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Problem-Independent Approach to Multiprocessor
Dependent Task Scheduling
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Abstract—This paper concerns Directed Acyclic Graph task
scheduling on parallel executors. The problem is solved using
two new implementations of Tabu Search and genetic algorithm
presented in the paper. A new approach to solution coding
is also introduced and implemented in both metaheuristics
algorithms. Results given by the algorithms are compared to
those generated by greedy LPT and SS-FF algorithms; and HAR
algorithm. The analysis of the obtained results of multistage
simulation experiments confirms the conclusion that the proposed
and implemented algorithms are characterized by very good
performance and characteristics.

Keywords—Tasks scheduling, DAG, genetic algorithm, Tabu
Search, makespan.

I. INTRODUCTION

T
ASK SCHEDULING is one of the oldest and the most
important problem in computer science. In the most

general version of this problem, there is given a set of tasks
and system containing some number of processors (executors).
The goal of scheduling is to assign tasks to executors in such
a way that specified criterion is minimal or maximal. Although
scheduling problem is specific for computer science, it can be
easily found in daily life, industry, and business [1]. Advanced
multi-criteria scheduler is implemented in every Enterprise
Resource Planning system. In these systems, scheduler is used
in Master Requirements Planning, Production Activity Control
or Supplies Chain Management. Recently, scheduling problem
became very important issue in distributed computing systems.
These systems are one of the fastest growing areas in computer
science. Examples of these systems are those created using
software like Globus Toolkit, Legion or BOINC [2]. Many
problems in the category of task scheduling problems are NP-
hard, that unflagging interest in this area.

Basic and the simplest scheduling problem is to assign
independent and unrelated tasks to processors. System contains
known and constant number of identical processors. Each
processor is continuously available and can process one task at
a time. Task duration is known. Each task has to be executed
by exactly one processor. Set of tasks is given and it is not
changed in time [3]–[5]. Release time of task is zero so each
task can be started in any moment. Tasks are unrelated and
independent; therefore there are no precedence restrictions.
Execution of any task does not imply execution of other
tasks thus each task can be executed without considering
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completion of other tasks before. There is no deadline for any
task. Execution of a task cannot be stopped and when task
is started it has to run till completion. The basic scheduling
problem described above was considered in [6]–[9]. There are
three features of scheduling problems dictating the specific
scheduling problem: i) Type of executors; ii) Tasks; and iii)
Evaluation criterion. Huge diversity of scheduling problems
results in many research projects and scientific papers.

In practical implementations, tasks in scheduling problem
are very often related to each other. A great example is process
of production, where first task describes preparing parts and
second assembling them. Assembling can be performed only
if all parts were created earlier. This problem was created
by using order dependences to the basic scheduling problem
described above. In literature set of related tasks is presented
as a Directed Acyclic Graph (DAG scheduling problem). This
issue was studied in [10]–[12].

Another instance of scheduling problem can be obtained by
allowing assignment of one task to more than one processor
[13], [14]. It results in decreasing duration of task processing.
This kind of scheduling problems is especially important
nowadays due to expansion of General-purpose Computing on
Graphic Processor Unit (GPGPU). GPGPU idea is to execute
tasks in parallel using multi cores.

Computing in distributed systems is also growing area
nowadays. These systems contain significant number of com-
puters connected by a network. Nodes of distributed system
are usually spread across some area. Due to significant delay
in communication among processing elements, executing one
task on many processors is used to guarantee its execution
rather than speeding it up. Emphasis is moved here to tak-
ing into account these delays. The problem is called DAG
scheduling with communication delay [15]–[24].

Significant variation of the basic scheduling problem was
developed in factories. Production process very often demands
using different machines. Machines are dedicated to perform
some strictly specified activities and they are unable to per-
form others. Great example is welding and painting machine.
Implementation of dedicated machines enforces significant
changes in the scheduling problem. In general, task becomes
an item that has to visit all machines; and set of tasks contains
many items. The scheduler is responsible in this case for
assigning tasks to each machine. This problem was considered
in [25]–[28].

In this paper, basic scheduling problem with precedence
limitation is considered. Two new algorithms namely TrAl-
TS (Tabu Search) and TrAl-GA (Genetic Algorithm) are pro-
posed. Detailed examination and analysis of advantages and
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disadvantages of the presented algorithms and other algorithms
[7], [19] is conducted and described. Proposed in this paper
algorithms are also compared to the well-known metaheuristic
and greedy methods.

The rest of the paper is composed as follows: In Section II,
the mathematical model of the problem is presented. Section
III contains description of proposed algorithms and method of
solution coding. Section IV contains a design of experiment. In
Section V, the results of investigations are presented, followed
by discussion. Section VI contains final remarks.

II. PROBLEM STATEMENT AND NOMENCLATURE

The mathematical model of the considered task scheduling
problem is given in three-field notation as P |precc|Cmax,
where first part defines executors, second describes set of
tasks, and third specifies evaluation criterion [1].

System P = {1, 2, ..., p} consists of p parallel and iden-
tical processors. Parallel processors means, that all of them
can execute assigned tasks independently and simultaneously.
Identical processors implies equation (1).

li1 = li2 = ... = lip = li (1)

, where i is a considered task, li1 is time that is needed to
execute the task i on 1st processor, and finally li denotes
execution time in which every processor would complete the
task i. This means that execution time of specified task is
the same for every processor in the system. In addition, it is
assumed that processors are connected with each other, but
the time needed for communication among them is negligibly
small and it is therefore omitted.

The tasks to be scheduled are given as DAG. Figure 1
contains an example of DAG. The graph is described by
G = {T,E, L}, where T = {1, 2, ..., n} is set of tasks,
E = {eij |i, j ∈ T } is set of edges that represent precedence
among tasks, and L = {l1, l2, ..., ln} is set of tasks’ duration.
A task denoted by i cannot be executed until all of its
predecessors are not completed.

In this paper, we assume the following assumptions:

• all tasks are indivisible;
• one task cannot be executed by more than one processor;
• there are no other precedence despite given set E;
• all tasks have the same arrival time that is equal to 0;
• there is no deadline for the tasks.

In this paper, the following notations are used to discuss
problem:

• for an edge eij ∈ E, task i is called predecessor of task
j and task j is successor of task i;

• PRED(i): set of all predecessors of task i;
• SUCC(i): set of all successors of task i;
• t(i): moment when execution of task i is begun;
• f(i): moment when task i is completed;
• w(k): time when all tasks assigned to processor k are

completed;
• x(i): identifies execution of task i by a processor.

Fig. 1. Example of DAG

To evaluate solutions, a schedule length criterion is used. It
is also called makespan criterion and it specifies the comple-
tion time of all tasks. The completion time is affected by both
task’s duration and completion time of all its predecessors. The
evaluation criterion is equal to the moment when all tasks are
completed, and it is expressed by:

Cmax = max{f(1), f(2), ..., f(n)} (2)

Solving considered problem means to assign all tasks to
the processors. Solution of the problem is called schedule
H = {S,L,X, P}, where S = {t(1), t(2), ..., t(n)} is a set
of moments when tasks started to be executed, L is set of
tasks’ durations, X = {x(1), x(2), ..., x(n)} includes elements
identifying, which processor is assigned to each task; and P

is a set of executors. Figure 2 contains example of schedule.

Fig. 2. Sample schedule.

The schedule is considered to be feasible if all tasks from
a given set of tasks are scheduled, precedence is satisfied,
and all assumptions are met. The objective is to minimize the
maximum task completion time that is denoted by Cmax.
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III. METAHEURISTIC ALGORITHMS

We propose two different methods of solving the scheduling
problem using metaheuristic algorithms. First of them is Tabu
Search algorithm and second is genetic algorithm. Although
both algorithms were widely used in many other papers, there
is a factor that distinguishes considered approaches from other
solutions. Both of them employ a new method of coding and
evaluating solution. Our intention was to improve solutions
generated by other algorithms and to make implementation of
algorithms more flexible. This section contains description of
the proposed coding method and method of solution evaluation
along with their motivations. The designed algorithms are also
described in this section.

A. Solution Coding

1) Motivation: As it is commonly known in the literature,
the most important and the most difficult problem in the design
of the metaheuristic algorithms is to determine the method of
results coding and evaluation function.

Encoding the solution is to express the solution in a form
that is understandable for the algorithm and allows performing
operations specific to the metaheuristic algorithm. In the
literature, there are distinguished three categories of coding.
First of them is a many-to-one, where many different solutions
can be encoded in the same way. The second possibility is one-
to-many assuming that the same solution can be encoded in
many different ways. The last category is called one-to-one.
This way of coding ensures that one result will be encoded
unambiguously. From a design perspective, one of the best
technique is the one-to-one, because it greatly simplifies the
design of evaluation function and metaheuristic operations.

The evaluation function is the assignment that allots a value
to solution. This value characterizes solution and represents
its value. Result of evaluation function is used to compare the
solutions and to indicate the better one. Evaluation of solutions
is the basis for each metaheuristic algorithm. To meet its role,
assignment has to be unambiguous. This means that for every
solution, one and only one value can be assigned.

Both, coding method and evaluation function, can strongly
influence metaheuristic operators. For this reason most of the
implementations of metaheuristic algorithms cannot be used
(without modification) to solve other optimization problems.

In problem considered in this paper, coding function must
take into account not only the executor, to which task is
assigned, but also the moment in which execution of this task
is started. In addition, the encoding and evaluation function
cannot ignore precedence among tasks. In order to avoid
designing inflexible and complicated metaheuristic operators,
new approach to problem notation, called TrAl, has been pro-
posed. The idea is to unify the representation of a solution in
such a way that it corresponds with any optimization problem.
In addition, new notation method has to allow using every
metaheuristic algorithm to solve any different optimization
problem, without need of modifications of the metaheuristic
operators. Solution S is given as S = (A,R), where A is one-
dimensional array of values, and R is a translation algorithm

that converts an array A into human-readable and evaluable
form.

To meet its role, the array A has to satisfy the following
conditions:

• array A has to be one-dimensional in order to simplify
implementation of metaheuristic operations;

• values stored in the array have to allow unambiguous
translation to feasible solution;

• at the level of the metaheuristic algorithm the values in
array are not related to the particular problem in any way;

• type of values stored in the array cannot affect the
implementation of metaheuristic operations;

• values stored in the array can be given by any type that
is dictated by the requirements of the algorithm.

The translation algorithm R also has to satisfy certain
conditions:

• the algorithm uses only array A and the properties of the
problem;

• the algorithm cannot modify values in array A;
• the algorithm translates array A to human-readable solu-

tion unambiguously;
• the algorithm calculates value of the evaluation function

that is specified in problem model;
• the algorithm can have any structure and implementation;
• the algorithm takes as an input array A;
• output of the algorithm have to be a valid schedule that

is understandable by a human and possible to assess.

The proposed approach provides a wide range of applica-
tions and new opportunities. Solutions can be used both as
greedy algorithms and metaheuristics. Changing the optimiza-
tion problem does not result in the necessity to modify the
metaheuristic operators. It is enough to modify the translation
algorithm R to a new problem. Translation algorithm can be
implemented in many different ways. In the simplest cases
it is responsible only for calculating the value of evaluation
function. In more complex problems, translation algorithm
can be even a separate heuristic algorithm that solves a sub-
problem.

2) Implementation: The presented approach
was adapted to tasks scheduling problem. Array
A = {a1, a2, ..., an|1, 2, ..., n ∈ T } consists of n elements,
where n ∈ T . Each element from set A represents separate
task defined by the index. Value of element is a priority of the
task. The higher priority1, the task has to be completed faster.
Algorithm R is a method that assigns tasks to processors.
Algorithm takes into account precedence. In each step,
feasible task i with the highest priority is selected and
assigned to specified executor. Selection of the processor k

depends on execution time of the processor and earliest start
time t(i) of selected task. Executors with w smaller than t(i)
are preferable. Otherwise the executor with smallest w is
selected. Algorithm 1 presents translation algorithm used in

1If set T contains n tasks, then the highest priority is 1 and the lowest
is n.
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this paper and Example 1 shows step-by-step performance of
algorithm.

Algorithm 1: Translation algorithm R

1. For i = 1 to n

2. Create set FT that contains tasks feasible to be
executed

3. Select form FT task i with the highest priority
4. Create PREC(i)
5. Determine the earliest moment t(i) that task i can

be started; t(i) = maxj∈PREC(i)(f(j))
6. Select executor k : w(k) ≤ t(i) and w(k)− t(i)

is minimal
7. If executor was found Then

8. Assign task i to executor k
9. Set moment of processing completion

f(i) = t(i) + li; w(k) = f(i)
10. Else

11. Select executor k with the earliest moment of
processing completion

12. Assign task i to executor k
13. Set task i execution start and stop moments

t(i) = w(k); f(i) = t(i) + li
14. Set w(k) = w(k) + li
15. End If

16. End For

Example 1: Performance of translation algorithm

Set of tasks given by DAG is presented in Fig. 3. Tasks will
be scheduled on dual-processor system.

Fig. 3. Set of tasks to be scheduled.

Step 1. The feasible tasks are 1 and 2. Because the task 1
has higher priority than task 2, it will be scheduled as first. Set
PREC(1) is empty so the earliest moment of execution t(1)
of task 1 is equal to 0. Processing times of the two executors
w(1) and w(2) are equal to 0, so the task 1 will be assigned
to executor 1.

Step 2. The feasible tasks are 2, 3, and 4. Task with the
highest priority is the task 2. PREC(2) = ∅ so the earliest
t(2) is 0. Because w(2) = 0, task 2 will be assigned to
executor 2.

Step 3. There are three feasible tasks 3, 4, and 5. Task 4
should be scheduled as first because of higher priority. The
earliest t(4) is equal to the moment of completion all of its
predecessors, which is t(4) = maxi∈PREC(4)(f(i)) = 5. The
task 4 will be assigned to processor 1 because:

• w(1) ≤ (4);
• t(4)− w(1) < t(4)− w(2).

Step 4. There are tasks 4 and 5 left. Due to higher
priority, task 3 will be scheduled first. The earliest t(3) =
maxi∈PREC(3)(f(i)) = 5. Task will be assigned to processor
2 because this is the only executor where w(2) ≤ t(3).
Because task 3 cannot begin until all predecessors are not
completed, the processor 2 has to wait idly for 1 unit of time.

Step 5. The last task is task 5. PREC(5) = 2 so the earliest
t(5) = maxi∈PREC(5)(f(i)) = 4. However, w(1) > t(5) and
w(2) > t(5), therefore task 5 is assigned to executor with the
smallest processing time, which is executor 2.

The resulting schedule is presented in Fig. 4.

Fig. 4. Schedule generated from DAG considered in Example 1.

B. Tabu Search

Idea of Tabu Search algorithm was created in 1986 by Fred
Glover [29]. His approach was motivated by basic disadvan-
tages of local search. In each step of local search algorithm the
best solution s′ from neighborhood N(s) of current solution
s is selected. This strategy allows obtaining only the local
optima. Therefore Fred Glover suggested some modifications
which allow finding globally optimal solution.

First of the modifications is regard strategy of selecting best
solution from neighborhood. To diversify and extend search
space, Tabu Search permits two types of best solutions, which
are globally-best and locally-best. These solutions will be
called respectively gs and s. Solution gs is the best solution
found among iterations and solution s is the best solution
in interation. Solution s is changed in each iteration. This
technique allows storing the best known solutions through
iterations, escaping from local optima, and greatly increasing
the search space [29]. Although technique presented above
significantly extends search space and allows escaping from
local optima, it also causes a new problem. Changing s in each
iteration may cause cycles and as a result, it prevents further
searching for optimal solution. To avoid cycles and prevent
algorithm from stuck in dead end, a second mechanism, called
tabu list, was suggested. Tabu list is a short term memory
storing solutions that were used as the locally-best in previous
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iterations. Each solution in tabu list cannot be selected as an s

even if in fact, it is the best solution in the neighborhood.
Solutions are removed from tabu list after some specified
number of iterations [29].

Classic Tabu Search algorithm contains five steps. First,
initial solution s is created. Second, neighborhood N(s) is
created. In third step, the best solution s′ is selected and if it
is better that the best found solution (gs), then s′ is accepted
as a new gs. In fourth step, the best solution s′ that is not in
tabu list is selected and accepted as new s. In fifth step, tabu
list is updated. Steps from 2 to 5 are repeated until stopping
criterion is met.

Tabu Search algorithm designed in this paper was called
TrAl-TS and is described by Algorithm 2.

Algorithm 2: TrAl-TS algorithm

1. Create an initial solution s

2. Set gs = s

3. Create empty tabu list TL and frequency list FL

4. For i = 1 to number_of_iterations
5. Create neighborhood N(s)
6. Select the best s′ from N(s)
7. If f(s′) ≤ f(gs) Then

8. Set gs = s′

9. End If

10. Select the best and not prohibited s′

11. Set s = s′

12. Add move that was used to create s′ to TL

13. Delete move that spent tabu_size iterations in TL

14. Update FL with move that was used to create s′

15. If gs was not changed for unchanged
number of iterations Then

16. Set s to solution generated with the least
frequent used move from FL

17. End If

18. End For

19. Return gs

Important properties of TrAl-TS algorithm are as follows:

• parameters of TrAl-TS:

– number of iterations (number_of_iterations);
– tabu list size (tabu_size) specifying how many solu-

tions can be stored in the list. Since in each iteration
one solution is added to tabu list, tabu list size is
equal to the number of iterations spent by solution
in tabu list;

– number of iterations where gs can stay unchanged
(unchanged) specifies, how many iterations gs can
be unimproved until algorithm reacts;

• tabu list stores moves that were used to create solutions,
instead of the solutions themselves. This approach sig-
nificantly reduces memory requirements and allows the
algorithm to run faster;

• long term memory is a histogram that shows how
many times each possible move was used to generate

a locally-best solution. After a specified by parameter
unchanged number of iterations without improvement
of the globally-best solution, the algorithm changes s.
Algorithm sets s to the solution generated with the least
used solution from long term memory. This allows to
make search space wider;

• neighborhood is generated using swap move. Figure 5
presents an example where that method is used.

Fig. 5. Swap method.

C. Genetic Algorithm

Genetic algorithm takes its concept from process of natural
evolution. Scientific researches in 1950 and 1960 in cellular
anatomy field built the foundation of using evolution process
to solve optimization problems. Implementation of this idea
has begun in 1980. It was assumed that single solution of
optimization problem is an individual or chromosome, which
is created from genes.

At the beginning, initial population of individuals is cre-
ated. In the environment where individuals live, there is a
process of natural selection. Adaptation degree of individual
is described by criterion function. During the selection, weak
individuals are removed from population while the reaming
group contains only the best chromosomes. This group takes
a part in crossover process. During crossover process, two
individuals are selected and they become parents for two
new chromosomes. Offspring individuals contain only genes
that were inherited from parents. Right after the procreation,
mutation process starts. In this process a random change in
some genes appears. After mutation, new individual is added
to offspring population. Process of crossover and mutation
is continued until new population reaches the specified size.
This is the end of iteration (that is also called epoch). In



374 D. KRÓL, D. ZYDEK, L. KOSZAŁKA

next epoch, previous offspring population becomes parent
population and the process starts from the beginning. After
completing specified number of iterations, the best individual
from last offspring population is selected and returned as
a result of algorithm [29].

Genetic algorithm considered in this paper is defined by
Algorithm 3 and is called TrAl-GA.

Algorithm 3: TrAl-GA algorithm

1. Create initial parents population using random algorithm
2. For i = 1 to number_of_iterations
3. Create ranking of individuals from parents population
4. Add top number_of_elite individuals to offspring

population
5. For j = number_of_best+ 1 to population_size
6. Select two individuals from parents population

using roulette wheel method
7. Perform crossover using PMX method
8. Perform mutation using Swap method
9. Add obtained individuals to offspring population
10. End If

11. Replace parents population with offspring population
12. End If

13. Return the best individual from parents population

Important properties of TrAl-GA algorithm are as follows::
• parameters of TrAl-GA:

– number of iterations (number_of_iterations);
– population size (population_size) defines how

many individuals are contained in the population;
– best results (number_of_best) indicates how many

the best individuals from population will survive
process of natural selection;

– elite results (number_of_elite) indicates how many
the best individuals from population will be added to
offspring population without any changes;

– mutation probability (mutation) defines the proba-
bility that gene will randomly change its value;

• crossover operator used in the algorithm is one of the
most commonly used operators in cases, where the chro-
mosome is a permutation [29]. It is called Partially-
Mapped Crossover (PMX). In the PMX method, two
different split points are selected. These points indicate
where the chromosomes will be divided. Initially, the first
child is composed of the same genes as the first parent.
Then, the first gene in the offspring after the first split
point changes its value to the value of a gene located
on the same position in the second parent. At the end,
the child is searched for repetition of the new value. If
repetition is found, the gene on this position is changed to
previous value of gene considered in this iteration. The
same process is performed for all genes between split
points [29]. To clarify, the process of PMX crossover
was presented in Fig. 6;

• mutation operator is defined exactly as neighbor generator
for TrAl-TS. The main reason why the swap method is

used instead of classic mutation operator is that solution is
coded as a sequence of numbers. This sequence is a per-
mutation. Therefore, classic random change of selected
gene may cause infeasible schedule;

Fig. 6. PMX method.

• in the selection process, a modified method of the roulette
wheel is used. The modification is based on the fact that
the probability of selecting individual is not proportional
to the value of evaluation function [29], but to the number
of points assigned to the individual. Number of points
depends on position that specified individual occupies
in a ranking. The ranking consists of a number of
places equal to the number of individuals involved in the
selection. The ranking solutions are sorted by the value
of evaluation function. The worst individual is placed in
the last place in the ranking and scores 1 point. Best
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individual ranks the first place, where number of points
is equal to the number of individuals involved in the
selection. Probability of choosing a solution, and hence
the width of the field on the roulette wheel, is equal to
the number of points, that the individual has, divided by
the total number of points separated in the rankings;

• TrAl-GA algorithm uses elite mechanism. It means
that specified number of the best solutions from the
population will be added automatically to offspring
population before the crossover process. Saving the
best individuals in each epoch guarantees that quality
of solutions will not decrease. The best results will
survive through iterations and in worst case every next
population will be at least same good as previous [29].

IV. EXPERIMENTATIONS

As it is mentioned in previous section, two metaheuristic
algorithms are proposed. In order to examine efficiency of
these algorithms, obtained results have to be compared to some
reference point. In this paper, the reference point is generated
by metaheuristic algorithm HAR [19] and two greedy algo-
rithms: Longest Processing Time (LPT) and Split Solution-
First Fit (SS-FF). In addition, all results can be referred to
optimal solutions, which are known for the selected problems.

Experiments consist of two parts:

• estimation of the best parameters values – in this part, all
metaheuristic algorithms solve four test bench problem
instances with different values of parameters. Results
are gathered and analyzed. Values of parameters, where
algorithms allow to generate the best results, are used in
second part of the experiment;

• effectiveness analysis of proposed algorithms – in this
part, all algorithms will be solving 16 instances of
described scheduling problem. For all of them, optimal
solution is known. Method of generating non-trivial DAG
problems is described in next section. Specification of the
selected problems is contained in Tab. I.

TABLE I
PROBLEMS SOLVED IN THE EXPERIMENTS

ID Number of Number of Optimal
processors tasks solution

1 5 30 25

2 5 40 37

3 5 50 41

4 5 60 49

5 5 70 59

6 5 80 69

7 5 90 77

8 5 100 83

9 10 30 14

10 10 40 19

11 10 50 24

12 10 60 28

13 10 70 30

14 10 80 35

15 10 90 38

16 10 100 45

A. Generating Non-Trivial DAG Problems

The most important aspect of analyzing results of new
algorithm is comparing them to some irrelative reference point.
It can be obtained by using benchmarks or problems that were
solved by well-known algorithms. However, the best reference
point is an optimal solution. The main disadvantage of this
approach is that for NP-hard problems optimal polynomial
time algorithms do not exist and complete review of whole
solution space is not an option. Nevertheless, it is possible to
generate problem with known optimal solution.

In this paper, algorithm that generates non-trivial problem
instances with known optimal solution was designed and used.
The algorithm is presented below.

Algorithm 4: Problem generator

1. Specify n, p, max(l(tasks)), min(l(task))
2. Specify Cmax

3. For j = 1 to p

4. If j = 1 Then

5. Assign to processor j m one-unit tasks where
m = Cmax

6. Else

7. Assign to processor j m one-unit tasks where
Cmax −min(l(tasks)) ≤ m ≤ Cmax

8. End If

9. End For

10. Merge tasks with respect to max(l(tasks)) and
min(l(task)) until n is met

11. Index tasks
12. Assign precedence among tasks with maintaining

feasibility of schedule
13. Return DAG

B. Experimentation Methodology

Heuristic algorithms used in the experiment are strongly
influenced by randomness. Initial solution is created with ran-
dom algorithm, individuals in crossover operation are selected
randomly, and crossover points are also random. Widely used
randomness may result in different solutions obtained by an
algorithm solving the same problem with the same parameters.
In order to eliminate the risk of unreliable results, there is a
need to repeat experiment for specified number of times, and
then aggregate results.

In every experiment using TrAl-GA, TrAl-TS, or HAR
algorithms, minimal number of repetitions is 10; and maximal
number is 1000. However, usually number of repetitions does
not reach upper bound. When new solution differs from
median solution by no more than 10%, experiment is stopped.
If so, then this solution is considered to be result of the single
experiment. Algorithm estimating experiment solution is given
by Algorithm 5.
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Algorithm 5: Metaheuristic algorithms solution estimator

1. For i = 1 to 10
2. Execute algorithm for specified problem and set of

parameters
3. End For

4. While value of evaluation function in new solution
differs from median value obtained from evaluate
function of previously obtained results by more than 10%
Do

5. Execute algorithm for specified problem and
parameters’ set

6. If i > 1000 Then

7. Exit Do

8. End If

9. i = i+ 1
10. End Do

11. Return newest solution

V. RESULTS ANALYSIS

Effectiveness of the algorithms is examined in three ways.
First, effectiveness is expressed with respect to number of
iterations. This allows checking the influence of increased
number of iterations on quality of obtained results. Second,
effectiveness is presented with respect to problem size. This
shows how problem size affects performance of algorithms.
Third analysis is general comparison of results obtained by
examined algorithms.

A. Effectiveness with Respect to Number of Iterations

Figure 7 contains graph that illustrates average difference
between results generated by metaheuristic algorithms and
optimal results for different number of iterations.

Fig. 7. Average difference between obtained results and optimal result.

As it can be observed, increasing number of iterations
causes generating better solutions by the algorithms. However,
some of them are influenced by number of iterations more
than others. TrAl-GA generates results close to optimal, only
6% worse, even for 10 iterations. Higher number of iterations
results in better solutions, but the difference in quality of so-
lutions is not significant. TrAl-TS algorithm presents opposite
outcomes. Results obtained after 10 iterations are very weak.
Average solution is 23% worse than optimal. It is worth to
notice that the solutions are the worst in comparison to other
two metaheuristic algorithms. However, for 100 iterations,
solutions generated by TrAl-TS are significantly better and
are comparable with results obtained by HAR algorithm. After
increasing number of iterations to 1000, results generated by
TrAl-TS algorithm are better than these obtained by TrAl-GA
and HAR. Influence of number of iterations is moderate for
HAR algorithm.

For each problem and metaheuristic algorithm, standard
deviations from 10, 100, and 1000 iterations were calculated.
Data presented in Tab. II confirms observations. The TrAl-
TS algorithm is strongly impacted by number of iterations.
The lowest influence can be observed for TrAl-GA. It can be
also noticed that with increasing the problem size, difference
between results obtained with 10, 100, and 1000 iterations is
increasing as well.

TABLE II
STANDARD DEVIATION OF RESULTS

Problem ID TrAl-GA TrAl-TS HAR
1 0.00 2.65 0.00

2 0.00 2.89 1.15

3 0.58 3.61 0.58

4 0.58 4.58 1.53

5 1.53 5.29 2.08

6 3.06 6.11 4.51

7 3.51 8.08 4.51

8 6.81 11.37 6.51

9 0.00 1.73 0.58

10 0.00 2.31 0.58

11 0.00 2.00 1.00

12 0.58 1.73 0.58

13 1.15 4.51 2.52

14 1.53 5.03 2.65

15 2.52 7.02 4.51

16 2.65 10.54 4.51

B. Effectiveness with Respect to Problem Size

In this experiment, different sizes, expressed in number of
tasks, of the problem is considered. Sizes of the problem
vary from 30 to 100. Each DAG is scheduled on 5 and 10
processors. For each metaheuristic algorithm and number of
iterations, average difference between optimal and obtained
results is calculated. The average is calculated from results for
5 and 10 processors separately. Table III contains calculated
average differences.

The larger is the problem size, the higher difference between
optimal solutions and obtained solutions can be observed.
However, closer observation allows concluding that problem
size affects results of different algorithms in different degree.

For TrAl-GA and HAR algorithms, influence of problem
size on results is very high. When the number of tasks exceeds
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TABLE III
AVERAGE DIFFERENCE FROM OPTIMAL RESULT FOR DIFFERENT

PROBLEM SIZES

Problem size
Algorithm 30 40 50 60

TrAl-GA10 0% 0% 1% 3%

TrAl-GA100 0% 0% 0% 1%

TrAl-GA1000 0% 0% 0% 0%

TrAl-TS10 21% 17% 17% 16%

TrAl-TS100 2% 0% 7% 5%

TrAl-TS1000 0% 0% 0% 1%

HAR10 0% 5% 5% 5%

HAR100 4% 3% 3% 2%

HAR1000 0% 0% 0% 0%

70 80 90 100

TrAl-GA10 8% 10% 12% 16%

TrAl-GA100 7% 6% 7% 10%

TrAl-GA1000 1% 2% 3%

TrAl-TS10 23% 25% 29% 38%

TrAl-TS100 10% 14% 17% 15%

TrAl-TS1000 0% 1% 0% 2%

HAR10 15% 17% 22% 24%

HAR100 9% 9% 13% 15%

HAR1000 3% 4% 4% 6%

60, results are getting worse very fast. Impact of the problem
size on results for TrAl-TS scheme shows different tendency.
Although for TrAl-TS results obtained after 10 iterations are
much worse than results for TrAl-GA and HAR; the average
difference does not increase significantly with increasing size
of the problem. For 100 iterations influence of problem size is
similar for all three algorithms. However, for 1000 iterations
we can observe that quality of results generated by TrAl-GA
and HAR is decreasing together with increasing problem size,
whereas the quality of solutions obtained by TrAl-TS remains
almost at the same level. This can suggest that while increasing
number of iterations to 1000, TrAl-TS algorithm saturates for
considered size of problems. In other words, further increasing
number of iterations does not result in better solutions. For
both TrAl-GA and HAR, saturation effect does not occur or
it is not so high for number of tasks greater than 70.

C. Comparison of Effectiveness of Algorithms

Results of the experiment are gathered in the matrix, where
columns represent algorithms and rows represent problem
instances. This matrix is a solution map (Fig. 8). Mark on
intersection of column i and row j shows, that for problem
j algorithm i found an optimal solution; or solution better or
equal than other algorithms.

As it can be observed, only for problems 8, 14, and 16 op-
timal solutions were not found. However, generated solutions
were close to the optimal. Figure 8 shows weak effectiveness
of greedy algorithms. SS-FF and LPT were not able to find
optimal solution for any of the considered problems. Results
of these algorithms are comparable with the others only for
problem number 14. As it was mentioned before, it was one
of three problems where none of the algorithms found optimal
solution.

Similarly, disappointing results were obtained by TrAl-TS
that operates for 10 iterations. The main reason is that TrAl-TS
algorithm examines only small space of solutions. In addition,

Fig. 8. Map of solutions.

these solutions are close to each other. In order to find better
solutions, TrAl-TS has to perform more iterations.

The best results generated in short time were obtained
by TrAl-GA. After 10 iterations, TrAl-GA was able to find
optimal solutions for 5 out of 16 problems. Any other meta-
heuristic algorithm did not show such well effectiveness in
relatively short time.

For 100 iterations, the best solutions were again generated
by TrAl-GA. For 7 out of 16 problems, TrAl-GA found opti-
mal solutions. Effectiveness of TrAl-TS and HAR algorithms
for 100 iterations were comparable. It is worth to notice, that
for 10 and 100 iterations optimal solution was found only for
problem with number of tasks smaller than 60.

Increasing number of iterations to 1000 allows finding
optimal solution for problem with size greater than 60. Both
TrAl-GA and HAR algorithms were able to generate better
results. However, the most significant growth of effectiveness
can be observed for TrAl-TS. TrAl-TS was able to find optimal
solutions for 11 out of 16 problems; and for next 3 problems,
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generated solution was the best. Only TrAl-TS algorithm
allowed obtaining optimal solutions for the largest problems.
Other two metaheuristic algorithms have incomparable lower
effectiveness for 1000 iterations. It is especially notable for
HAR algorithm, which did not found any optimal solutions
for problems with number of tasks higher than 60.

Observations are summarized in Fig. 9. This figure presents
histogram showing specified number of problems, where each
algorithm found optimal or the best solution.

Fig. 9. Histogram of optimal and the best solutions found by each algorithm.

VI. FINAL REMARKS

In this paper, problem of DAG scheduling on parallel
executors was considered. New method of solution coding was
proposed. Also, two approaches solving considered scheduling
problem and using introduced method were proposed. First of
them is TrAl-GA and second is TrAl-TS. In order to evaluate
effectiveness of new algorithms, experimental investigations
were carried out and results were compared to optimal results,

solutions generated by well-known HAR algorithm, and to two
greedy algorithms SS-FF and LPT.

Observations confirm significant effectiveness of algorithms
that use new method of solution coding. The best solutions
were obtained by TrAl-GA and TrAl-TS. Both greedy algo-
rithms and HAR algorithm that perform 100 or less iterations
were far less effective in comparison two proposed algorithms.

It can be also observed that even for small number of itera-
tions, and therefore in short time, TrAl-GA was able to obtain
optimal solutions for over 33% of problems. To compare, HAR
algorithm needs 1000 iterations to reach similar effectiveness
like TrAl-GA performing for 100 iterations. Therefore, when
time is crucial, the best choice is TrAl-GA. On the other hand,
when the best solutions are needed; then TrAl-TS algorithm
with large number of iterations is a very good choice. It can
be observed that TrAl-TS performing 1000 iterations was the
best algorithm in ranking and the only one that was able to
find optimal solution for the largest problems.

Proposed method of coding solutions is very promising.
Experimental results have proved that this approach is very
flexible and efficient. It cannot be forgotten that in order
to obtain the best efficiency, proper adjusted parameters of
the algorithms for considered problem are needed. The great
example is TrAl-TS. For this algorithm, higher number of
iterations is required to generate good results.

Further work may consider using these algorithms for some
well-known benchmarks. It would allow better efficiency eval-
uation of the algorithms. Good idea would be also testing the
proposed solution coding and evaluation methodology using
other algorithms and various optimization problems.
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