subsampling ratios, determined as described in Section II-C.

Widening transition bandwidth increases the risk of aliasing,

so that some margins must be added to subband edges before

applying (10), which then results in lower subsampling ratios.

Only slight redundancy within subband data is necessary

to avoid aliasing by channel oversampling. For all systems,

the total oversampling ratio about 2 is sufficient for keeping

aliasing errors comparable with magnitude distortions.

For each FB, Table II shows multiplicative complexity terms

related to its different parts in accordance with Section II-E.

Allpass chains are assumed to be implemented without multi-

plications, but operation counts for multiplier-based versions

are given in brackets for comparison. The savings depend on

the ratio between the prototype length and the number of

channels, and on whether group delay is equalized. They are

20–30 % in our case and should be similar for other practical

designs.

The systems based on both warping and merging are more

efficient than those using only merging. The difference de-

pends on whether group delay is equalized or not, but even in

the former case, it is considerable, i.e. 13–39%. Thus, from

the point of view of multiplicative complexity, it is best to

minimize the number of channels at the price of maximizing

warping.

If, however, group delay is an issue, systems with no or

with only slight warping are better choices. From the plots,

it is evident that phase distortions caused by warping can be

corrected accurately, but this comes at the price of delaying

signal much. Reducing the delay requires not only finding the
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Fig. 13. Magnitude responses of FBs based on warping and merging.

tradeoff between warping and merging, but primarily needs

sacrificing both filter selectivity and accuracy of frequency

partitioning. The designed FBs are characterized by delays of

29–35 ms at stopband attenuations about 60 dB, which is quite

a good result and seems impossible to be improved without

relaxing the requirements on the latter quantity.

The issue is related not to the design technique but to

the fundamental limitation of signal analysis, which states

that improving time resolution requires sacrificing frequency

resolution and vice versa. Compared to other FB classes, our

approach offers great flexibility in trading-off one of these

quantities for another.

V. CONCLUDING REMARKS

Combining frequency warping and subband merging results

in a very flexible technique for designing nonuniform FBs. In

addition to making good approximation of peculiar frequency

partitionings possible, the mix allows developers to explore

different tradeoffs among complexity, selectivity, delay and

distortions, that is among those FB properties that are essential

from a practical point of view. Neither warping nor merging

has itself such a potential, whereas design methods that use ef-

ficient critically sampled FBs with aliasing cancellation cannot

give frequency partitioning that does not match a uniform grid.

Even though oversampling and merely approximating perfect

reconstruction are disadvantages of the presented systems,
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TABLE I
THE CRITICAL BANDS [41] AND PARAMETERS OF FBS APPROXIMATING

THEM AT fs = 16 KHZ

Critical band System parameters | Merged subbands / Subsampling ratio Sk

No.
Freq. range

kHz

α = −0.5
M = 29

α = −0.25
M = 46

α = −0.125
M = 59

α = 0
M = 76

1 0.00 – 0.10 0 – 0 / 57 0 – 0 / 51 0 – 0 / 50 0 – 0 / 50

2 0.10 – 0.20 1 – 1 / 34 1 – 1 / 30 1 – 1 / 30 1 – 1 / 30

3 0.20 – 0.30 2 – 2 / 24 2 – 2 / 21 2 – 2 / 21 2 – 2 / 21

4 0.30 – 0.40 3 – 3 / 37 3 – 3 / 33 3 – 3 / 33 3 – 3 / 33

5 0.40 – 0.51 4 – 4 / 30 4 – 4 / 27 4 – 4 / 27 4 – 4 / 27

6 0.51 – 0.63 5 – 6 / 22 5 – 5 / 35 5 – 5 / 34 5 – 5 / 35

7 0.63 – 0.77 7 – 7 / 28 6 – 6 / 30 6 – 6 / 30 6 – 6 / 30

8 0.77 – 0.92 8 – 8 / 25 7 – 8 / 15 7 – 8 / 15 7 – 8 / 24

9 0.92 – 1.08 9 – 10 / 20 9 – 9 / 28 9 – 9 / 28 9 – 9 / 36

10 1.08 – 1.27 11 – 11 / 30 10 – 11 / 17 10 – 11 / 17 10 – 11 / 24

11 1.27 – 1.48 12 – 12 / 27 12 – 13 / 20 12 – 13 / 20 12 – 13 / 20

12 1.48 – 1.72 13 – 14 / 13 14 – 15 / 17 14 – 15 / 17 14 – 15 / 23

13 1.72 – 2.00 15 – 15 / 15 16 – 17 / 15 16 – 17 / 15 16 – 18 / 15

14 2.00 – 2.32 16 – 17 / 9 18 – 19 / 13 18 – 20 / 13 19 – 21 / 13

15 2.32 – 2.70 18 – 18 / 11 20 – 22 / 11 21 – 23 / 11 22 – 25 / 11

16 2.70 – 3.15 19 – 20 / 7 23 – 24 / 15 24 – 27 / 7 26 – 29 / 12

17 3.15 – 3.70 21 – 21 / 8 25 – 28 / 6 28 – 31 / 8 30 – 34 / 8

18 3.70 – 4.40 22 – 23 / 5 29 – 31 / 7 32 – 36 / 7 35 – 41 / 7

19 4.40 – 5.30 24 – 24 / 4 32 – 35 / 4 37 – 42 / 4 42 – 49 / 6

20 5.30 – 6.40 25 – 26 / 2 36 – 39 / 2 43 – 49 / 2 50 – 60 / 2

21 6.40 – 7.70 27 – 27 / 4 40 – 44 / 4 50 – 56 / 4 61 – 72 / 4

22 7.70 – 8.005 28 – 28 / 6 45 – 45 / 18 57 – 58 / 18 73 – 75 / 21

TABLE II
COMPLEXITY OF DESIGNED FBS

Filter bank Complexity terms Total complexity

α M µAP µFIR µMOD µEQ µA µAS

−0.5 29
0

(173)
174 141 513

315

(488)

1143

(1489)

−0.25 46
0

(275)
276 254 332

530

(805)

1392

(1942)

−0.125 59
0

(353)
354 347 212

701

(1054)

1614

(2320)

0 76 0 456 475 0 931 1862

such FBs are useful in sound enhancement and multiple

description coding.

APPENDIX A

MULTIPLE FREQUENCY MAPPING IN HIGHER-ORDER

WARPINGS

Direct substitution of delays in a uniform FB for an Rth-

order allpass filter gives a result different from what is

expected of flexible warping. Namely, each of the resulting

frequency responses is composed from R images of the

original response, as demonstrated in Fig. 14 (a).

The problem arises because the phase response (7) is always

monotone decreasing, which is a consequence of the equiva-

lence (6) between a higher-order allpass filter and a cascade of

first-order ones. Thus Rth-order allpass transformation corre-

sponds to R mappings of the frequency interval −π ≤ ω ≤ π
onto its R times shorter fragments. From another point of view,

such multiple mapping can be perceived as a single mapping

of the extended interval −Rπ ≤ ω ≤ Rπ onto −π ≤ ω ≤ π.

The issue can be avoided by reducing to ω the term Rω
in (7), so that the resulting phase shift

φ̂(ω) = φ(ω) + (R − 1)ω (19)

−60−40−20 0
0

0.5

1

1.5

2

|Hk(ejω)| [dB]

ω
/
2
π

1 2 3 4 5 6
0

2

4

6

8

10

12

ω [rad]

−
φ
(ω

)
[r

ad
]

α1 = −0.5
α2 = 0.5

0 0.25 0.5 0.75 1

−60

−40

−20

0

|H
k
(e

j
ω
)|

[d
B

]

ω/2π

1 2 3 4 5 6
0

2

4

6

8

10

12

ω [rad]

−
φ̂
(ω

)
[r

ad
]

α1 = −0.5
α2 = 0.5

0 0.25 0.5 0.75 1

−60

−40

−20

0

|H
k
(e

j
ω
)|

[d
B

]

ω/2π

Initial uniform
filter bank

Warped filter bank

No correction Correction

(a) (b)

Fig. 14. Second-order warping (α1 = −0.5 and α2 = 0.5) (a) without and
(b) with the correction of multiple frequency mapping.
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Fig. 15. Causal correction of multiple frequency mapping.

is limited to 〈−π, π〉 [29], as illustrated in Fig. 14. Such

a modification requires connecting a filter in series with the

reciprocals of unit delays, which results in

Â(z) = z+(R−1)A(z). (20)

Even though such a solution seems impractical due to the use

of the noncausal transfer function, it can easily be applied

to allpass chains [29], as explained in Fig. 15. The idea is

to precede the chain of the non-causally corrected allpass

filters with appropriately selected additional delays. Moving

the delays from the input to the outputs, we can annihilate

noncausal blocks and obtain the equivalent causal structure.

Such correction usually significantly increases memory re-

quirements, and, even more importantly, increases by N(R−1)
samples the total delay introduced by a warped FB with the

chain of N allpass filters.

APPENDIX B

ALTERNATIVE METHODS FOR GROUP DELAY

EQUALIZATION

A. Noncausal Filtering

Obviously, phase distortion caused by an allpass filter

A(z) can be counterbalanced by the inverse transfer function
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A−1(z). The latter is unstable but can be decomposed into two

stable filters, one of which is noncausal [42]. This makes an

implementation possible, as time-reversing can be simulated

by buffering signals, even infinite-length ones, like sound [42].

However, such systems are difficult to design and implement,

especially in cases of memory or delay limits.

Time-reversing and trimming sequences have also been used

to develop warped wavelet FBs in [15]. Even though the

related theory is nice and innovative, its practical use is limited

due to high computational load and memory requirements.

Moreover, the related time-frequency representations of sig-

nals are redundant, similarly to our FBs.

B. Polynomial and Binomial Equalization Filters

In [37], it has been shown that the phase modifications

caused by a first-order allpass filter can be compensated for

by passing its output signal through the FIR transfer function

CPOLY(z) = (1 + αz−1)

D−1
∑

n=0

(−α)nz−(D−1)+n. (21)

The polynomial is constructed so that the product

A(z)CPOLY(z) = TPOLY(z) = z−D − (−α)D (22)

converges to a pure delay with increasing D, whereas the

term (−α)D decreases to zero, provided that |α| < 1.

Obviously, the greater magnitude of the allpass coefficient,

the higher order of the polynomial is required to keep distor-

tions within acceptable limits. As

∣

∣TPOLY(e
jω)

∣

∣ =
√

1− 2(−α)D cosDω + α2D, (23)

arg
{

TPOLY(e
jω)

}

= arctan − sinDω
cosDω−(−α)D , (24)

both magnitude distortion caused by such equalization and

phase error remaining after it exhibit equiripple behavior, with

extrema at integer multiples of ω = π
D . The group delay of

an equalized allpass filter

τPOLY(ω) = D (−α)D cos(Dω)−1
2(−α)D cos(Dω)−α2D−1 , (25)

has the peak-to-peak ripple

∣

∣τPOLY(0)− τPOLY(
π
D )

∣

∣ =
∣

∣

∣
−2D (−α)D

α2D−1

∣

∣

∣
. (26)

The latter expression allows us to determine D which gives

equalization accuracy not worse than that achieved using the

trimming approach. Scan over α and N results in the plot of

Fig. 16, which can be compared to Fig. 8. Clearly, it is much

better to equalize many allpass filters at once, in respect of

both complexity and delay, which are about four times lower

for the trimming technique.

In [31], we have shown that computations and memory

can be saved by restricting D to be a power of 2, and by

factorizing (21), which requires D − 1 multiplications, in the

following way:

CBI(z) = (1 + αz−1)(z−1 − α)

log2 D−1
∏

n=1

(z−2n + α2n). (27)

Although still

A(z)CBI(z) = TBI(z) = z−D − αD, (28)

each of log2 D binomials that replace the polynomial requires

only one multiplication. Moreover, the number of necessary

unit delays decreases in the same way.

The results in Fig. 16 can easily be transformed into those

in Fig. 17, which shows how many binomials are necessary

to equalize group delay as accurately as using an trimming-

based filter. Even though the binomial-based equalization is

most efficient, the problems with magnitude distortion and

enormous delay still exist.
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Fig. 17. Performance of the binomial-based equalization for cascades of
allpass filters.

In [32], we have noticed a similar technique that uses

the cascade of allpass filters

CAP(z) =
z−1−α
1−αz−1

log2 D−1
∏

n=1

z−2n+α2n

1−α2nz−2n . (29)

Such equalization results in the following allpass function

A(z)CAP(z) = TAP(z) =
z−D−αD

1−αDz−D , (30)

and thus causes no magnitude distortions. However, via simple

trigonometric manipulations, one can prove that

arg
{

TAP(e
jω)

}

= arg
{

TBI(e
jω)

}

− arctan αDsinDω
1−αD cosDω

,

(31)
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and

arg
{

TAP(e
jω)

}

+Dω = 2(arg
{

TBI(e
jω)

}

+Dω). (32)

So, phase ripples remaining after allpass-based equalization

have the same shape as for the binomial approach, but are

twice as large in amplitude. Another drawback is related to

doubling the number of delays.

An advantage of analytically-described equalization is that

it can be used in tunable warped FBs, in which frequency

partitioning is changed on-the-fly by modifying the warping

coefficient [16], [43].

C. General-Purpose Equalization Filters

Over the years, a fair number of general-purpose meth-

ods for group delay equalization have been developed (see

e.g. [44] and references therein), but their applicability to

warped systems is limited. Firstly, the high-dimensionality of

the optimization problem of coefficient synthesis causes such

methods to fail (in terms of convergence) if a longer cascade

of allpass filters has to be equalized, or to give, after heavy

computations, results not better than the algorithms described

above. Secondly, obtainable IIR solutions often suffer from

instability. Finally, some methods are aimed at equalization

limited to only a range of frequencies.

APPENDIX C

ALTERNATIVE SYNTHESIS STRUCTURES FOR WARPED

FILTER BANKS WITH GROUP DELAY EQUALIZATION

In [37], the structure of Fig. 2 (b) has been proposed

in the context of warped DFT FBs. The wideband signal

passed thorough an allpass chain (possibly followed by an FB

core that has, or well approximates, the perfect reconstruction

property, an thus is transparent for the rest of a system) is

restored using a delay chain, whose inputs are preceded by

cascades of an equalization filter C(z). Both cascade lengths

and delay amounts are selected so that the transfer function

Tn(z) = An(z)Cn(z)z−D(N−n) ≈ z−DN , (33)

where n = 0, . . . , N , characterizes the nth path from the input

to the output, assuming that (9) is satisfied.

The solution is not very useful in practice, especially

because of its enormous computational complexity, as C(z)
is computed N

2 (N+1) times for each output sample. Another

problem is that paths differ in the number of allpass filters,

and thus in phase distortion to be compensated for. Thus each

patch needs an individually designed equalizer of different

length, which is especially troublesome if one wants to replace

a cascade of independent filters, Cn(z), with a more efficient

single equalizer, as done in [39]. Additionally, it is difficult to

evaluate phase distortion at the output.

In order to reduce the complexity of the scheme, we have

introduced its transposition of Fig. 2 (c) [31]. The idea is

to interchange compensation filters with delays, so that the

former form a chain, and the latter are cascaded at chain

inputs. Although the system is equivalent to the previous

one, as (33) still describes the relationship between the input

and output, C(z) is computed only N times. The gain is

incomparably higher than that obtained in [39] by aggregating

equalization filters. Unfortunately, the memory requirements

are huge, because of the presence of N
2 (N +1)D unit delays

in the branches. Moreover, there is still a need to design

equalization filters separately, one-by-one, because in spite

of their theoretical equivalence, they form a hierarchy. In

addition to equalizing an allpass cascade, a filter complements

equalization of a longer cascade, which makes error evaluation

difficult.

After considering the aforementioned schemes, we con-

cluded in [31] that computational complexity, memory re-

quirements, and design ease are reconciled in the structure

of Fig. 2 (a), which separates fullband signal reconstruction

from phase correction. The former is based on the allpass

chain symmetric to that in the analysis FB, whose output is

postfiltered in order to equalize group delay.

Although the presence of the chain increases the complexity,

evident advantages are obtained in exchange. There are no

cascades of delays in the structure, and each path from the

input to the output is characterized by the same transfer

function

Tn(z) = AN (z)CN (z) ≈ z−DN , (34)

for n = 0, . . . , N . Thus, instead of L = N + 1 cascades

of from 0 to N allpass filters, only the last of them is of

interest, which makes both evaluation of the output distortion

and optimal design of an equalizer much easier then in the

approaches mentioned above. Additionally, the scheme we

recommend is easier to implement owing to its increased

coherence and modularity.

A. Critically Sampled Subband Decomposition Systems with

Allpass Filter Chains

It should be noted that several systems have been devel-

oped over the years, in which perfect reconstruction can be

achieved, at least theoretically, even though they are based

on allpass filter chains, and their subbands are critically sam-

pled [21], [45]. However, these solutions have clear limitations,

and there are conceptual differences between them and warped

FBs in our sense. Namely, the systems can be considered

degenerated because their FIR polyphase matrices are con-

strained to be paraunitary or orthogonal, respectively. Thus,

in the first case, a system is warped only partially, whereas in

the second case, where the DFT or DCT matrices can be used,

the analysis filters obtained have low selectivity. Moreover, the

synthesis structures, which are very complicated and similar in

both cases, work differently from FBs, because modifications

of a single channel are spread over all frequencies, so that the

paradigm of subband processing breaks down.

Therefore, we have good reasons to content ourselves with

only mentioning such systems.

APPENDIX D

AVOIDING ALIASING BY OVERSAMPLING

A. Problem Nature

Our discussion is limited to the simplest way of changing

the sampling rate, that is to using decimators with integer ratios
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at outputs of analysis FBs and expanders at inputs of synthe-

sis FBs. This is because other approaches, like modulating

a subband in order to shift it inside a feasible position [11],

seriously affect the coherence of a system without significantly

decreasing its oversampling ratio.

In warped cosine modulated FBs, subband widths and

positions are virtually unrestricted. Especially, subbands are

not integer-positioned [46], i.e. their lower frequencies are

not integer multiples of the bandwidths. The opposite ob-

viously occurs in uniform FBs as well as in nonuniform

ones built upon them. It implies feasibility of frequency

partitionings [11], and thus reconciles maximal decimation

with perfect reconstruction via aliasing cancellation.

In cosine-modulated FBs, channel signals are usually real-

valued and thus have spectra symmetric about the Nyquist

frequency. The asymmetry occurs when the allpass filter and/or

prototype have complex coefficients, and for complex-valued

input signals. As such situations are uncommon, we give up

investigating them.

Because two-part spectral structure of subbands is inherited

by aliasing terms, subsampling can cause both parts of the

same term to overlap. In FBs with warping and/or merging,

the related error cannot usually be canceled using another

subband, because the latter is differently subsampled, so that

spectral replicas are not positioned as necessary for mutual

compensation of distortions. Moreover, warping affects transi-

tion bandwidths of a channel filter unequally, so that a spectral

replica is not necessarily equivalent to its reflected version.

Formal consideration of these issues leads to huge equa-

tions and hard optimization problems, and thus its practical

usefulness seems little. Thus, unlike others [6], [7], [10], [33],

[39], we do not analyze the distortion transfer function of

a nonuniform FB [47] and give up the idea of approaching

perfect reconstruction by employing aliasing cancellation. In-

stead, we have deduced that similar or even better results can

be obtained by analyzing channels independently, one after

another, using bandpass sampling theory.

We are interested in minimizing aliasing errors by carefully

selecting subsampling ratios for channels, so that selectivity of

the prototype completes the work. The idea is to keep channels

somewhat oversampled, which prevents severe overlapping

between subband spectrum and its replicas which arise from

subsampling. As a result, channel signals contain no significant

aliasing terms which must be canceled during subband synthe-

sis. Only minor aliasing terms exist, whose level is determined

by the stopband attenuation of the prototype filter, like in

uniform near-perfect reconstruction FBs [11], [25], which use

partial aliasing cancellation.

B. Constraints for Subsampling Ratios

Permissible subsampling ratios can be derived by identify-

ing kth channel signal with a bandpass signal. This allows

applying the fundamental principle of uniform sampling of

such signals:

2 fUk

nk

≤ fsk ≤ 2 fLk

nk−1 , 1 ≤ nk ≤
⌊

fUk

fUk−fLk

⌋

, (35)

which can be found e.g. in [46]. The symbols have already

been defined in Section II-C.

The inequalities determine acceptable sampling frequencies,

but can easily be converted into the expression (10) for the

corresponding subsampling ratios.
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Fig. 18. Relations between subband positioning and permissible subsampling
ratios in a cosine-modulated FB.
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Fig. 19. Locations of a hypothetical subband with respect of multiples of
lowered sampling frequencies.

Without the roundings, the inequalities (10) can be il-

lustrated graphically with hyperboles, as shown in Fig. 18,

where Bk = fUk − fLk. The shaded regions between the

curves represent the cases in which subband positioning and

subsampling ratio are related in such a way that there is no se-

vere aliasing. The remaining area corresponds to unacceptable

relations, and thus to distortion existence.

The diagram is equivalent to that of [46, Fig. 4] but allows

direct determination of permissible subsampling ratios Sk,

instead of sampling frequencies fsk. Namely, for a given

subband, the relation between its positioning and bandwidth

can be represented with a vertical line. In turn, a horizontal

line can be drawn to illustrate the bandwidth widening caused

by subsampling. If the lines intersect inside a shaded area,

sampling frequency is reduced without severe aliasing. Other-

wise, subsampling causes unrecoverable errors.

In Fig. 18, the lines for a hypothetical kth subband with

fUk = 0.41 and Bk = 0.067 are drawn. The cases of permis-

sible subsampling are indicated with circles. Fig. 19 shows

the positioning of the same subband (horizontal bold lines)

against a background of multiples of the lowered sampling

frequency (vertical strokes) for different subsampling ratios

(a single level of the plot). It is obvious that (10) prevents

such a multiply from occurring inside the subband.

Obviously, the rules we have developed can be applied to

FBs in which subband merging alters frequency partitioning.
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In such cases, a subsampling ratio for a channel after merging

must be calculated based on the total bandwidth of the merged

subbands as well as on the lower and upper frequencies of the

first and last of them, respectively. It also should be taken into

account that transition bands exist in real-world magnitude

responses and their widths are affected by warping.

It should be noted that subsampling in nonuniform FBs was

already independently studied in [48], where, however, neither

such explicit expressions as (10) nor an accessible graphical

approach have been given.

C. A Remark on Prototype Filter Design

The following two facts prove that there is no point in devel-

oping dedicated algorithms which evaluate warped responses

during prototype synthesis.

Firstly, an allpass transformation of an FB in which channel

signals are not subsampled causes some deformation of the

magnitude response of the distortion transfer function only

along the frequency axis. More precisely, amplitude distortions

that already exist, which depend on the used prototype, are

only shifted and stretched or compressed in frequency. Their

presence and level themselves are unconnected with the warp-

ing. In particular, if a nonsubsampled perfect reconstruction

FB is warped, only phase distortions characterize the analysis-

synthesis system obtained.

Secondly, in our approach, prototype filters are only ex-

pected to have high stopband attenuation and possibly a narrow

transition band (if high total subsampling ratio is desirable),

which is usually required of prototypes for uniform FBs that

approximate perfect reconstruction [24], [25]. Thus, the same

design methods can be successfully used for warped FBs.
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