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Change Point Determination in Audio Data Using
Auditory Features

Tomasz Maka

Abstract—The study is aimed to investigate the properties
of auditory-based features for audio change point detection
process. In the performed analysis, two popular techniques have
been used: a metric-based approach and the ∆BIC scheme.
The efficiency of the change point detection process depends
on the type and size of the feature space. Therefore, we have
compared two auditory-based feature sets (MFCC and GTEAD)
in both change point detection schemes. We have proposed a new
technique based on multiscale analysis to determine the content
change in the audio data. The comparison of the two typical
change point detection techniques with two different feature
spaces has been performed on the set of acoustical scenes with
single change point. As the results show, the accuracy of the
detected positions depends on the feature type, feature space
dimensionality, detection technique and the type of audio data.
In case of the ∆BIC approach, the better accuracy has been
obtained for MFCC feature space in the most cases. However,
the change point detection with this feature results in a lower
detection ratio in comparison to the GTEAD feature. Using the
same criteria as for ∆BIC, the proposed multiscale metric-based
technique has been executed. In such case, the use of the GTEAD
feature space has led to better accuracy. We have shown that the
proposed multiscale change point detection scheme is competitive
to the ∆BIC scheme with the MFCC feature space.

Keywords—audio change point detection, auditory features,
gammatone filter bank

I. INTRODUCTION

Recently, audio and speech-based services play important
role in many human-machine interaction systems. Such ser-
vices may enhance the process of communication which
improves the overall user experience. To achieve satisfactory
results at the audio analysis stage, the audio stream has to be
decomposed into regions with different acoustical structure. In
that way, properties of each audio segment may simplify the
description of input data and further processing. The process
of audio segmentation uses the variability of one or several
attributes of the signal. In order to determine segments within
audio stream, the whole time-frequency structure of the signal
should be determined. In the real situations, the transitions
between audio segments can be smooth or may include acous-
tical events. Carefully configured audio parametrization stage
can improve position accuracy of the change points in audio
stream. Therefore, the characteristics of the audio feature space
and its dimensionality influences on the efficiency of segmen-
tation process. The popular approaches for segmentation of
audio data can be grouped into two main categories: metric-
based and model-based. The first group includes methods
based on the distance measures between neighbouring frames
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to evaluate acoustic similarity and to determine boundaries
of the segments. The second group includes techniques for
data models comparison. The number of classes in the audio
data and the type of audio task should affect the choice of the
segmentation method. For a specified number of audio classes,
an approach using classification process for fixed size frames
can be applied to determine the segments in audio data.

In the presented study, the analysis of auditory features and
two different approaches for audio segmentation have been
investigated. In the section II, a short analysis of existing
approaches for audio segmentation is described. The types and
properties of auditory features are enumerated in section III.
Section IV presents two typical approaches to change point
detection. Our proposed approach using multiscale frame-to-
frame comparison is introduced in section V. The performed
experiments and obtained results are described in section VI.
Finally, a summary has been provided in the last part of the
paper.

II. RELATED WORKS

There are many techniques for segmentation of audio data
with different approaches and features. This is due to the
fact that such process is an essential part of the audio anal-
ysis chain. The typical methods are based on the similarity
measures of audio frames [1] and the techniques using the
comparison of the signal models [2]. An analysis of the onsets
found in audio data is the basis of some approaches [3],
[4]. In the [5], a segmentation based on an analysis of the
self-similarity matrix by computing the inter-frame spectral
similarity is presented. The segments are determined by cor-
relating the diagonal of the similarity matrix with a dedicated
template. The changes in the obtained signal are possible
candidates for change points. Hanna et. al. [6] presented a new
audio feature sets defined for four classes of signals: colored,
pseudo-periodic, impulsive and sinusoids within noises. It has
been shown that using the proposed feature set increases the
discriminant power compared to a usual feature set. Ref. [7]
describes a system for auditory segmentation based on onsets
and offsets of auditory events. The segments are generated by
matching the obtained onsets and offsets. An algorithm for
audio scene segmentation is presented in [8]. The presented
framework is based on multiple feature models and a simple,
causal listener model using multiple time-scales. Recently, an
approach for generic audio segmentation by classification has
been presented by Castan et. al. in [9]. Such approach based on
classifying consecutive audio frames, where the segmentation
is performed by an analysis of the sequence of decisions. The
proposed system is based on the factor analysis to compensate
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the within-class variability and does not require any dedicated
features or hierarchical structure.

The analysis of auditory features presented in this work has
been aimed at showing its properties in the audio segmentation
process. We have decided to examine the effectiveness of
the segmentation task using two the most popular methods:
metric-based and ∆BIC segmentation schemes. In our previ-
ous work [10], the features based on the gammatone filter bank
(GTEAD) has been proposed in segmentation stage instead
of the popular MFCC features. This is because of its higher
variability between frames of signals belonging to different
acoustical classes. It has been demonstrated that usage of
GTEAD features allows to obtain higher efficacy of change
point detection using the ∆BIC segmentation technique. For
the same reason, we have performed an analysis of segmenta-
tion process using a metric-based approach for both features
and we have proposed its extension to the multiscale version.

III. AUDITORY FEATURES

The feature extraction stage plays an important role in the
audio segmentation process [2], [6]. Typically, the feature
space used in the segmentation schemes includes the Mel-
frequency Cepstral Coefficients (MFCC) [11]. Because the
segmentation accuracy is connected with changes in a time-
frequency structure of a source signal, the MFCC feature
gives satisfactory results [12], [2]. However, in many situations
such feature set, including its dynamic properties, results
in a low detection ratio. Therefore, based on the results
presented in [13] we have designed the GTEAD feature
(GammaTone/Envelope/Autocorrelation/Distance) [10].

A. Mel-Frequency Cepstral Coefficients (MFCC)

The MFCC feature [14] is widely used in many speech and
audio classification tasks. It represents the power spectrum
envelope and is calculated by using a set of filter bank mapped
onto the Mel-frequency scale which is linear below 1kHz
and logarithmic above 1kHz. There are several variants of
MFCC filter banks with various numbers of filters and their
amplitudes. An example of popular filter bank with 40 filters,
introduced in [15], is depicted in Fig. 1.
The MFCC coefficients are calculated in the following steps:

• the signal is split into frames,
• each frame is transformed into power spectrum,
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Fig. 1. Filter bank of 40 triangular filters in the Mel-frequency scale [15].

• a set of triangular filters using the Mel-frequency scale
is applied,

• for each filter output a logarithm of energy is calculated,
• finally, the MFCC coefficients are obtained by applying

the DCT transform:

cn =

B∑
b=1

log(Yb) cos

[
π · n · (b− 0.5)

B

]
, (1)

where: B is the number of filters, Yb – energy at the b-th
filter output, and n denotes number of the MFCC coefficient
(B ≥ n ≥ 1).

B. Inter-Channel Properties of Gammatone Filter Bank
(GTEAD)

The GTEAD feature [10] represents the distances between
autocorrelation signals of envelopes calculated from the out-
puts of the gammatone filter bank.

The gammatone filters represents a model for the impulse
response of auditory nerve fibres [16]. The n–th order gam-
matone filter has the impulse response defined as [17]:

gm(t) = tn−1 · e−b(fm)·t · ej·2π·fm·t, (2)

where fm is the filter center frequency, b(fm) denotes filter
bandwidth for frequency fm, m = 1, 2, . . . ,M , and M is the
number of channels. The bandwidth b(fm) of gammatone filter
is defined according to the equivalent rectangular bandwidth
of the human auditory filter [16]:

b(fm) = 1.019 · (24.7 + 0.108 · fm), (3)

where the order of the gammatone filters is equal to n =
4 and the center frequencies are selected in proportion to
their bandwidths. The frequency responses of the selected
gammatone filters are shown in Fig. 2. From the signal
filtered in each channel of a gammatone filter, its envelope
is calculated and periodic self-similarities are computed using
the autocorrelation function. The algorithm for the GTEAD
feature vector extraction is depicted in Algorithm 1.

IV. AUDIO CHANGE POINT DETECTION

The change point detection process involves the similarity
analysis of the selected parts of a signal in order to determine
the position where high difference of the content variability
is observed. At the first stage, the audio signal is split into

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz]

0.2

0.4

0.6

0.8

1.0

Fig. 2. Frequency responses of selected gammatone filters in 0.1–8kHz
band [16].
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Algorithm 1: GTEAD feature vector extraction
Input: X = {xi}i=1,...,N – input signal, M – number of

gammatone filters (1–128).
Result: Z = {zi}i=1,...,M−1 GTEAD feature vector

for m← 1 to M do
• apply m-th gammatone filter to X and generate

complex output a(m)
i ,

• compute envelope H(m)
i of a(m)

i :

H
(m)
i =

√
<e2[a

(m)
i ] + =m2[a

(m)
i ],

• calculate autocorrelation function of H(m)
i for

w = 1, . . . , N :

R
(m)
w =

N∑
i=1

H
(m)
i ·H(m)

i+w.

end
for i← 1 to M − 1 do

zi =

√
N∑
w=1

[
R

(i)
w −R(i+1)

w

]2
end

frames, then for each frame a D dimensional feature vector
Fh is calculated, h = 1, . . . ,H where H is the total number
of frames. After feature extraction step, a change point detec-
tion process is performed. A brief illustration of two typical
techniques for such task is presented in Fig. 3.

In the metric-based approach, a distance or divergence
function d(Fp, Fp+1) between adjacent frames is calculated
as shown in Fig. 3a. The peaks in the resulting trajectory
may represent possible changes in the audio data. The ∆BIC
method [2] is based on the comparison of two models – the
first where data is modelled by two Gaussians – N (µ1,Σ1)
and N (µ2,Σ2), and the second where data is modelled as
a single Gaussian – N (µ,Σ) (see Fig. 3b). The obtained
trajectory is computed as the difference between BIC val-
ues of these two models (where i is the point in the data

(a)

(b)

Fig. 3. Audio change point detection techniques: metric-based (a) and ∆BIC
(b).

Fig. 4. Examples of ∆BIC trajectories calculated for audio data using (from
top to bottom): GTEAD (D = 4), MFCC (D = 4), GTEAD (D = 12) and
MFCC (D = 12) features.

{Fb, . . . , Fi, . . . , Fe}, b < i < e):

∆BICi = N
(i)
1 log

∣∣∣Σ(i)
1

∣∣∣−N (i)
2 log

∣∣∣Σ(i)
2

∣∣∣
−N log |Σ| − 1

4

[
(D2 + 3D) · log(N)

]
, (4)

where: N – is the total length of analysed data win-
dow {Fb, . . . , Fe}, N

(i)
1 – the size of left-side win-

dow {Fb, . . . , Fi}; N
(i)
2 – the size of right-side window

{Fi+1, . . . , Fe}, i ∈ [b, e];
∣∣∣Σ(i)

1

∣∣∣, ∣∣∣Σ(i)
2

∣∣∣ and |Σ| are the de-
terminants of the covariance matrices for the left-side / right-
side / whole window and D is the dimension of the fea-
ture space. The change in the audio stream at position i
(arg max

i
(∆BICi)) occurs when max

i
(∆BICi) > 0.

The MFCC and GTEAD features have been compared
using several audio signals with a single change point. Some
examples of ∆BIC trajectories are depicted in Fig. 4. From
this figure it follows that the obtained change points have been
detected at different positions. In case of MFCC for D = 12
the change point has not been detected (Fig. 4, bottom panel).
More results are presented in section VI.

V. MULTISCALE METRIC-BASED CHANGE POINT
DETECTION

Due to the low detection ratio of the MFCC feature space
and the lower accuracy of GTEAD (see Tab. II), we have
decided to design a new technique using a multiscale metric-
based approach. In such scheme, a signal is decomposed in the
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Fig. 5. Illustration of multiscale signal decomposition for change point
trajectory generation.

same way as in the metric-based approach. At the next stage,
the frame size is decreased and the process is repeated until
the number of defined levels (M ) is reached. The scheme is
illustrated in the Fig. 5.

The accuracy of such decomposition depends on the number
of levels (M ) and the size of input signal (N ). For example,
the signals calculated for consecutive levels of audio data
with length N = 10s and decomposition levels M = 6
are presented in Fig. 6 (the actual change point occurred for
offset equal to about 50%). The bottom panel shows the signal
being a sum of the signals from all levels which is used as
a trajectory for change point detection. In this way, applying
various fusion schemes (peaks tracking, weighted sum, etc.)
between signals of all scales, a spurious peaks in the final
trajectory can be reduced. The algorithm for multiscale metric-
based trajectory generation is depicted in Algorithm 2, where
Euclidean distance has been exploited as a metric.

VI. EXPERIMENTS

To illustrate the properties of both change point detection
methods and feature spaces we have performed several tests
using database of audio scene recordings. All signals have a
single change point and have been recorded in real conditions.
The database contains 14 mono signals recorded at 22.05kHz
sampling rate as shown in Tab. I. The feature vectors used
in the parametrization stage for ∆BIC scheme have been
calculated with 30ms frame size and 50% frame-to-frame over-
lapping. In the first experiment, an analysis of feature spaces
in the ∆BIC change point detection has been performed.
During the experiment, each trajectory has been generated
with an increasing size of the feature space dimensionality
D = 1, . . . , 12. As a quality factor we have used the absolute
difference Φ = |td − ta|, where td – denotes the offset of the
detected change point and ta is a position of the actual change
point. The results of the change point detection are shown in
Tab. II. As it can be noted, for all test signals a better accuracy,
has been obtained for the MFCC feature in most cases. Despite
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Fig. 6. Example signals obtained for subsequent six scales (calculated for
6th dimensional GTEAD feature space) and the final trajectory calculated as
the sum of all six components (bottom).

the lower accuracy, all change points have been detected using
the GTEAD feature space.

The second experiment involves the proposed multiscale
metric-based change point detection scheme. We have used
the same criterion as in case of the ∆BIC method. This is
possible since each signal includes a single change point.
In real conditions the metric-based approach requires the
thresholding stage to detect the peaks in the trajectory which
can be candidates for the change points. In Tab. III the results
are depicted. In most cases a better accuracy has been obtained
for the GTEAD feature space. The performed analysis shows
that both features have a discrimination power for the audio
change point detection.

VII. SUMMARY

An analysis of auditory features for the change point de-
tection in audio data has been presented. Using two types of
features, we have performed change point detection tests for
a unique set of audio scenes, where each recording contained
a single change point. In the change point detection process
we have employed the popular approach called ∆BIC, but due
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Fig. 7. Examples of change point trajectories for three manually prepared signals: male speech / female speech (a,d,g,j); male speech / music / female
speech / music (b,e,h,k); music 1 / background sound 1 / music 2 / background sound 2 (c,f,i,l). The multiscale representations have been generated using
6th dimensional MFCC (a,b,c) and GTEAD (g,h,i) feature spaces.

to the computational cost of this technique, we have proposed
an approach which is based on frame-to-frame comparison.
In the multiscale metric-based technique, the discrimination
trajectory is calculated by summing up the feature contours
obtained for different time scales.

Using two types of auditory features and set of signals
with single change point, we have performed experiments to
compare both techniques. In the result, a better accuracy has
been obtained for the MFCC feature space in the most cases
using ∆BIC approach. However, in the case of multiscale
metric-based change point detection, the GTEAD feature
outperforms the MFCC. The important fact to note is that
in ∆BIC all change points have been detected for GTEAD
feature. The obtained detection ratio for MFCC has been equal

to about 64%. These results suggest that both techniques and
features should be used together to achieve better accuracy
and detection ratio. As the future work, we plan to investigate
properties of different audio classes and mixed sets of auditory
features. Such analysis will be used to find a configuration of
the segmentation stage for a specific audio analysis task.
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