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Synthesis of the Magnetic Field
Using Transversal 3D Coil System

Bartłomiej Garda and Zbigniew Galias

Abstract—Magnetic field is usually generated using magnets
realized as a set of simple coils. In general, those magnets
generate magnetic field with nonzero components in all directions.
Usually during the design process only one component of the
magnetic field is taken into account, and in the optimisation
procedure the currents and positions of simple coils are found to
minimize the error between the axial component of the magnetic
field and the required magnetic field in the ROI. In this work, it
is shown that if the high quality homogeneous magnetic field is
generated then indeed one may neglect non-axial components. On
the other hand, if the obtained magnetic field is not homogeneous
either due to design requirements of too restrictive constrains,
then all other components may severely deteriorate the quality
of the magnetic field. In the second part of the paper, we show
how to design a 3D transversal coil system to solve problems
which are intractable in the 1D case.

Keywords—gradient coils, homogeneous magnet design, opti-
mization.

I. INTRODUCTION

THE problem of magnetic field synthesis is to find electric
current density distribution over a limited volume which

generates desired magnetic field in the given region of interest
(ROI) [1], [2], [3]. Key parameters characterizing magnetic
devices are the magnitude and the shape of the magnetic field
generated in the region of interest (ROI) [4]. For example, two
kinds of the magnetic field in the ROI are required for the
Magnetic Resonance Imaging (MRI) purposes [5]. The main
field has to be very strong and extremely homogeneous both
in the value and the direction. The homogeneity requirement
is very important since picture quality strongly depends on
it. It follows, that ideally in a three-dimensional ROI the
magnetic field vector should have a large constant component
in one direction and zero components in the two remaining
directions. This exquisitely uniform and very intense magnetic
field is used to polarize the spin population of a sample so as
to maximise the strength of the nuclear magnetic resonance
(NMR) signal [6]. The second type of field is the gradient field
applied to produce controlled variations in the main magnetic
field. Three orthogonal gradient coils are used to produce
controlled gradient magnetic fields, which superimposed on
the main magnetic field force selective spatial excitations of
the imaging volume.

Coil design (magnetic field synthesis) problem is described
by a Fredholm equation of the first kind, which is known
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Fig. 1. The systems of eight transverse simple coils designed to generate
magnetic field in the region of interest (ROI)

to be ill-posed [7]. Early approaches to coil design in MRI
cancelled undesired spherical harmonic components of the
magnetic field by symmetry and appropriate positioning of
loops and arcs of wire [8] or by parametrized surface current
densities [9]. In this work, the coil design problem is presented
as the problem of finding the positions and/or currents of
simple coils (loops with a current) that can generate a specified
magnetic field in the ROI [10]. The ROI is usually a sphere
or a cube located inside the coil. We will assume that simple
coils are circular and centered along their common axis of
symmetry. The 3D design problem is illustrated in Fig. 1,
where three groups of coils are located along the three space
directions. Each simple coil is defined by the position xi, yi
or zi of its center along its axis of symmetry, the radius ri,
and the current Ii.

When a simple coil (for example centered along the z axis)
is considered, it is convenient to use the cylindrical coordinates
(z, r, ϕ). Due to symmetry the magnetic fields at the point
(zj , rj , ϕj) does not depend on the ϕj coordinate. Since the
coils are circular and coaxial, it follows that the Bϕ component
is zero. The components Bz and Br will be called the axial
and the radial component, respectively. The magnetic field at
the point (zj , rj) generated by a simple coil with parameters
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(zi, ri, Ii) is equal to [5]:

B(zj , rj , zi, ri, Ii) =
µ0Ii

2π
√
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·[
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rj

(
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r2i + r2j + (zj − zi)2

(ri − rj)2 + (zi − zj)2
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)
ar+

+

(
K(k) +

r2i − r2j − (zj − zi)2
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E(k)

)
az

]
.

(1)

where E(·) and K(·) are the complete elliptic integrals of the
first kind, k2 = 4rirj/((ri + rj)

2 + (zi − zj)2), and az and
ar are the unit vectors in the z and r directions. Using the
superposition principle the total magnetic field at (zj , rj) can
be computed as a sum of fields generated by all simple coils.

Under some specific conditions the radial component is
very small when compared to the axial component due to the
effect called “quadrature suppression”. Let us assume that the
generated field can be expressed as the required field B0 and
error terms in the form

Bz = B0 + εzB0, Br = εrB0. (2)

If εz and εr are small with respect to 1 then the relative
error between the magnitude of the magnetic field |B| =√
B2

z +B2
r and B0 is

δ =
||B| −B0|
|B0|

= |
√
(1 + εz)2 + ε2r − 1| ≈ εz + 0.5ε2r. (3)

In [11], it has been shown that if the generated magnetic
field is homogeneous then εz and εr have the same order
of magnitude. It follows that in this case εr has negligible
influence on the total error and that the radial component Br

can be neglected. In the following sections we will discuss
this problem for different types of generated magnetic fields.

II. SHAPING MAGNETIC FIELD USING 1D COIL SYSTEM

In this section, we study the possibility of solving the
problem of magnetic field design using coils located coaxially
along one axis (1D coil system). We will investigate the
influence of non-axial field components in situations when the
desired field is homogeneous and linearly increasing (gradient
field).

A. Homogeneous magnetic field

Let’s study the coil design problem for the case when the
goal is to generate a homogeneous magnetic field along the z
axis [10], i.e. B = B0az + 0ax + 0ay , where ax, ay, az are
the unit vectors in the three space direction.

In [13], the design problem is defined as a linear pro-
gramming problem that minimizes the power consumption
under constrains that at each of m target points located in
the ROI, the axial component of the magnetic field satisfies
the condition |Bz − B0| ≤ εB0. The quality parameter ε is
usually in the the range 1 to 10 ppm.

One of the problems studied in [13] is the minimum-
power bi-planar mammography magnet, where simple coils
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Fig. 2. The axial component Bz and the radial component Br =
√
B2

x +B2
y

of the magnetic field over the circular ROI with diameter 20 cm for the
solution presented in [13]

are placed in the plane 30 cm below the ROI center and in
the plane 15 cm above the ROI center. A solution with 6
simple coils (2 below and 4 above the ROI) is found. Fig. 2
presents the axial and radial components of the magnetic field
computed at the border of the circular ROI with the diameter
20 cm for the solution found in [13] (compare Table II of [13]).
The minimum and maximum values of the axial component
over the ROI are 3.9610321 · 10−2 T and 3.9610814 · 10−2 T.
The difference is 4.93 · 10−7 T, and the homogeneity of the
magnetic field is at the order of 10 ppm which is a standard
value for MRI purposes. Note that the other two components
Bx and Bz are much smaller then the value of Bz . Maximum
value of |Bx| and |By| are at the level of 2.5 · 10−7 T. The
maximum relative error δ between |B| =

√
B2

z +B2
x +B2

y

and Bz is approximately 10−12 so the radial component has
practically no influence on the magnitude of the magnetic field,
and hence it can be neglected in the design process.

Fig. 3 presents the radial and axial components of magnetic
field at the border of the ROI for the solution proposed in [14]
(compare Table II of [14]). The Bz component of the magnetic
field is at the homogeneity level of 21 ppm. Note that the Br

component is a couple of orders of magnitude smaller than the
Bz component. Fig. 4 shows the ratio Br/Bz . Its maximum
is below 10−5. It follows that the maximum relative error δ
between |B| =

√
B2

z +B2
r and Bz is below 5 · 10−10.
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Fig. 3. The axial component Bz and the radial component Br of the magnetic
field over the circular ROI with radius 9 cm for the solution presented in [14]
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Fig. 4. The ratio Br/Bz over the circular ROI with radius 9 cm for the
solution presented in [14]

Summarizing, we have shown that indeed, if high quality
homogeneous magnetic field is obtained then one may neglect
the radial component in the design process and this has no
practical effect on the magnitude of the magnetic field. The
problem when homogeneous field has to be generated in the
direction which is not perpendicular to coils planes is studied
later in the paper.

0
0.1

0.2
0.3

0.4−0.40
−0.20

0.00
0.20

0.40

−12

−8

−4

0

4

8

12

r [m]z [m]

B
z
 [
m

T
]

0
0.1

0.2
0.3

0.4
−0.40

−0.20
0.00

0.20
0.40

0

1

2

3

4

5

6

r [m]z [m]

B
r
 [
m

T
]

Fig. 5. The axial component Bz and the radial component Br =
√
B2
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of the magnetic field over the ROI with radius 36 cm for the solution presented
in [15]

B. Gradient magnetic field

The z-gradient coil is the coil that in the region of interest
excites magnetic field with the constant value of the derivative
Gz = ∂Bz

∂z , i.e. the axial component grows linearly with z [10].
The simplest way to achieve this goal is to use the Maxwell
coil, i.e. a pair of simple coils with radius r at positions z =
±0.87r with currents flowing in opposite directions. Maxwell
coil produces magnetic field with the gradient of Bz varying
less than 5% with the ROI being a sphere of radius 0.5r. An
improved solution with two pairs of simple coils is presented
in [15]. Parameters of the simple coils are following

z1 = 0.44r, z2 = 1.19r, I1 = 7.47I2.

This solution provides variance of the gradient not larger than
5% within the sphere of radius 0.8 · r.

Fig. 5 shows the radial and axial components of magnetic
field over the ROI for the coils with radius r = 45 cm. The
radius of the ROI is 0.8r = 36 cm. It is interesting to note
that the radial component in the ROI increases almost linearly
along the r axis. The maximum value of the radial component
is almost half of the maximum value of the axial component.
This example shows that radial component is quite significant
and has a large impact on the magnitude of the magnetic field
in the region of interest.

As a conclusion we note that generation of magnetic field
with constant gradient in one direction influences significantly
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magnetic fields in the orthogonal direction. One way to solve
this problem could be using simultaneously three orthogonal
coils to minimize non-axial components of the magnetic field.

III. SHAPING MAGNETIC FIELD USING TRANSVERSAL 3D
COIL SYSTEM

In the previous section, we have shown that when the
desired magnetic field needs to be generated in the direc-
tion perpendicular to the coils planes the other components
generated by the achieved coils system do not influence the
desired field. In this section, we study the problem when
the homogeneous field needs to be generated in an arbitrary
direction using transversal 3D coil system. We will assume that
the homogeneous magnetic field B0 of 10 [mT] needs to be
generated in the radial direction for ϕ = π/4 and θ = [0, π/2]
in the spherical coordinates.

A. The Least Squares Method

Let us assume that there are n simple coils with cur-
rents i1, i2, . . . , in located coaxially along three axis of
the coordinate system (see Fig. 1). Let us choose m tar-
get points evenly distributed in the ROI. The desired val-
ues of each component of the magnetic field are breq =
(bx1, bx2, . . . , bxm, by1, by2, . . . , bym, bz1, bz2, . . . , bzm)T . The
problem can be presented as the least-squares (LSQ) optimisa-
tion problem [16]. The LSQ solution is the one that minimizes
the sum of squares of residual errors for all target points. Since
the relation between the field at target point and the current
for a given coil is linear (compare (1)), one can formulate the
problem as an overdetermined set of linear equations:

A · i = breq, (4)

where A ∈ R3m,n is the coefficient matrix, i ∈ Rn is a vector
of the currents to be found, and b ∈ R3m is a vector describing
the required field at the target points. Solution of (4) can be
expressed by

î = argmin
i
‖Ai− breq‖22, (5)

where ‖ · ‖2 denotes the Euclidean norm. It is well known
that minimum of (5) can be found solving the set of normal
equations:

ATAî = ATbreq. (6)

The matrix A is usually ill-conditioned (especially for
large n), which may lead to propagation of numerical errors,
and in consequence to wrong solutions. One can use regu-
larisation methods to avoid such problems [17]. For the test
problems in the paper the coil numbers n is limited (n ≤ 18)
and additionally the QR method is used to solve the set of
normal equations. This allows us to obtain acceptable solutions
without the necessity of using regularization techniques.
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Fig. 6. Current distribution in each coil when θ = 0 and the 1D coil system
is used.

B. Test results and discussion

Table I presents the geometrical specification of coils po-
sitions used in tests. Two cases are considered. In the first
one the total number of 18 simple coils is used—six in each
directions, while in the second case 12 coils are used— in each
directions. Coils are symmetrically positioned in all spatial
directions. The ROI is the sphere of diameter 20 cm located
in the center of the coordinate system. During the simulations,
m = 1419 test points evenly distributed in the ROI are used.

TABLE I
GEOMETRICAL SPECIFICATION OF THE COILS USED FOR THE DESIGN
TESTS. ALL DIMENSIONS ARE IN CM AND REPRESENTS THE ONE OF

THREE SETS OF COILS IN ALL DIRECTIONS.

coil no case 1 case 2
radius axis position radius axis position

1 80 -120 80 -80
2 60 -100 45 -80
3 40 -80 45 80
4 40 80 80 80
5 60 100 – –
6 80 120 – –

Fig. 6 presents the solution (6) obtained for the case when
θ = 0 (field is perpendicular to the coils) using 1D coil system
with six coils. Fig. 7 presents the corresponding magnetic field
in the plane y = 0. The value of the residual error ‖B−Breq‖
is 1.447228381491 ·10−7. The maximum value of Bz over the
whole ROI is 10.00002520002 [mT] and the minimum value
is 9.999990976816 [mT]. Hence, the inhomogeneity is kept on
the level of 34.2 ppm. When instead of six coils only four coils
are used the residual error increases to 4.161372969709 ·10−5

and inhomogeneity is at the level of 6.73 ppm.
Now, let us consider the case when the direction of the

homogeneous magnetic field is not along the z axis. For the
1D case one can observe strong deterioration of the solution.
This is presented in Fig. 8, where the value of the residual
error increases very fast with the angle θ. Even for small θ
the solution becomes useless. It is necessary to use transversal
3D coil system to improve the solution. Solution with the coils
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Fig. 7. Magnetic field distribution in ROI on the plane y = 0 for the solution
presented in Fig. 6.
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in all three directions guarantees the quality of the solution at
the same level as before.

As an example let us consider the case θ = 35.264◦, which
corresponds to the direction of the magnetic field being at the
same angle to all three axes. The current distribution for the
case of 18 coils (six in each directions) is presented on fig
9. The residual error is at the low level of ‖B − Breq‖ =
1.447228381514 · 10−7, while in the 1D case with 6 coils the
residual error is ‖B −Breq‖2 = 0.2174856317093.

Fig. 10 presents the graph of the values of currents in the
3D coil system of 18 coils as a function of the requested
homogeneous magnetic field direction angle θ. Due to the
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coaxially along the x-axis, bars numbered 7 − 12 represent coils located
along y-axis and the rest stand for coils along z-axis.
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symmetry of the system the following conditions are fulfilled:

Ix1
= Ix6

= Iy1
= Iy6

,

Ix2
= Ix5

= Iy2
= Iy5

,

Ix3
= Ix4

= Iy3
= Iy4

,

Iz1 = Iz6 ,

Iz2 = Iz5 ,

Iz3 = Iz4

(7)

The graph gives us the specific guideline for controlling the
requested homogeneity of the magnetic field in each direction.
Similar graphs can be generated for each specific geometrical
structure of 3D coils system, not necessarily symmetric.

IV. CONCLUSION

In the paper we have shown that the non-axial components
of the magnetic field can be neglected in the case when high
quality homogeneous magnetic field is generated. On the other
hand, when a nonhomogeneous magnetic field is obtained the
non-axial components significantly influence the magnitude
of the magnetic field. Therefore, in the design process one
has to take into account all components of the magnetic field.
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When homogeneous magnetic field needs to be generated in an
arbitrary direction one cannot use coils coaxially located along
a single axis only. Even very small deviation from the axial
direction of the requested magnetic field makes it necessary
to use transversal 3D coils structure. It has been shown that
3D system can generate a high quality homogeneous magnetic
field in an arbitrary directions without changing the coil system
structure.
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