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Abstract—Alvis is a modelling language defined for the design
and a formal verification of embedded systems. An Alvis model
is a system of agents that usually run concurrently, communicate
one with another, compete for shared resources etc. Due to
the fact that an embedded system usually collects inputs that
come from its environment and provides outputs that go to the
environment it is necessary to provide a mechanism to describe
such a communication. In contrast to another formal languages
used to model embedded systems it is not necessary, using Alvis,
to design such an environment as a part of a model. The paper
deals with the problem of modelling a communication with an
embedded system environment with Alvis.

Keywords—Alvis modelling language, embedded systems, for-
mal verification, communication with environment.

I. INTRODUCTION

ALVIS1 [1], [2] is a novel modelling language designed
for real-time systems, especially for embedded ones. The

main goal of the Alvis project was to strike a happy medium
between formal and practical modelling languages. Formal
methods like Petri nets [3], [4], [5], time automata [6], process
algebra [7] etc. are very seldom used in real IT projects due
to their specific mathematical syntax. The Alvis syntax seems
to be more user-friendly. From programmers point of view,
it is necessary to design two layers of an Alvis model. The
code layer uses Alvis statements supported by the Haskell
functional programming language to define a behaviour of
individual agents. The graphical layer (communication dia-
gram) is used to define communication channels among agents.
The layer takes the form of a hierarchical graph, that allows
designers to combine sets of agents into modules that are also
represented as agents (called hierarchical ones). The Alvis
language is supported by Alvis Toolkit software that, among
other things, provides Alvis Editor used for developing Alvis
models and Alvis Translator used to generate LTS graphs
(Labelled Transition System). Such an LTS graph is a formal
representation of an Alvis model can be formally verified e.g.
with the help of the CADP toolbox [8].

An embedded system is one that is a part of a larger
one. It is surrounded by other parts of the larger system
that constitute the embedded system environment. Such an
embedded system collects inputs that come from its envi-
ronment (from sensors) and provide outputs that go to the
environment (to controllers). To verify an embedded system
formally we cannot separate it from its environment. Thus,
if a formal language is used e.g. Petri nets, time automata,
process algebra etc., an embedded system model must include
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both the system and its environment. As a result of such
a situation a model is often significantly more complex and the
state explosion problem makes a formal verification difficult
or even impossible. One of the main Alvis advantages is
the possibility of a flexible specification of a behaviour of
an embedded system’s environment. Instead of describing an
environment as a part of an Alvis model, it is possible to
specify signals/values sent or received by the environment.

The paper focuses at the modelling of a communication
with an embedded system environment in Alvis models. It
is organised as follows. Section II provides a short presen-
tation of the Alvis modelling language. Border ports used
for a communication with an embedded system environment
are described in Section III. A formal description of Alvis
models is given in Section IV. Section V deals with methods
of communication with environment in Alvis. The paper is
summarised in the final section.

II. ALVIS LANGUAGE

Alvis is a successor of the XCCS modelling language [9],
[10], which was an extension of the CCS process algebra [11],
[7]. An Alvis model is composed of three layers:
• Graphical layer – is used to define data and control flow

among distinguished parts of the system under consid-
eration that are called agents. The layer takes the form
of a hierarchical graph and supports both top-down and
bottom-up approaches to systems development. Graphical
items used in a communication diagram design are shown
in Fig. 1.

• Code layer – is used to describe the behaviour of individ-
ual agents. It uses both Haskell functional programming
language [12] and original Alvis statements [1], [2]. The
set of Alvis statements is given in Table I.

• System layer – depends on the model running envi-
ronment i.e. the hardware and/or operating system. The
layer is the predefined one. The system layer is used for
a simulation and verification purposes.

Agents in Alvis are divided into three groups: active, passive
and hierarhical agents. Active agents (see Fig. 1 agent A)
perform some activities and are similar to tasks in the Ada
programming language [13]. Each of them can be treated as
a thread of control in a concurrent system. Passive agents
(agent B) do not perform any individual activity, and are
similar to protected objects (shared variables). Hierarchical
agents (agent C) represent submodels (modules).

An agent can communicate with other agents through ports.
Ports are drawn as circles placed at the edges of the corre-
sponding rounded box or rectangle. A communication channel
is defined explicitly between two agents and connects two
ports. Communication channels are drawn as lines. An arrow-
head points out the input port for the particular connection
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Fig. 1. Elements of Alvis communication diagrams.

TABLE I
ALVIS STATEMENTS

Statement Description
cli Turns off border ports.
critical {...} Define a set of statements that must be

executed as a single one.
delay ms Delays an agent execution for a given num-

ber of miliseconds.
exec x = e Evaluates the expression and assigns the re-

sult to the parameter; the exec keyword can
be omitted.

exit Terminates an agent or a procedure.
if (g1) {...} Conditional statement.
elseif (g2) {...}
...
else {...}
in p Collects a signal via the port p.
in p x Collects a value via the port p and assigns it

to the parameter x.
jump label Transfers the control to the line of code

identified with the label.
jump far A Transfers the control to the agent A.
loop (g) {...} Repeats execution of the loop contents while

the guard if satisfied..
loop (every ms) Repeats execution of the loop contents every
{...} ms miliseconds.
loop {...} Infinite loop.
null Empty statement.
out p Sends a signal via the port p.
out p x Sends a value of the parameter x via the

port p; a literal value can be used instead
of a parameter.

proc (g) p {...} Defines the procedure for the port p of
a passive agent. The guard is optional.

select { Selects one of the alternative choices.
alt (g1) {...}
alt (g2) {...}
... }

start A Starts the agent A if it is in the Init state,
otherwise does nothing.

sti Turns on border ports.

(connection (A.p3, B.q)). Communication channels without
arrowheads represent pairs of connections with opposite di-
rections (connection between ports A.p2 and C.r).

The code layer is used to define data types used in the
model under consideration, functions for data manipulation
and the behaviour of individual agents. The layer uses the
Haskell functional language (e.g. the Haskell type system) and
original Alvis statements. The set of Alvis statements is given
in Table I. To simplify the syntax, the following symbols have
been used. A stands for an agent name, p stands for a port
name, x stands for a parameter, g, g1, g2,. . . stand for guards

(Boolean conditions), e stands for an expression and ms stands
for milliseconds.

Each non-hierarchical agent placed in a communication
diagram must be defined in the corresponding code layer and
vice-versa. Besides the statements presented in Table I, Alvis
provides the environment statement that can be used only
in a code layer preamble. This statement is used to specify
behaviour of border ports (see Section III).

The system layer considered in the paper is denoted by
α1. The α1 system layer has been worked out to make
Alvis suitable for the modelling of single-processor embedded
systems. Frankly speaking, α1 stands for a set of system layers
that differ about the scheduling algorithm. The α1 layers are
based on the following assumptions:
• All active agents share the same processor.
• The predefined α1 scheduler function is called after each

statement automatically and makes agents running as
soon as possible.

III. BORDER PORTS

Border ports can be used both for collecting or sending
some information to the embedded system environment. They
cannot be connected with any other ports. Properties of border
ports are specified in the code layer preamble with the use
of the environment statement. It is possible to specify (in the
code layer) all details of signals that a system collects or sends
through any border port. Such ports must have unique names.
The same name of a border port used twice means that two
agents use the same border port.

Each border port used as an input one is described with
at least one in clause. Similarly, each border port used as an
output one is described with at least one out clause. Each
clause inside the environment statement contains the following
pieces of information [14]:
• in or out key word,
• the border port name,
• a type name or a list of permissible values to be sent

through the port,
• a list of time points, when the port is accessible,
• optionally some modifiers: durable, queue, signal.
If a border port is used both as an input and output one,

then it must be described both with the in and out clauses.
If different kinds of signals can be sent through a border
port, then more than one in or out clause must be used. If
a border port is used for a parameterless communication, then
the first list is empty. Similarly, if a border port is always
accessible, then the second list is empty. Lists are defined
using the Haskell language. In particular, it is possible to use
infinite lists [12].

It should be underlined that only the signal modifier should
be used in the final model of an embedded system. Other
modifiers are defined mainly for the verification purposes, if
reduced models are considered.

Let us focus on the description of input border ports
presented in Fig. 2. Signals’ directions are considered from
an embedded system point of view, thus all considered ports
are used to send information from an environment to the
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in a [1..4] [];
in b [1..4] (map (100*) [1..]);
in c [1..4] (map (100*) [1..]) signal;
in d [1..4] (map (100*) [1..]) durable;
in e [1..4] (map (100*) [1..]) queue;
in f [1..4] (map (100*) [1..]) signal durable;
in g [1..4] (map (100*) [1..]) signal queue;

Fig. 2. Examples of input border ports’ specification.

corresponding embedded system. In each case, one of the
values 1, 2, 3, 4 (at random) can be collected through a port.
However, the ports differ about the way the values are used.
a A value from the port can be collected at any

time point. An agent that performs the in statement
receives the value immediately (never waits for it).
Such border ports are useful for a modelling of input
sensors whose values can be read at any time.

b Every 100 time-unit (by default milliseconds) a value
is provided by the environment via the port. If none
agent waits for it (waiting mode), the value is lost.

c The port behaves similarly to the b one, but the signal
may not be provided.

d Every 100 time-unit a value is provided by the
environment via the port. The value is accessible for
the corresponding embedded system until an agent
collects it. If while waiting for a collecting the value,
another one is sent via the port, the previous one is
overwritten.

e The port behaves similarly to the d one, but if while
waiting for a collecting the value, another one is sent
via the port, it is put into a FIFO queue.

f The port behaves similarly to the c one, but the value
is accessible for the corresponding embedded system
until an agent collects it or it is overwritten.

g The port behaves similarly to the f one, but the
values are put into a FIFO queue.

The specifications of ports b, . . . , g use the Haskell map
function and an infinite list. For more details (if necessary)
see [12].

out a [1..4] [];
out b [1..4] (map (100*) [1..]);
out c [1..4] (map (100*) [1..]) signal;
out d [1..4] (map (100*) [1..]) durable;
out e [1..4] (map (100*) [1..]) queue;
out f [1..4] (map (100*) [1..]) signal durable;
out g [1..4] (map (100*) [1..]) signal queue;

Fig. 3. Examples of output border ports’ specification.

Let us focus on the description of output border ports
presented in Listing 3.
a Any of the values 1, 2, 3, 4 can be sent through the

port at any time point. An agent that performs the out
statement sends the value immediately (never waits
for the port accessibility).

b Any of the values 1, 2, 3, 4 can be sent through the
port every 100 time-units, but if the system is not
ready to send a value then the opportunity is lost.

c The port behaves similarly to the b one, but the
accessibility of the port is not guaranteed.

d Any of the values 1, 2, 3, 4 can be sent through the
port every 100 time-units, but if the system is not
ready to send a value then the environment waits for
it.

e The port behaves similarly to the d one, but the
opportunities are put into a FIFO queue.

f The port behaves similarly to the d one, but the
accessibility of the port is not guaranteed.

g The port behaves similarly to the e one, but the
accessibility of the port is not guaranteed.

If a border port is used both as an input and an output one,
then it must be described both with the in and out clauses. If
different kinds of signals can be sent through a border port,
then more than one in or out clause can be used, but the time
points lists must be pairwise disjoint.

IV. FORMAL MODEL DESCRIPTION

A hierarchical communication diagram can be transformed
into a non-hierarhical one with the analysis operation [15].
Thus, from the formal description point of view it is neces-
sary to consider models with non-hierarhical communication
diagrams only.

Let P(X) denote the set of ports of an agent X . We can
distinguish the following subsets of the set P(X):

• Pborder(X) denotes the set of border ports of agent X
i.e. ports that are specified in the environment statement.

• Pinternal(X) = P(X) − Pborder(X) denotes the set of
internal ports of agent X .

• Pin(X) denotes the set of input ports of agent X . An
input border port is a border port with at least one in
specification. An input internal port is an internal port
with at least one one-way connection leading to this port
or with at least one two-way connection.

• Pout(X) denotes the set of output ports of agent X . An
output border port is a border port with at least one out
specification. An output internal port is an internal port
with at least one one-way connection leading from this
port or with at least one two-way connection.

• Punc(X) = Pinternal(X) − (Pin(X) ∪ Pout(X)) de-
notes the set of unconnected ports.

• Pproc(X) ⊆ Pinternal(X) denotes the set of procedure
ports of agent X (for passive agents only) i.e. ports
with defined the proc statement (names of such ports are
treated as names of procedures).

For a set of agents W we define sets: P(W ) =∑
X∈W P(X), Pin(W ) =

∑
X∈W Pin(X), etc. Moreover,

let P denote the set of all model ports, Pin denote the set of
all model input ports, etc.

Definition 1: A Non-hierarchical communication diagram
is a triple D = (A, C, σ), where:

• A = {X1, . . . , Xn} is the set of agents consisting of two
disjoint sets, AA, AP such that A = AA∪AP , containing
active and passive agents respectively.
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• C ⊆ P × P is the communication relation, such that:

∀X ∈ A : (P(X)× P(X)) ∩ C = ∅, (1)
((Pborder × P) ∪ (P × Pborder)) ∩ C = ∅, (2)
Pproc ∩ Pin ∩ Pout = ∅, (3)
(p, q) ∈ (P(AA)× P(AP )) ∩ C ⇒ q ∈ Pproc, (4)
(p, q) ∈ (P(AP )× P(AA)) ∩ C ⇒ p ∈ Pproc, (5)
(p, q) ∈ (P(AP )× P(AP )) ∩ C ⇒
⇒ (p ∈ Pproc ∧ q /∈ Pproc) ∨
∨ (q ∈ Pproc ∧ p /∈ Pproc). (6)

• σ : AA → {False,True} is the start function that points
out initially activated agents.

Each element belonging to C is called a connection or
a communication channel. The restrictions from Definition 1
have the following meaning. (1) – A connection cannot be
defined between ports of the same agent. (2) – Border ports
cannot be connected with any other ports. (3) – Procedure ports
are either input or output ones. (4), (5) – A connection between
an active and a passive agent must be a procedure call. From
conditions (3)–(5) it follows that any connection with a pas-
sive agent must be one-way connection. (6) – A connection
between two passive agents must be a procedure call from
a non-procedure port.

The start function σ makes possible delaying activation of
some agents. Names of agents that are initially activated are
underlined in a communication diagram.

Definition 2: A flat Alvis model is a triple A = (D,B,ϕ),
where:
• D = (A, C, σ) is a non-hierarchical communication

diagram,
• B is a syntactically correct code layer,
• ϕ is a system layer.

Moreover, each agent X belonging to the diagram D must be
defined in the code layer, and each agent defined in the code
layer must belong to the diagram.

It should be underlined that a syntactically correct code
layer means also that only input ports may be used as
arguments of in statements, and only output ports may be used
as arguments of out statements. From now on, we will consider
only A = (D,B, α1) models.

Definition 3: A state of an agent X is a tuple

S(X) = (am(X), pc(X), ci(X), pv(X)), (7)

where am(X), pc(X), ci(X) and pv(X) denote mode, pro-
gram counter, context information list and parameters values
of the agent X respectively.

All possible modes and transitions among them are shown
in Fig. 4. Finished means that an agent has finished its work.
Init is the default mode for agents that are inactive in the initial
state. An agent can be activated by another one with the start
statement. Running means that an agent is performing one of
its statements. Ready means that an agent is ready to execute

1We will use two notations to denote ports. A single lower-case letter e.g.
p denotes a port p of some agent. If it is necessary to point out both a port
name and agent name, the dot notation will be used e.g. X.p.

waiting

taken

finished

a) b)

init

running waiting

ready

Fig. 4. Possible transitions among modes: a) active, b) passive agents.

TABLE II
RELATIONSHIPS BETWEEN THE MODE AND PROGRAM COUNTER

am(X) pc(X)

finished 0
init 0
ready current statement
running current statement
taken current statement of the called procedure
waiting (active agent) current statement
waiting (passive agent) 0

the next statement, but it waits for an access the processor.
Taken means that one of the passive agent procedures has been
called and the agent is executing it. For passive agents, waiting
means that the corresponding agent is inactive and waits for
another agent to call one of its accessible procedures. For
active agents, the mode means that the corresponding agent is
waiting either for a communication with another active agent,
or for a currently inaccessible procedure of a passive agent.

The program counter points out the current statement of an
agent i.e. the next statement to be executed or the statement
that has been executed by an agent but needs a feedback from
another agent to be completed (e.g. a communication between
two active agents). Relationships between the mode and the
program counter of an agent are shown in Table II.

The context information list contains additional information
about the current state of an agent e.g. if an agent is the waiting
mode, ci contains information about events the agent is waiting
for. Possible entries put into ci lists are given in Table III. If
an agent is in the init or finished mode, its context information
list is empty.

If an Alvis model uses border ports then an extra agent
denoted by ∗ and representing the system environment is
considered. The state of the environment is described using its
ci list only. The list contains information about time moments
of the border ports accessibility.

Definition 4: A state of a model A = (D,B, α1), where
D = (A, C, σ) and A = {X1, . . . , Xn} is a tuple

S = (S(X1), . . . , S(Xn), S(∗)). (8)

The S(∗) is omitted, if the considered model does not contain
border ports.

Let us focus on the ci(∗) list. For each in and out clause
from the environment statement, the list contains an entry with
information about the next port accessibility with respect to
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TABLE III
RELATIONSHIPS BETWEEN THE MODE AND THE CONTEXT INFORMATION LIST OF AN AGENT

agent X am(X) ci(X) entry description
active running/waiting critical X is inside a critical section
active ready/running/

waiting
proc(Y.b, a) X has called the Y.b procedure via port a and this procedure is being executed in the X agent

context
timeout(s) a timer signal for the statement number s has been generated and waits for serving
timer(s, n) a timer signal for the statement number s will be generated in n time-units
off border ports handling turned off
in(∗.a) a signal generated by the system environment has been provided via border port a
in(∗.a|v) a value v generated by the system environment has been provided via border port a
out(∗.a) the system environment is ready to collect a signal via border port a
out(∗.a|i) the system environment is ready to collect via port a a value defined by i-th out clause for the

port
active ready/waiting in(a), in(a|T ) X waits for a communication via port X.a (X.a is the input port for this communication); T is

the type of the expected value
out(a),
out(a|T )

X waits for a communication via port X.a (X.a is the output port for this communication)

guard X waits for an open branch of a select statement
passive taken proc(Y.b, a) X has called the Y.b procedure via port a and this procedure is being executed in the same context

as the X procedure
guard X waits for an open branch of a select statement
critical X is inside a critical section
timeout(s) a timer signal for the statement number s has been generated and waits for serving
timer(s, n) a timer signal for the statement number s will be generated in n time-units

passive waiting in(a) input procedure X.a is accessible
out(a) output procedure X.a is accessible

passive taken/waiting off border ports handling turned off
in(∗.a) a signal generated by the system environment has been provided via border port a
in(∗.a|v) a value v generated by the system environment has been provided via border port a
out(∗.a) the system environment is ready to collect a signal via border port a
out(∗.a|T ) the system environment is ready to collect a value of type T via border port a

∗ in(a, n) a signal via input border port a will be accessible in n time units
in(a|i, n) a value defined by i-th in clause for port a will be accessible in n time units (if i = 1 then i is

omitted)
out(a, n) output border port a will be accessible in n time units to collect a signal
out(a|i, n) output border port a will be accessible in n time units to collect a value defined by i-th out

clause for the port

the clause. There are two exceptions, when such an entry is
missing:

1) There is no the next time point when the corresponding
port is accessible.

2) The time points list for the entry is empty – the corre-
sponding port is always accessible with respect to the
clause.

Suppose, the environment statement contains the following
specification for port a:

in a [] [1,3,6]

Thus, in the initial state, ci(∗) contains the following entry
in(a, 1) i.e. a signal will be accessible via port a in one
time-unit (one millisecond by default). One time-unit later,
this entry will be replaced with in(a, 2). Then, 1 time unit
later the entry will be replaced with in(a, 1), and next with
in(a, 3). After 6 time-units from the beginning, ci(∗) will not
contain any entry assigned to the considered clause.

If a border port is specified with more than one in clause
then the clauses distinguished by their indices. Let a border
port a be specified as follows:

in a [] [1,3,6]
in a Bool [2,4,7,8,9]

Thus, in the initial state, ci(∗) contains two entries in(a|1, 1),
in(a|2, 2). One time-unit later, these entries will be replaced

with in(a|1, 2), in(a|2, 1), etc. Output border ports are repre-
sented in ci(∗) in similar way.

To determine the current mode of an agent that is ready to
execute its next statement, the scheduler function α1 is used.
For any state S, the function is applied to a set of active agents
A′A and satisfies the following requirements:
• ∀X ∈ A′A, α1

S(X) ∈ {ready, running},
• if critical ∈ ci(X) then α1

S(X) = running,
• |{X ∈ A′A : α1

S(X) = running}| ≤ 1.
Definition 5: The initial state of a model A = (D,B, α1)

is a tuple S0 as given in (8), where:
• am(X) = α1

S0
(X) for any active agent X such that

σ(X) = True;
• am(X) = init for any active agent X such that σ(X) =
False;

• am(X) = waiting for any passive agent X;
• pc(X) = 1 for any active agent X in the ready or
running mode and pc(X) = 0 for other agents.

• ci(X) = [ ] for any active agent X;
• For any passive agent X , ci(X) contains names of

all accessible ports of X (i.e. names of all accessible
procedures) together with the direction of parameters
transfer, e.g. in(a), out(b), etc.

• For any agent X , pv(X) contains X parameters with their
initial values.
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• For any in and out clause from the environment statement
a suitable entry (if necessary) is put into ci(∗).

We consider behaviour of Alvis models at the level of
detail of single steps. More statements e.g. exec, exit , in ,
etc. are single-step statements. On the other hand, if , loop and
select are multi-step statements. We use recursion to count the
number of steps for multi-step statements. For each of these
statements, the first step enters the statement interior. Then,
we count steps of statements put inside curly brackets. Steps
performed by a model are described using the transition idea.
The set of all possible transitions for Alvis models considered
in the paper is given in Table IV. Transitions with numbers
range from 1 to 15 are called system transitions and transitions
with numbers range from 16 to 18 are called environment
transitions.

TABLE IV
SET OF TRANSITIONS

Symbol Description
1 tcli performs a cli statement
2 tcritical enters an critical statement
3 tdelay performs a delay statement
4 texec performs an evaluation and assignment
5 texit terminates an agent or a procedure
6 tif enters an if statement
7 tin performs communication (input side)
8 tjump jumps to a label
9 tloop enters a while or infinite loop

10 tloopevery enters a loop every loop
11 tnull performs an empty statement
12 tout performs communication (output side)
13 tselect enters a select statement
14 tstart starts an inactive agent
15 tsti performs a sti statement
16 t∗in activates an input border port
17 t∗out activates an output border port
18 t∗time denotes time passage

Executing of each of presented transitions changes the
current state of a model. It is out of the scope of the paper
to describe each of the transitions in details. We focus on
these transitions that are connected with a communication with
environment. More details about the transition idea in Alvis
models can be found in [15]. However, the paper describes
models with α0 system layer i.e. with unlimited number of
processors, and a system environment is not taken under
consideration.

V. COMMUNICATION WITH ENVIRONMENT

The fact that a transition t is enabled in a state S with
respect to an agent X and that a state S′ is the result of
executing t in S will be denoted by S−t(X)→S′. Sometimes,
an extended version of this notation will be used:
• S−tstart(X,Y )→S′, where Y is the argument of the

corresponding start statement;
• S−tin(X.p, T )→S′, S−tout(X.p, T )→S′, where X.p is

the port used for the communication and T is the type of
sent/collected value. If necessary, the special Empty type
will be used to denote a valueless communication.

Let us start with signals that are generated by an embedded
system periodically. Suppose an interrupt signal (without) any

specified value) is provided to the port A1.clock every 10 ms
(see Fig. 5).

environment {
in clock [] (map (10*) [1..]);

}

agent A1 {
n :: Int = 0; -- step no
loop { -- 1
in clock; -- 2
n = n + 1; -- 3

}
}

Fig. 5. Collecting periodical signals from environment.

The model presented in Fig. 5 contains only one agent that is
initially activated. The set T of all model transitions contains
4 elements:
• tloop – enters the main loop interior,
• tin – collects a signal from port clock,
• texec – assigns a new value to parameter n,
• t∗in – provides a signal from environment via port clock.
Let ∆(Xi, k) denote the duration of the k-th step execution

for the agent Xi. Suppose, ∆(A1, k) = 1 for any system
transition in this model.

The first signal generated by the environment appears in
the 10th millisecond. Agent A1 enters the loop, executes the
in statement and waits for the signal. Finally, it receives the
signal, increases its parameter n of 1 and repeats its behaviour.
It should be underlined, that the agent must be ready to collect
the signal, otherwise the signal is lost. In this example, the time
taken by the three steps the agent realises (entering the loop,
executing the in statement and executing the exec statement)
is significantly less than 10 ms, thus A1 is always ready to
handle the signal.

The initial state is defined as follows:
S0 = ((running, 1, [ ], (0)), [in(clock, 10)])
Next, S0−t1loop(A1)→S1, where t1loop(A1) denotes that
∆(A1, 1) = 1 (1 is the step number for the loop statement):
S1 = ((running, 2, [ ], (0)), [in(clock, 9)]).

For a pair of states S, S′ we say that S′ is directly reachable
from S iff there exists t ∈ T such that S−t→S′. We say that
S′ is reachable from S iff there exists a sequence of states
S1, . . . , Sk+1 and a sequence of transitions t1, . . . , tk ∈ T
such that S = S1−t1→S2−t2→. . .−tk→Sk+1 = S′. The
set of all states that are reachable from the initial state S0 is
denoted by R(S0).

States of an Alvis model and transitions among them
are represented using a labelled transition system (LST
graph for short). An LTS graph is a directed graph
LTS = (V,E, L), such that V = R(S0), L = T , and
E = {(S, t, S′) : S−t→S′ ∧ S, S′ ∈ R(S0)}. In other words,
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an LTS graph presents all reachable states and transitions
among them in the form of the directed graph.

A1:(running,1,[],())

 *: [in(clock,10)]

A1:(running,2,[],())

 *: [in(clock,9)]

A1:(waiting,2,[in(clock)],())

 *: [in(clock,8)]

A1:(running,3,[],())

 *: [in(clock,10)]

A1:(running,1,[],())

 *: [in(clock,9)]

A1:(running,2,[],())

 *: [in(clock,8)]

A1:(waiting,2,[in(clock)],())

 *: [in(clock,7)]

loop(A1)/1

in(A1.clock)/1

8/in(*.clock)

exec(A1)/1

loop(A1)/1

in(A1.clock)/1

7/in(*.clock)

Fig. 6. LTS for the model from Fig. 5.

The LTS graph for the model from Fig. 5 is presented in
Fig. 6. We have omitted the parameter n value in order to
receive a finite graph. Labels in the presented graph are of
the form t1/transitions/t2, where t1 stands for the time the
system stays in the old state and t2 stands for the duration of
the step. If any of the time values is equal to 0, it is omitted
together with the corresponding slash. The loop(A1)/1 means
that the agent executes the loop transition and it takes 1 ms.

Let us focus on the state S2 (n = 0):
S2 = ((waiting, 2, [in(clock)], (0)), [in(clock, 8)]).
In the state S1 agent A performs an in step to collect a signal
from the input border port clock. There is no signal to collect
thus, the agent changes its mode to waiting and waits for
such a signal (additional entry is included into the agent ci
list). Seven milliseconds later such a signal is generated by
the environment that is represented by the t∗in transition.
This transition finalises the agent A1 communication with its
environment. The signal is collected and the agent program
counter takes the next value.

Suppose, in(clock) /∈ ci2(A1). Thus, an execution of
the t∗in transition denotes a generation of a signal by the
environment, but the signal is not handled by the system.

Suppose, the border port clock is specified as follows:
in clock [] (map (10*) [1..]) durable;

end in(clock) /∈ ci(A1) when the t∗in transition is executed.
Thus, as a result of the transition execution the in(∗.clock)
is included into the ci list. It means that a signal provided
via port clock waits for handling. When executing the tin
transition, agent A collects the signal and immediately moves
to a state with pc(A1) = 3. If the queue modifier is used
instead of durable, a context information list of an agent may
contain more than one in(∗.clock) entry. Each of such entries
represents a signal waiting for handling.

Suppose, the border port clock is specified as follows:

in clock [] (map (10*) [1..]) signal;

This means that the environment only may provide a signal via
port clock every 10 ms, but we have no confidence that such
a signal will be generated. This modifier can be connected
with durable and queue ones.

To specify that a signal via port may be provided at any
time, we can use the following clause:

out clock [] [] signal;

In such a case agent A1 still counts the collected signals, but
this time there is not any regularity with respect to time points
the signals appear. Moreover, some signals can be lost, if they
come too often.

Let us focus on the A2 agent that is a part of an air
conditioner controller. The agent reads the current temperature
and turns on/off the air conditioner depends on the comparison
of the current temperature with a set threshold temperature. An
Alvis model of such a system is given in Fig. 7.

environment {
in temp [10..30] [];
out ac Bool [];

}

agent A2 {
t :: Int = 0;
threshold :: Int = 21;
loop { -- 1
in temp t; -- 2
if(t > threshold) { out ac True; } -- 3,4
else { out ac False; } -- 5
delay 30000; -- 6

}
}

Fig. 7. Collecting a sensor value from the environment.

Using the empty list in the ac border port specification
means that agent A2 can send a Boolean value via this port
any time it is necessary.

The LTS graph for the model from Fig. 7 is shown in
Fig. 8. To reduce the graph size we have used letters L and G
instead of values less than or equal to the threshold and greater
than the threshold respectively. The time label represents the
passage of time. This transition is executed only if there is no
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A2: (running,1,[],(L))

A2: (running,2,[],(L))

A2: (running,3,[],(G))

A2: (running,3,[],(L))

A2: (running,4,[],(G))

A2: (running,5,[],(L))

A2: (running,6,[],(G))

A2: (running,6,[],(L))

A2: (running,1,[],(G))

A2: (running,2,[],(G))

A2: (waiting,6,[timer(6,30000)],(G))

A2: (waiting,6,[timer(6,30000)],(L))

loop(A1)/1

in(A2.temp)/1

in(A2.temp)/1

if(A2)/1

if(A2)/1

out(A2.ac)/1

out(A2.ac)/1

delay(A2)/1

30000/time

loop(A2)/1

in(A2.temp)/1

in(A2.temp)/1

30000/time

delay(A2)/1

Fig. 8. LTS graph for the model from Fig. 7.

any other active one and at least one agent contains a timer
entry on its context information list.

VI. SUMMARY

Alvis communication with environment methods have been
presented in this paper, together with a basic language descrip-
tion. The environment specification was also introduced, which
is crucial for an effective LTS generation. From designers
point of view, the Alvis system description is composed of
two parts. The first one is a graphical system view, which
shows agents and the way they communicate one with another.
The second one is a textual specification of agents and the

environment behaviour. Together with a system layer, they
provide a possibility to simulate and verify an Alvis model.
A formal verification of Alvis models is based on LTS graphs
generated by the Alvis Translator [16] and external tools
provided by the CADP package [8]. CADP offers a wide
set of functionalities, ranging from step-by-step simulation
to massively parallel model-checking. This approach provides
a possibility to use also new methods of a state space explo-
ration in future.

In spite of process algebra origins, Alvis seems to be
more convenient from engineering point of view than process
algebras. Moreover, a system behaviour is related to selected
execution scenario, which is determined by the hardware that
executes a model. Alvis is able to perform an execution
similar to process algebra formalisms with unlimited numbers
of processing units (α0 system layer), but also can behave
as a one or two processors units with selected scheduling
functions.
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