
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2012, VOL. 58, NO. 3, PP. 285–295

Manuscript received July 4, 2012; revised August, 2012. DOI: 10.2478/v10177-012-0040-4

DC Large-Scale Simulation of Nonlinear Circuits

on Parallel Processors
Diego Ernesto Cortés Udave, Jan Ogrodzki, and Miguel Angel Gutiérrez de Anda

Abstract—Newton-Raphson DC analysis of large-scale nonlin-
ear circuits may be an extremely time consuming process even
if sparse matrix techniques and bypassing of nonlinear models
calculation are used. A slight decrease in the time required for
this task may be enabled on multi-core, multithread computers
if the calculation of the mathematical models for the nonlinear
elements as well as the stamp management of the sparse matrix
entries is managed through concurrent processes. In this paper
it is shown how the numerical complexity of this problem
(and thus its solution time) can be further reduced via the
circuit decomposition and parallel solution of blocks taking as
a departure point the Bordered-Block Diagonal (BBD) matrix
structure. This BBD-parallel approach may give a considerable
profit though it is strongly dependent on the system topology.
This paper presents a theoretical foundation of the algorithm, its
implementation, and numerical complexity analysis in virtue of
practical measurements of matrix operations.

Keywords—circuit simulation, parallel computation, DC anal-
ysis, circuit decomposition.

I. INTRODUCTION

A
LTHOUGH the idea of having multiple processors for

solving in a concurrent way computational problems

which can be conveniently broken down into smaller tasks is

rather old, relatively recent technological advancements have

made possible the development of multi-core processors which

are available to the average consumer. These processors have

found their way in many engineering applications. Evidently,

circuit simulation could not be left behind.

Long before the arrival of multi-core processors, several

researchers were concerned with the applicability of parallel

computers for the simulation of electronic circuits. Reference

[1] describes the first advances made in the area for computing

architectures with shared memory and a limited number of

processors. In [2], a complete discussion on specific tech-

niques which may be exploited to speed up the simulation

of electronic circuits in a parallel computing environment is

presented. Recent developments in the state of the art of the

last two years may be found in [3]–[8].

Specifically, two strategies can be considered to accelerate

the simulation process of a given circuit, namely, the use of

parallel threads for:

This work has been partially supported by Mexican CONACyT under grant
contract 84819-Y. Moreover, D.E. Corts Udave received a scholarship from
Mexican CONACyT under contract number 364221/243934 for the realization
of this work.

Jan Ogrodzki is with Institute of Electronic Systems, Warsaw Univer-
sity of Technology, Nowowiejska 15/19, 00-665 Warszawa, Poland (e-mail:
J.Ogrodzki@ise.pw.edu.pl).

D. E. C. Udave and M. A. Gutiérrez de Anda are with Instituto Nacional
de Astrofı́sica, Óptica y Electrónica, Calle Luis Enrique Erro 1, Santa Maria
Tonantzintla, C. P. 72840 San Andres Cholula, Puebla, Mexico (e-mails:
lordecu@gmail.com; mdeanda@inaoep.mx).

1) the setup and solution of the linearized modified nodal

equations required for the analysis,

2) the partitioning of the original simulation problem into

a collection of simpler problems which can be concur-

rently solved.

The most essential routine in any circuit simulator devoted

to the analysis of nonlinear circuits is the determination of

at least a single DC solution [9], [10]. This solution may be

used to establish a small-signal model suitable for AC analysis

for a given circuit or can be used as initial condition which

is congruent with the determination of its transient response

through the integration of its associated differential-algebraic

equations [11]. The most used method for the determination

of DC solutions is the Newton-Raphson (NR) iterative method

[12]. Unfortunately, the determination of DC solutions for

nonlinear circuits based on the aforementioned method can

become an extremely time-consuming process for large-scale

systems. There are some well-known methods to alleviate

this problem such as the step control for the NR iterative

process, the use of sparse-matrix techniques for the solution of

linear equations formulated through the course of the iterative

process. Moreover, it is also possible to reduce the complexity

of the matrix formulation process by bypassing the calculation

of mathematical models of nonlinear elements when their

branch voltages or currents have not changed significantly in

previous iterations. These methods may lead to a reduction

in the time required to find a given DC solution either by

a reduction in the number of mathematical operations carried

out or by a decrease in the number of iterations required. At

this level, it is even possible to consider the parallel solutions

of the linearized equations established during the solution

process [13]–[15].

Another strategy is the partitioning of the original system of

linearized equations used in the determination of a DC solution

into a series of equation subsets which may, in principle, be

taken as “decoupled” of each other. If this strategy is consid-

ered, the linearized equations of the circuit under analysis take

a Bordered Block Diagonal (BBD) structure. In topological

terms, such an approach is equivalent to decompose a circuit

into simpler subcircuits which show a strong local connectivity

for their internal nodes but are loosely connected to each

other. In principle, each of these subcircuits could be treated as

a separate problem and concurrently solved. In this strategy the

decomposition procedure applied to the linearized equations of

the circuit, as it takes place in our paper, or can be applied

to its nonlinear equations to yield the Multi-level Newton-

Raphson method as it has been considered in a number of

works [16]–[19].

In this paper, a circuit simulator which combines the afore-

mentioned strategies is presented. Moreover, an improvement

286 D. E. C. UDAVE, J. OGRODZKI, M. A. GUTIÉRREZ DE ANDA

of the formulation of the BBD decomposition required for

the concurrent solution of subcircuits is also presented. The

subsystems of equations formulated through the previous

decomposition scheme are solved concurrently by means of

parallel threads in a multi-core processor platform. Depending

on the complexity of the circuit under analysis, the proposed

approach is able to shorten its simulation time.

The algorithm presented in this paper is implemented in

C++. It has been evaluated and compared against similar

analysis approaches. This algorithm serves as the core of

a rather simple circuit simulator which is devoted to the

determination of the operating point of a circuit containing

nonlinear elements. The circuit simulator formulated for this

aim is endowed with a circuit description language which

allows some flexibility in the description of circuits with two-

terminal nonlinear elements.

II. THE PARALLELIZABLE BBD-BASED ALGORITHM

In order to parallelize the DC analysis of a large-scale

nonlinear circuit (LSNC), it must be first partitioned into

a collection of nonlinear subcircuits. The NR method applied

to the resulting circuit configuration transforms the original

problem into a simpler problem, namely, formulation of a se-

quence of solutions of large scale linear circuits (LSLC), each

one decomposed into linear blocks. The decomposition of the

LSLC into linear blocks is equivalent to the reordering of its

linear equations and its unknown variables in such a way that

the BBD structure of the matrix is attained [20]–[22]. In the

reordering process we utilize a concept of internal variables

and block variables. Since the internal variables (in groups

corresponding to subsequent blocks) are first enumerated,

they are also first eliminated during Gaussian Elimination

(GE) of the solution process. The GE is stopped after the

elimination of all the internal variables. Such a partial GE

gives equations stretched over block variables only. These

equations can be interpreted as the equations of a LSLC built

of blocks represented by their Thévenin-Norton equivalents,

i.e. the equations with eliminated internal variables.

Let the LSLC be composed of ns blocks as it was intro-

duced in [23]. The i-th block (i = 1, . . . , ns) contains ni

internal variables xi and n0i block variables v0i which connect

the block with other blocks. In Fig. 1 an example is shown

where the circuit is composed of ns = 3 blocks. For instance,

subckt 1 has 3 block variables {v1, v2, ground}, a number of

internal variables x1 and a vector b1 of internal excitations.

The block variables belonging to all the circuit blocks as well

as the nodal voltages of those elements which do not belong

to a particular circuit block (e.g., the voltage source V and

resistor R) form a set of block variables v0 of the LSLC. The

LSLC, e.g. the circuit shown in Fig. 1, can be described by

means of equations which have a matrix of the BBD form,

namely:

Y1 P1

Y2 P2

Y3 P3

Q1 Q2 Q3 R

x1

x2

x3

v0

=

b1

b2

b3

b0

(1)

In equation (1), Yi (i = 1, 2, 3) denote matrices of the

blocks, Pi are responsible for connections of the blocks with

the block terminals which have voltages v0, Qi and R describe

a current balance at the block nodes and R denotes a matrix

created by elements connected to the block nodes. Among

these elements we have elements belonging to the blocks as

well as elements external to them (e.g., the resistor R in Fig. 1).

As for the RHS of (1) it is composed of the internal excitations

bi of the blocks and of the excitations b0 connected to the

block nodes. These excitations may belong to the circuit blocks

or may be external to them (e.g., the voltage source V in

Fig. 1).

If we separate the i-th block then its equations take the

form:
[

Yi Pi

Qi Ri

] [

xi
v0i

]

=

[

bi

b0i

]

. (2)

where Ri, b0i are a matrix and an excitation vector created by

those elements of the block which are connected to the block

nodes. After elimination of the internal variables xi from (2)

the following relation is obtained:

R̂iv0i = b̂i, (3)

where the matrix R̂i = Ri − QiY
−1

i Pi and the vector

b̂i = b0i − QiY
−1

i bi constitute a Thévenin-Norton equivalent

of the block. A description of this equivalent can be rewritten

as:

R̂i = Ri − QiMi, b̂i = b0i − Qini, (4)

where the matrix [Mi, ni] is a solution of the multi-RHS

equation:

Yi[Mi, ni] = [Pi, bi]. (5)

Since the main circuit contains ns blocks, therefore we

have the structure as in (1). After the reduction of the internal

variables, we may take into account only reduced equations

of the main circuit, namely:

R̂v0 = b̂, (6)

where the matrix R̂ and the vector b̂ are a superposition of

contributions of elements constituting the main circuit, i.e. the

blocks and the elements not belonging to any circuit block

such as the voltage source V and the resistor R in Fig. 1.

Hence eq. (6) may be formulated by means of stamps. The

stamps of the blocks are calculated from eq. (4), whereas the

stamps of distinct elements for the setup of modified nodal

equations (MNE) are well known [11].

Fig. 1. Example of the main circuit built of 3 subcircuits and 2 distinct
elements.

DC LARGE-SCALE SIMULATION OF NONLINEAR CIRCUITS ON PARALLEL PROCESSORS 287

After the solution of the main circuit equations (6) with

respect to v0 we select for each block a subset of relevant

solutions v0i and calculate internal variables from (7) resulted

from the 2nd row of (2) after some algebra:

Yixi = bi − Piv0i. (7)

The solution of equations (5) and (7) needs a single LU

decomposition of Yi followed by several forward-backward

(FB) substitutions. A final NR Algorithm 1 is composed of the

following 4 steps repeated in the NR loop until a convergence

is reached. The solutions of (5), (6), (7) and the result of the

matrix multiplications indicated in (4) are obtained with the

help of the sparse matrix techniques. Moreover, a two-level

bypassing process may be easily implemented: bypassing

of nonlinear elements in step 1 of Algorithm 1 during the

calculation of stamps for nonlinear elements and bypassing

of blocks in step 4 during the calculation of their stamps

indicated in (4).

Algorithm 1.

In subsequent NR iterations until convergence is reached:

1) For all blocks: formulation of submatrices with bypass-

ing and solution of (5) (one LU factorization, several

FB substitutions). This step is parallelizable.

2) For all blocks: matrix multiplications: R̂i = Ri−QiMi,

b̂i = b0i − Qini. This step is parallelizable.

3) Formulation of the matrix and RHS of the main circuit

using stamps of blocks; bypassing; solution of (6).

4) For all blocks: multiplications; solution of (7) (only FB

substitutions). This step is parallelizable.

III. ANALYSIS OF NUMERICAL COMPLEXITY

A. The Full Matrix Model

Let the LSNC circuit be composed of ns blocks connected

to n0 block nodes and of N unknown variables of modified

nodal equations. For simplicity and without any lack of

generality let the blocks will be of the same size, i.e., each one

has the same number ni = (N −n0)/ns of internal variables.

Each NR iteration of Algorithm 1 requires a sequence of

the following operations:

• for ns blocks: LU factorization of a (ni × ni)-matrix,

n0 + 1 FB substitutions for RHSs of size ni, multipli-

cation of a (n0 × ni)-matrix by a (ni × n0)-matrix, two

multiplications of an (n0 × ni)-matrix by an (ni × 1)-

vector, FB substitution for the RHS of size ni;

• LU factorization and FB substitutions for the (n0 × n0)-

matrix of the main circuit.

If we take into account subtractions, multiplications and

divisions then, for a (n×n)-matrix, the numerical complexity

for the operation of the solution process are as follows:

TLU(n) =
2

3
n3 −

1

2
n2 −

1

6
n,

TFB(n) = n(2n− 1)

and

TMUL(p, q) = p2r(2q − 1)

(multiplication of a (p× q)-matrix by a (q × p)-matrix).

Let us compare three different versions of the algorithm:

• solution by means of one large system of equations

without neither decomposition nor parallelization,

• solution via BBD decomposition without any paralleliza-

tion,

• solution via BBD decomposition with parallelization.

In the first case (one set of equations), we have one

LU factorization and one FB substitution, so the numerical

complexity takes the form Tone = TLU (N)+TFB(N). In the

second case (circuit decomposition and serial solution), the

numerical complexity is equal to

Tser = nsT1 + T2

where

T1 = TLU(ni) + (n0 + 2)TFB(ni)+

+TMUL(n0, ni, n0) + 2TMUL(n0, ni, 1),

T2 = TLU (n0) + TFB(n0).

After some algebra this yields:

T1 =
2

3
n3

i +
7

2
n2

i −
13

6
ni+n2

0
(2ni− 1)+n0(2n

2

i +3ni− 2),

T2 =
2

3
n3

0
+

3

2
n2

0
−

7

6
n0,

In the third case (circuit decomposition and parallel solu-

tion), let us assume infinite number of parallel processors with

no latency issues for the creation of separate threads. Then the

complexity can be written as

Tparal = T1 + T2 =
2

3
n3

i +
7

2
n2

i −
13

6
ni +

2

3
n3

0
+

+n2

0
(2ni +

1

2
) + n0(2n

2

i + 3ni −
19

6
).

To describe an ideal, theoretical profit of the parallel imple-

mentation we introduce two figures of merit:

• the figure of merit η = Tser/Tparal normalized to

a complexity of the serial implementation,

Fig. 2. Theoretical η(n0/N, ns) of the full matrix algorithm.

288 D. E. C. UDAVE, J. OGRODZKI, M. A. GUTIÉRREZ DE ANDA

Fig. 3. Theoretical ς(n0/N, ns) of the full matrix algorithm.

• the figure of merit ς = Tone/Tparal normalized to

a complexity of the one big matrix implementation.

Both figures of merit can be plotted against three parame-

ters: N = nsni + n0, ns and n0. Let N be fixed, e.g. equal

to 100000. The introduced figures of merit can be analyzed

in the 2D space, namely η(ns, n0) as it is shown in Fig. 2

and ς(ns, n0) as it is plotted in Fig. 3. We observe that both

ideal figures of merit increase with ns and decrease with n0.

If n0 → 0 then η → ns and ς → n3

s. If n0 → N then η → 1
and ς → 1. Both figures of merit are always greater than 1.

This shows that in all cases of the full matrix implementation

the parallel algorithm is better than a respective serial one,

especially strongly when n0 ≪ N . Moreover we observe

from η and ς that, for a ns small in comparison with N ,

the efficiency of the algorithm is weakly dependent on n0. If

n0 ≪ N , the figures of merit approach ns and n3

s respectively.

Fig. 4. Theoretical η(n0, ns) of the sparse matrix algorithm.

Fig. 5. Theoretical ς(n0, ns) of the sparse matrix algorithm.

B. Complexity Model for the Sparse Matrix Techniques

In this section we continue introductory results from [24].

The implementation of the algorithm proposed in this paper

makes use of sparse matrix techniques for performing the

matrix manipulations. The open-source KLU library has been

used for this aim [25]–[27]. Since arithmetic operations could

not be counted, an estimated number of operations involved for

the matrix manipulations was obtained by means of dedicated

experiments and computation time measurements. A surprising

result of these experiments was that the library is so efficiently

programmed that the LU factorization operates in the time

Θ(n) while the FB substitution is carried out in the time Θ(1)
(independent of the matrix size n to the measurement accu-

racy). Hence we introduce the complexity models: TLU (n) =
β1n+α1, TFB(n) = α2, TMUL(ni, n0) = α3n

β31

i nβ32

0
(in the

latter a (n0 × ni)-matrix is multiplied by a (ni × n0)-matrix).

The introduced parameters are with a very good accuracy

linear with respect to the matrix sparsity coefficient γ, i.e.:

α1 = 1.1831γ+0.09593µs, β1 = 0.007695γ+0.03337µs,

α2 = 0.0385µs, α3 = 6.275γ + 4.3936µs,

β31 = 1.925γ + 0.3225, β32 = 0.4γ + 1.4533.

on a computer with the I7 microprocessor. After some algebra,

the figures of merit η(ns, n0, γ) and ς(ns, n0, γ) introduced in

Subsection III.A have been calculated for the case of sparse

matrices. In Fig. 4 and Fig. 5 respectively these figures of

merit have been plotted against n0 for several values of ns

and with a sparsity coefficient γ = 0.09, while in Fig. 6

and Fig. 7 respectively they have been plotted against γ. The

complexity models and evaluations of the figures of merit

involved are much more realistic compared to ones introduced

in Subsection III.A for the full matrices case. This complexity

analysis realistically shows features of the proposed algorithm.

Its efficiency η (advantage of the parallel algorithm over the

serial one) in Fig. 4 and Fig. 6 is weakly dependent on n0

and γ, and is very well approximated by ns.

DC LARGE-SCALE SIMULATION OF NONLINEAR CIRCUITS ON PARALLEL PROCESSORS 289

Fig. 6. Theoretical η(γ, n0, ns) of the sparse matrix algorithm.

Also according to the figure of merit ς(ns, n0, γ) (compa-

rison of the parallel algorithm with a decomposition-free one

in Fig. 5 and Fig. 7) we can say that it is rather weakly

dependent on n0, and decreases with the sparsity coefficient,

as well as with a number of subcircuits. If γ < 0.1 (realistic

in large-scale circuits) and ns < 500, then ς(ns, n0, γ) though

greater than one, simultaneously it can reach, at most, 6.

This level of efficiency with respect to the decomposition-free

approach is all what we can expect from the algorithm.

IV. IMPLEMENTATION

A. Input Language and Parsing

The circuit description language is similar to the language

used by SPICE [28] with specific modifications to enable the

inclusion of user-defined nonlinear elements. An instance of

a nonlinear resistor is defined as follows:

R<name> <positive node> <negative node> u(i)

’<expression i>’ <current guess>

where the string <name> serves as a unique identifier for that

instance in the input netlist, whereas strings <positive node>
and <negative node> stand for identifiers of the nodes:

a positive one and a negative one. The ordering of the nodes

for a nonlinear resistor is essential since it establishes the

direction of a positive current flowing through the element

under consideration. Finally, <expression i> (which is always

enclosed between single quotes) is an algebraic expression

which defines the branch voltage as a function of the branch

current and with some numerical parameters or user-defined

functions involved. Common mathematical functions such as

the trigonometric functions are also available for their use in

the formulation of the branch relation of a nonlinear resistor

as well as of other nonlinear two-terminal elements. The

nonlinear resistor thus defined is in fact a voltage defined,

current-controlled element. Evidently, its current constitutes

an unknown in the set of MNE which must be formulated

Fig. 7. Theoretical ς(γ, n0, ns) of the sparse matrix algorithm.

to determine the bias point of a given circuit. It must be

also noted that there is no restriction in the formulation of

the algebraic expression used in the definition of the branch

characteristic for a nonlinear resistor. Therefore, in order to

facilitate convergence of the NR iterations when handling

nonlinear resistors, the user may establish an initial guess

of the branch current flowing through the nonlinear resistor

by adding the <current guess> token after the expression.

If <current guess> is not given, then the initial guess of its

branch current will be equal to zero.

In a similar way, an instance of the nonlinear conductance

is defined as

R<name><positive node><negative node> i(u)

’<expression u>’ <voltage guess>

In this statement <expression u> is an algebraic expression

which describes the branch current as a function of the

branch voltage. In this case, a definition of an initial guess

of the branch voltage is possible as well. Unlike the nonlinear

resistor, this element is fully compatible with the formulation

of nodal equations for current defined, voltage-controlled

elements. Note that the simulator can handle only explicit

formulae either for the branch voltage of a resistor in terms of

its branch current or for the branch current of a nonlinear

conductance in terms of its branch voltage. Consequently,

implicit mathematical relations for any of the aforementioned

nonlinear elements are not allowed.

An instance of a nonlinear voltage-controlled voltage

source (VCVS) takes the form

E<name><positive node><negative node>
<controlling positive node><controlling negative node>
’<expression>’ <voltage guess>

In this statement, the string <name> is used to identify

the instance in the input netlist. Moreover, the strings

290 D. E. C. UDAVE, J. OGRODZKI, M. A. GUTIÉRREZ DE ANDA

<positive node> and <negative node> indicate the nodes

where the VCVS is connected. The controlling variable

for this VCVS is given by a difference of nodal voltages

of two nodes. These controlling nodes are respectively

identified with the strings <controlling positive node>
and <controlling negative node>. Finally, the string

<expression> contains a valid algebraic expression involving

the controlling voltage as well as user-defined parameters

and functions. An initial guess definition for the controlling

voltage is also available through the string <voltage guess>.

If this information is omitted by the user, the initial guess for

the controlling voltage is assumed to be equal to zero.

For an instance of a current-controlled voltage source

(CCVS), its definition has the following form:

H<name><positive node><negative node><element>

’<expression>’ <current guess>

In the previous statement, the string <element> contains

the name of an element whose current controls the CCVS.

This element cannot be considered in the formulation of nodal

equations (NE) but it is acceptable by the modified nodal

equations (MNE) where current of this branch is included as

an unknown in the set of equations. Optionally, an instance of

a current-controlled voltage source also may have indicated by

<current guess> an initial guess for the controlling current.

Similar definitions of instances to the controlled sources

presented so far are available for voltage-controlled current

sources (VCCS) and the current-controlled current sources

(CCCS). Independent voltage and current sources are defined

in the same way as in SPICE. The circuit language supports

the definition of subcircuits. The definition of a subcircuit in

the input netlist is made in the same way as in SPICE. The

inclusion of subcircuits in the input netlist is very important

since the simulator is not able to automatically identify circuit

blocks with a high local connectivity. This task is left to the

user and for this reason the inclusion of subcircuits in the input

language is a required feature.

The parsing process of a given input netlist is driven by

a finite state machine. The finite state machine was imple-

mented with the aid of bison [29]. For this aim, a grammar

of the input language for the simulator has been formulated.

Particular care was taken in the formulation of the grammar in

order to avoid reduce/reduce or shift/reduce conflicts to enable

an automatic generation of the finite state machine with the

aforementioned software tool. The parser required a routine for

the extraction of tokens from the input netlist. For this aim,

flex was used to build a lexical scanner [29]. The netlist was

stored in a data structure which consists of a series of linked

lists hierarchically organized for storing each of the elements

present on it according to its type. In order to facilitate the

creation process of the code required by each of these linked

lists, the Tm tool was used [30]. The version of Tm used

for the management of the code for the parser data structures

was 2.2.1, whereas the versions of bison and flex used for the

automatic generation of the parser code were, respectively,

2.4.1 and 2.5.35.

B. Architecture of the Main Solver

The implementation of the algorithm described in this

section can be outlined in the following 6 steps:

• Parsing of the net-list (this step was already discussed in

Subsection IV.A).

• Setup of data structures for each of the subcircuit in-

stances.

• Building matrices of subcircuits.

• Extraction of matrix entries where updating is required

during NR iterations.

• Iterative solution process including bypassing of elements

and subcircuits.

• Generation of a text file with final results of the DC

analysis.

The last five steps of this process will be now described

with more detail.

The setup of data structures for each of the subcircuit

instances contained in a given input netlist is an important

step of the data processing required to determine the bias

point of a nonlinear circuit using parallelization techniques as

described in this paper. First of all, a subcircuit definition may

be used several times to define a number of subcircuit instances

in a given netlist. In fact, the subcircuit instances contained in

the main circuit of an input netlist may be used to establish in

a natural way a partition for a given circuit into a number of

circuit blocks which are loosely connected to each other. For

each subcircuit instance contained in the main circuit, the data

structure containing its definition in terms of other elements

must be copied. After this, all the circuit elements contained

in that data structure must be renamed. This step is required

to establish a difference between the constitutive elements of

two different instances of the same subcircuit class. A similar

process must be carried out for the internal nodes of each

subcircuit instance. During this process, the relation between

the external nodes of the subcircuit and the nodes of the main

circuit must not be lost.

Once this process has been completed, submatrices rep-

resenting each of the subcircuits instances must be built.

Given that the linearized equations of the complete circuit

must take a BBD form as indicated in equation (1), a set

of matrices (Yi, Qi, Pi, Ri) must be generated for each

subcircuit instance. These matrices are required to analyze

a given subcircuit as indicated by (2) for the unknowns (xi

and v0i). According to the same expression, the excitation

vectors (bi and b0i) must be generated as well. In order

to create the aforementioned matrices and vectors, all the

variables belonging to the subcircuit must be extracted. For

this aim, a vector which will contain, respectively, the names

of all the nodes as well as the names of all the currents of all

voltage-defined, current-controlled elements must be created.

The vector associated to the node tags must be arranged in

such a way that the internal nodes appear first. After these

variables, the block nodes (i.e., nodes connected to the main

circuit) should appear. Finally, the names of the currents of

the elements which are not compatible with the nodal analysis

must appear. After this, a reordering process for the internal

variables must be performed. More specifically, the current

belonging to a voltage source and one of its nodal voltages

DC LARGE-SCALE SIMULATION OF NONLINEAR CIRCUITS ON PARALLEL PROCESSORS 291

Fig. 8. Linked list representation of a sparse matrix. In this representation, for instance, value3 is located in its second column (c = 2) and in third row
(r = 3).

must be exchanged. This reordering strategy, which is used

in many simulators [11], [28], eliminates a diagonal structural

zero and speeds up the LU factorization. At the very end, the

vector containing the tags for all the nodes and the currents of

all the voltage-defined, current-controlled elements of a given

subcircuit will be used to establish indexes for the columns and

rows of the matrices Yi, Qi, Pi and Ri which are required

to describe it. The aforementioned matrices are stored as

sparse matrices in the column-compressed form, i.e. they have

elements stored in a linked list in column order while the rows

in each column appear in an arbitrary order as it is shown in

Fig. 8. The formulation process for these matrices adds the

corresponding stamps for each of the elements present in the

definition of a given subcircuit taking into account the indexes

which were previously obtained for all the unknowns.

The subcircuit matrices stored in the linked list are trans-

lated into an alternative representation for its further pro-

cessing with the routines provided by the KLU library. The

KLU package [25]–[27] requires that a given sparse matrix is

described in a compact way through the use of four different

variables. The first one is an integer variable denoted as n.

This variable contains the number of columns of a given sparse

matrix. The second one is a real vector denoted as Ax which

contains all the values of the structurally nonzero elements

of the sparse matrix. This vector is organized such that the

structurally nonzero elements are stored according to their

order of appearance in the sparse matrix columns. In order

to indicate the start of each column, an integer vector known

as Ap is used. This vector is of size n + 1 and its first n
entries represent indexes which indicate where each column

begins. These indexes point to specific locations in the array

Ax. The last entry of vector Ap is equal to the number of

structurally nonzero elements contained in the sparse matrix.

This information is required to track the size of vector Ax in

a simple way. Finally, an integer vector known as Ai contains

the row indexes of all the structurally nonzero elements of

the sparse matrix. Evidently, the length of Ai is equal to the

number of the structurally nonzero elements of the sparse

matrix. According to the representation scheme previously

introduced, matrix:

1 0 5
4
3 6

could be described as follows: n = 3, Ax = [1, 0, 3, 4, 5, 6],
Ap = [0, 1, 4, 6], Ai = [0, 0, 2, 1, 0, 2]. Note that Ap(4) = 6
denotes the number of structurally nonzero elements. In this

example, it can be seen that Ax(2) = 0. Although this element

does not need to be stored in a sparse matrix, it may be still

treated as a structurally nonzero entry. Therefore, it can also

be stored in this representation scheme.

When the KLU representation is ready, stamps of the

subcircuits (R̂i, b̂i according to eq. (4)) may be built. This

stamp is described by a structure which contains three KLU

matrices: two for R̂i, b̂i and one more in order to return

voltage solutions at the connection nodes of the subcircuit.

Its calculation requires a solution of the eq. (5) and the sparse

multiplications indicated in equation (4). After the construction

of all stamps of the subcircuits, we proceed to the main matrix

building process in the same manner as it was for matrices of

the subcircuits: first we add all elements belonging to the main

circuit and then all the stamps (4) of the subcircuits.

At the next step we extract positions where information on

the nonlinear elements appears and so the stamps will be added

to the submatrices and the main matrix. This considerably

speeds up the execution process. The prepared information is

stored in linked lists which contain pointers to entries in the

matrices where values are iteratively updated and convergence

tests are performed. These lists are of different structure for

different types of elements and have the length equal to

a number of elements of a given type. This extraction process

is performed on two levels: extraction of positions of nonlinear

elements in the subcircuits and extraction of positions of

stamps to the main matrix of distinct nonlinear elements and

subcircuits.

In the next step, an iterative solution is performed by

means of the NR algorithm with the BBD decomposition.

In this process, a mechanism for bypassing the formulation

of linearized equivalents for selected nonlinear elements has

been included as well. As a first stage in this iterative process,

the main circuit should be solved first. This solution should

be passed to the subcircuits in order to solve them for their

internal variables. After completing this task, convergence tests

for all nonlinear elements of all subcircuits must be carried out.

A convergence test for a given nonlinear element is performed

according to the following expression

|x1 − x0| ≤ εmax(|x1|, |x0|) + δ (8)

where δ and ε are absolute and relative accuracies while x1, x0

are the values of the controlling and controlled variables of the

nonlinear element in consideration (voltages and/or currents)

during the current and preceding NR iteration respectively.

If a nonlinear element meets condition (8), its next iterative

calculation is bypassed and the element is treated as a lin-

earized one. Moreover, if all the nonlinear elements belonging

to one subcircuit satisfy the convergence condition, then the

iterative calculation of the stamp for this subcircuit is bypassed

and the subcircuit is treated as a linear one. This two-level

bypassing process considerably speeds up calculations. If an

element does not satisfy the stopping condition, corresponding

entries in the matrix Ax are updated by recalculation of the

292 D. E. C. UDAVE, J. OGRODZKI, M. A. GUTIÉRREZ DE ANDA

Fig. 9. General structure of the software.

stamp and NR iterations are continued until convergence is

reached.

During the final stage, the DC variables for all the elements

(voltages, currents, powers) are calculated and printed to an

output file. These results are arranged according to the order

established by the subcircuits.

An overall structure of the program is summarized in Fig. 9.

In this schematic, those tasks which can be executed either in

a serial or in a parallel fashion are clearly marked. The code

belonging to the tasks which can be concurrently executed was

parallelized using the Intel Parallel Studio design environment

[31]. The use of this software tool made possible in a relatively

short time the implementation of the proposed algorithm on

multi-core, multithread processors.

It must be noted that the setup of the data structures required

to handle each of the subcircuit instances is executed in

a serial way. The setup of the aforementioned data structures

for each of the subcircuits may involve multiple accesses to

the same memory block. This kind of operations should be

discouraged in a parallel environment. Once the auxiliary data

structures are ready in sparse form, we can perform in parallel

a building process for all the structures of the subcircuits

and execute, also in parallel, the process of extraction of the

updated entries in the subcircuit matrices. As for the main

circuit, its matrix manipulation must be done in a serial way

Fig. 10. Principle of construction of benchmark circuits for the performance
assessment of the parallel simulator.

as well as the extraction of its updated entries to the matrix.

Afterwards, the solving process may be performed in a mixed

manner: the solution of the main circuit is done in series,

while the solutions of all internal variables of the subcircuits

are performed in parallel. Regarding the convergence tests

for the nonlinear elements and the update process of all the

matrices involved, they must be done in a mixed fashion.

Calculation of the convergence criteria for nonlinear elements

of the main circuit (distinct elements and those belonging to

the subcircuits) have to be implemented in series, while the

convergence criteria for elements of the subcircuits may be

calculated in parallel. At the very end the output file is created

in a serial process.

V. VERIFICATION AND CONCLUSIONS

A. Circuit Benchmarks Used for Verification

In this section, some results obtained from the performance

testing of the BBD algorithm on parallel processors will be

presented. For this aim adequate benchmarks have been gener-

ated which have a fixed total number of variables and a regular

structure composed of the same subcircuits. Each subcircuit is

a one-port (two-terminal) network built of ni parallel branches,

each one composed of a diode and a conductance in series.

We place ns subcircuits like this among n0 block nodes as it

is shown in Fig. 10. All the benchmarks differ in ni, ns, n0

but always hold the relation nsni + n0 = N .

For each subcircuit, the matrix given on the LHS of (2) is

of the following sparse structure:

[

Yi Pi

Qi Ri

]

=

x x x
x x x

.
x x x

x x . . . x x
x x . . . x x

(9)

where structural nonzero entries are denoted by x. The last

two rows and columns of the matrix stand for the terminal

nodes while the first ni rows and columns correspond to ni

internal nodes xi. The mean sparsity coefficient of this matrix

is

γ = ns(5N − 5n0 + 2ns)/(N + 2ns − n0)
2. (10)

DC LARGE-SCALE SIMULATION OF NONLINEAR CIRCUITS ON PARALLEL PROCESSORS 293

Fig. 11. The η-region for fixed n0 = 110.

If N = 100000, n0 = 1000, ns = 2000, then for instance

γ is equal to 0.094.

B. Efficiency Regions

Efficiency regions, η-region and ς-region, provide a conve-

nient description of the algorithm performance, namely:

η − region = {(ns, n0, γ) : η(ns, n0, γ) > 1}, (11)

ς − region = {(ns, n0, γ) : ς(ns, n0, γ) > 1}. (12)

where η(ns, n0, γ) and ς(ns, n0, γ) have been introduced in

Subsection II.A. 2D cross-sections of these regions for a given

n0 and complexity models from Subsection III.B can be easily

generated. The η-region is rather extensive, as we see in

Fig. 11 for n0 = 110, and N = 100000. It demonstrates that

the BBD-parallel algorithm is more efficient than the serial

one for all reasonable combinations of the circuit parameters.

As for the ς-region, its properties are quite different. For

the same N and n0, as in the η-region case, we obtain a plot

given in Fig. 12. From this plot we see that the BBD-parallel

Fig. 12. The ς-region for fixed n0 = 110.

Fig. 13. The ς-region for the introduced benchmark circuits.

algorithm is more efficient than the decomposition-free one if

γ < 3e− 7ns (matrices are of strong sparsity).

Now we come back to the aforementioned benchmarks,

whose sparsity coefficients satisfy the relation (10) and we

explore their ς-region in the (ns, n0)-plane. From this region,

plotted in Fig. 13, it can be found out that the BBD-parallel

algorithm may be more efficient than the decomposition-

free one if n0 < 30. This condition may be satisfied for

ns < 10000 or for ns > 30000 and n0 < 3e − 4ns.

The algorithm will be efficient for instance if n0 = 13 and

ns = 5000 or ns = 50000 and n0 < 15.

C. How to Test Practical Efficiency?

Practical verification of the algorithm will require two or

better three versions of the simulator code.

In the case of two versions generated by means of the

Intel Parallel Studio [31] in the Linux environment: a serial

one with the BBD-decomposition and a parallel one with

Fig. 14. The zoomed ς-region for the introduced benchmark circuits.

294 D. E. C. UDAVE, J. OGRODZKI, M. A. GUTIÉRREZ DE ANDA

the BBD-decomposition, the latter according to the schematic

in Fig. 9. Both versions are executed on the same available

processor, simulation times, tserial and tparallel, are measured

for several combinations of ns and n0, and a practical figure

of merit ηp = tserial/tparallel is calculated. As for the figure

of merit ςp = tone/tparallel, we have a problem with the lack

of the decomposition-free code and its simulation time tone.

That is why only an approximation ςapp of the ςp may be

obtained in virtue of an assumption that execution times of the

serial and the decomposition-free codes are both proportional

to the theoretical figures of merit Tserial, and Tone, known

from Subsections III.A and III.B, respectively. Hence, we

obtain the approximation ςapp = ηpTone/Tserial. This enables

a rough verification of the BBD-parallel code compared with

the decomposition-free code.

After implementation of the decomposition-free algorithm

by means of the KLU package used in the BBD-parallel

simulator, the three codes will be available and a better

evaluation of the BBD-parallel algorithm will be possible in

a straightforward way. So far we have only a semi-empirical

comparison based on measurements of the sparse matrix

operations in Section III.B.

D. Conclusions from the Semi-empirical Verification

As we see from analysis of the semi-empirical figure of

merit η, the parallel computation of the subcircuits provides an

advantage theoretically proportional to a number of subcircuits

ns. In practice this optimistic result is limited by an efficiency

of a linear equations solver. Hence, we have to use the figure

of merit ς instead of η. The higher efficiency of the linear

solver, relatively the lower is efficiency ς of the BBD-parallel

algorithm.

Theoretically, for the full matrix techniques this figure of

merit might be even O(n3

s). For the sparse matrix techniques,

the BBD-parallel algorithm is less advantageous, though still

efficient. So far used sparse matrix packages, operating in time

O(n1.1−1.5), provided an efficient BBD-parallel analysis for

a not to big number of the block-nodes. However, the KLU

package implemented in this project is yet more efficient and

operates in the linear time. This limits efficiency of the BBD-

parallel algorithm to rather small main circuits (n0 < 30) and

rather low sparsity coefficients, though a number of subcircuits

may vary in a wide range, as it is seen in Fig. 13. Fig. 14

demonstrates the same ς-region zoomed to ns < 3000. We

see that a biggest n0 (about 25) occurs for 500 < ns < 1000.

In this range the algorithm is the most useful.

The efficiency conditions found in this paper limit practical

applications of the BBD-parallel algorithm to a rather small

number of block nodes. This requires a smart method of

large-scale circuit decomposition. In this paper we recommend

its implementation as an alternative for a decomposition-

free algorithm, automatically switched-on in the case when

the efficiency conditions discussed in this paper and also

decomposition conditions are satisfied.

REFERENCES

[1] K. A. Gallivan, M.-C. Chang, I. N. Hajj, D. Smart, and T. N. Trick,
“Parallel circuit simulation on supercomputers,” Proceedings of the
IEEE, vol. 77, no. 12, pp. 1915–1931, 1989.

[2] M. Günther, U. Feldmann, and J. ter Maten, “Modelling and dis-
cretization of circuit problems,” in Handbook of Numerical Analysis:
Numerical Methods in Electromagnetics, W. H. A. Schilders and E. J. W.
ter Maten, Eds. Amsterdam, The Netherlands: Elsevier Science, 2005,
pp. 523–659.

[3] X. Ye, W. Dong, P. Li, and S. Nassif, “Hierarchical multialgorithm par-
allel circuit simulation,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 30, no. 1, pp. 45–58, 2011.

[4] E. R. Keiter, H. K. Thornquist, R. J. Hoiekstra, T. V. Russo, R. L.
Schiek, and E. L. Rankin, “Parallel transistor-level circuit simulation,” in
Simulation and Verification of Electronic and Biological Systems, P. Li,
L. M. Silveira, and P. Feldmann, Eds. Heidelberg, Germany: Springer,
2011, pp. 1–21.

[5] H. K. Thornquist and E. R. Keiter, “Advances in parallel transistor-level
circuit simulation,” in Scientific Computing in Electrical Engineering
SCEE 2010, B. Michielsen and J.-R. Poirier, Eds. Heidelberg, Germany:
Springer, 2012, pp. 257–265.

[6] C. Baker, E. Boman, M. Heroux, E. Keiter, S. Rajamanickam, R. Schiek,
and H. Thornquist, “Enabling next-generation parallel circuit simulation
with Trilinos,,” in Euro-Par 2011: Parallel Processing Workshops,
M. Alexander, P. D’Ambra, A. Belloum, G. Bosilca, M. Cannataro,
M. Danelutto, B. D. Martino, M. Gerndt, E. Jeannot, R. Namyst,
J. Roman, S. Scott, J. L. Traff, G. Vallé, and J. Weidendorfer, Eds.
Heidelberg, Germany: Springer, 2012, pp. 315–323.

[7] H. Quian, Y. Deng, B. Wang, and S. Mu, “Towards accelerating irregular
EDA applications with GPUs,,” Integration, the VLSI Journal, vol. 45,
no. 1, pp. 46–60, 2012.

[8] T.-H. Weng, R.-K. Perng, and K.-C. Li, “On parallelization of circuit
simulation SPICE3 using multithreaded programming techniques,” Jour-
nal of the Chinese Institute of Engineers, vol. 35, no. 2, pp. 259–267,
2012.

[9] W. Ho Chung, D. A. Zein, A. E. Ruehli, and P. A. Brennan, “An
algorithm for DC solution in an experimental general purpose interactive
circuit design program,” IEEE Transactions on Circuits and Systems,
vol. 24, no. 8, pp. 416–421, 1977.

[10] D. A. Zein, “Solution of a set of nonlinear algebraic equations for
general purpose CAD programs,” in Circuit analysis simulation and
design. General aspects of circuit analysis and design, A. E. Ruehli,
Ed. Amsterdam-New York-Oxford-Tokyo: North Holland, 1986.

[11] J. Ogrodzki, Circuit simulation methods and algorithms. Boca Raton-
New York-Tokyo: CRC Press, 1995.

[12] J. M. Orthega and W. C. Rheinboldt, Iterative solution of Nonlinear
Equations in several variables. New York: Academic Press, 1970.

[13] J. I. Aliaga, M. Bollhöffer, A. F. Martn, and E. S. Quintana-Ortı́,
“Exploiting thread-level parallelism in the iterative solution of sparse
linear systems,” Parallel Computing, vol. 37, no. 3, pp. 183–202, 2011.

[14] H. Huang, L. Wang, E. J. Lee, and P. Chen, “An MPI-CUDA implemen-
tation and optimization for parallel sparse equations and least squares
(LSQR),” Procedia Computer Science, vol. 9, pp. 76–85, 2012.

[15] Y. Wang and H. Yang, “An adaptive LU factorization algorithm for
parallel circuit simulation,” in Proceedings of 17Th Asia and South
Pacific Design Automation Conference, 2012, pp. 359–364.

[16] N. Rabbat, A. Sangiovanni-Vincentelli, and H. Hsieh, “A multilevel
Newton algorithm with macromodeling and latency for the analysis of
large-scale nonlinear circuits in the time domain,” IEEE Transactions
on Circuits and Systems, vol. 26, no. 9, pp. 733–741, 1979.

[17] N. Frohlich, B. M. Riess, U. A. Wever, and Q. Zheng, “A new approach
for parallel simulation of VLSI circuits on a transistor level,” IEEE
Transactions on Circuits and Systems I: Fundamental Theory and
Applications, vol. 45, no. 6, pp. 601–613, 1998.

[18] M. Honkala, J. Roos, and M. Valtonen, “New multilevel Newton-
Raphson method for parallel circuit simulation,” Proceedings of Eu-
ropean Conference on Circuit Theory and Design, vol. 1, pp. 113–116,
2001.

[19] J. G. Fijnvandraat, S. H. M. J. Houben, E. J. W. ter Maten, and
J. M. F. Peters, “Time domain analog circuit simulation,” Journal of
Computational and Applied Mathematics, vol. 185, no. 2, pp. 441–459,
2006.

[20] F. F. Wu, “Solution of large scale networks by tearing,” IEEE Transac-
tions on Circuits and Systems, vol. 23, no. 12, pp. 706–713, 1976.

[21] M. Vlach, “LU decomposition and forward-backward substitution of
recursive bordered block diagonal matrix,” in Proceedings of the IEEE
International Symposium on Circuits and Systems, 1983, pp. 701–703.

[22] D. Bukat, G. Centkowski, and J. Ogrodzki, “OPTIMA-1.1 - A hierar-
chical decomposition based analyser including user defined models,” in
Proceedings of the European Conference on Circuit Theory and Design,
1991.

DC LARGE-SCALE SIMULATION OF NONLINEAR CIRCUITS ON PARALLEL PROCESSORS 295

[23] D. E. C. Udave, J. Ogrodzki, and M. A. G. de Anda, “A study of the
parallel algorithm for DC large-scale simulation of nonlinear systems,”
in Photonics Application in Astronomy, Communications, Industry, and
High-Energy Physics Experiments 2012, R. S. Romaniuk and K. S.
Kulpa, Eds., 2012, Proceedings of SPIE, vol. 7503 (SPIE, Bellingham,
WA).

[24] ——, “DC simulator of large-scale nonlinear systems for parallel
processor,” in Photonics Application in Astronomy, Communications,
Industry, and High-Energy Physics Experiments 2012, R. S. Romaniuk
and K. S. Kulpa, Eds., 2012, Proceedings of SPIE, vol. 7503 (SPIE,
Bellingham, WA).

[25] T. A. Davis and E. P. Natarajan, “Algorithm 907: KLU, a direct
sparse solver for circuit simulation problems,” ACM Transactions on
Mathematical Software, vol. 37, no. 3, 2010.

[26] T. A. Davis, “Direct methods for sparse linear systems,” in SIAM Book
Series on the Fundamentals of Algorithms. Philadelphia: SIAM, 2006.

[27] K. Stanley, “KLU: a “Clark Kent” sparse LU factorization algorithm
for circuit matrices,” in SIAM Conference on Parallel Processing for
Scientific Computing (PP04), 2004.

[28] SYNOPSYS ®, [HSPICE ®Reference Manual: Commands and Control
Options], ver. A-2007.09, September (2007).

[29] J. Levine, Flex & Bison. California: O’Reilly Media, 2009.
[30] C. Van Reeuwijk, “Tm: a code generator for recursive data structures,”

Software - Practice and Experience, vol. 22, no. 10, pp. 899–908, 1992.
[31] “Intel ®Parallel Studio XE 2011 for Linux* - Documentation,” 20 June

2012, http://software.intel.com/en-us/articles/intel-parallel-studio-xe-for-
linux-documentation/#inspector.

