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Abstract—Safety and security have been a prime priority in 

people’s lives, and having a surveillance system at home keeps 

people and their property more secured. In this paper, an audio 

surveillance system has been proposed that does both the 

detection and localization of the audio or sound events. The 

combined task of detecting and localizing the audio events is 

known as Sound Event Localization and Detection (SELD). The 

SELD in this work is executed through Convolutional Recurrent 

Neural Network (CRNN) architecture. CRNN is a stacked layer 

of convolutional neural network (CNN), recurrent neural 

network (RNN) and fully connected neural network (FNN). The 

CRNN takes multichannel audio as input, extracts features and 

does the detection and localization of the input audio events in 

parallel. The SELD results obtained by CRNN with the gated 

recurrent unit (GRU) and with long short-term memory (LSTM) 

unit are compared and discussed in this paper. The SELD results 

of CRNN with LSTM unit gives 75% F1 score and 82.8% frame 

recall for one overlapping sound. Therefore, the proposed audio 

surveillance system that uses LSTM unit produces better 

detection and overall performance for one overlapping sound. 

 
Keywords—convolutional recurrent neural network (CRNN), 

gated recurrent unit (GRU), long short-term memory (LSTM), 

sound event localization and detection (SELD) 

I. INTRODUCTION 

HE report by the United Nations Office on Drugs and 

Crime in 2017 indicates that the burglary rate over the 

years has increased across different countries [1]. Increase in 

crime rate leads to the requirement of home surveillance. 

Presently, two main home surveillance systems are in use. The 

first one is visual surveillance [2,3] that uses cameras, which 

cover the visible light range of the electromagnetic spectrum or 

other ranges like IR to observe the surroundings [4]. The 

second one, a growing research field that is redefining the 

surveillance system, is audio surveillance that uses 

microphones for observing the sound changes happening in the 

surrounding environment. When it comes to visual 

surveillance, the area uncovered by the camera and amount of 

memory required to store the information becomes an issue 

[3]. However, audio surveillance can overcome these 

limitations and can do surveillance under low computation 
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power [5]. The audio input from the microphone has to be 

detected, classified and localized for audio surveillance. 

Detection and classification of audio events have been done as 

Sound Event Detection (SED) task, which is the prediction of 

temporal information; that is the onset and offset time of the 

audio event. Localization of audio events has been done as the 

estimation of direction of arrival (DOA), which is the 

prediction of Spherical or Cartesian coordinates of the audio 

event. 

Various traditional neural network classifiers for SED task 

are implemented for acoustic audio surveillance [6, 7]. The 

supervised classification approaches like Support Vector 

Machine (SVM) [6], Gaussian Mixture Model (GMM) [7] and 

Hidden Markov Model (HMM) [7] and the unsupervised 

classification approaches like K-means clustering [6], GMM 

clustering [7] brings out the reverberation problem in 

traditional neural network classifiers. Persistence of sound than 

its actual duration caused by reverberation leads to unwanted 

overlapping of sounds. SED task leads to different classifier 

approaches as discussed in [8] evinces deep learning models 

like Deep Neural Network (DNN), Convolutional Neural 

Network (CNN) and Recurrent Neural Network (RNN) 

performs better than traditional classification methods. The 

recent developments [9, 10] in the SED task to detect multiple 

sound sources that are active at the same time can be an 

advantage for surveillance tasks. 

Since the CNN [11] can learn the spatial information from 

the input features, and RNN [12] can learn the long temporal 

information, they both became a prominent approach for SED 

task. Recently, a combination of CNN and RNN, known as 

Convolutional Recurrent Neural Network (CRNN) has been 

proposed for the SED task [9, 10], which is found to overcome 

the reverberation problem. CRNN is a stacked layer of 

convolutional neural network (CNN), recurrent neural network 

(RNN) and fully connected neural network (FNN). The 

method proposed in [9] used a high-level feature known as 

Mel-frequency cepstral coefficients (MFCC) to learn different 

sound classes’ common features. In contrast, the MSEDnet 

(multichannel SED network) and SEDnet (single channel SED 

network) method proposed in [10] used low-level (basic) 

features like log Mel-band energy, autocorrelation, generalized 

cross-correlation with phase transform (GCC-PHAT) to prove 

that the low-level features are capable of learning powerful 

representations. Despite the fact that the chosen features and 

CRNN architecture (given by [9] and [10]) contradict one 

another; both prove that stacking CNN and RNN produces 

better SED results compared to the individual implementation 

of CNN and RNN. 
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DOAs of the classified sounds are estimated using two 

main approaches; parametric based [13-15] approach and Deep 

Neural Network (DNN) based [16, 17] approach. The 

estimation of DOA using multiple signal classification 

(MUSIC) method [13], steered response power (SRP) method 

[14] and time difference of arrival (TDOA) method [15] are 

few of the most applied parametric based methods for 

localization of the audio events. The basic limitations of the 

parametric based method are their inability to associate the 

detected audio event with their respective DOAs for 

polyphonic sounds, their sensitivity towards low signal to 

noise (SNR) ratio and their reverberation conditions. These 

limitations of the parametric based methods are overcome by 

the DNN based methods [16, 17]; where DNN can learn the 

connections between the input features and their estimated 

DOAs. These DNN based approaches have proved that they 

perform equivalent to the parametric methods and also being 

robust to reverberant conditions [16,17]. Classification [16] 

and regression [17] are two supervised learning approaches in 

DNN for DOA estimation. The classification approach has 

limitations like the requirement of a larger dataset for training, 

estimation of only limited discrete angles, the unpredictability 

of unseen DOAs. Whereas the regression-based approach 

(DOAnet [17]), has proved to perform efficiently with 

comparatively smaller datasets, estimating the DOAs in 

continuous range and producing a seamless output for the 

unseen DOAs. DOAnet is the first method to estimate DOA 

for two sounds overlapping in the time window in the audio 

signal. 

A surveillance system has to identify audio events (similar 

or different) while receiving from more than one direction. To 

accomplish this task, it is important to combine the detection 

and localization of the audio events; which can be achieved 

either by joint localization and detection [18] approach or by 

combining the results of detection and localization [19] 

approach. The latter approach has the difficulty of associating 

the detected sound events with their respective estimated 

DOAs. This data association problem is overcome by Sound 

Event Localisation and Detection network (SELDnet), a joint 

approach, which has been first developed and has been 

explained in [18]. Therefore, employing SELDnet for audio 

surveillance system is more reasonable for better processing. 

The neural network architecture employed in SELDnet is 

CRNN; which is a stacked layer of CNN, RNN and FNN. The 

SELDnet is able to overcome the reverberation problems faced 

in [6, 7]. To make the surveillance system generic towards 

different input array structures, phase and magnitude features 

are preferred over the other method specific features as used in 

the SELD approach [19]; since method-specific features are 

dependent on the nature of input array structure.  

Based on the factors analysed in the above discussions, the 

SELDnet method is preferred for audio surveillance. The 

bidirectional RNN in SELDnet [18] uses a memory unit called 

gated recurrent unit (GRU) for learning sequential information 

from the input. The GRU update and reset gate to keep in the 

necessary information to learn and discard the unnecessary 

information. Another memory unit called long short-term 

memory (LSTM) available in bidirectional RNN of SELDnet 

does the same work but using three gates: input, output and 

forget gates. As LSTM has simpler and defined structure than 

GRU (GRU does the work done by three gates of LSTM with 

just two gates of complex structures), it learns the long 

sequential information better [10]. So, in this paper, detection 

and localization of audio events, which are the two main 

aspects of audio surveillance, is implemented for both 

SELDnet with GRU and SELDnet with LSTM unit to compare 

their SELD performance. The paper is organized as follows. In 

Section II, the SELDnet method employed is discussed. In 

section III, results and discussions are consolidated. In section 

IV, the conclusion of the proposed work is summarized.  

II. METHODOLOGY 

This section explains the SELDnet method shown by Fig. 

1, which is used in the proposed work. SELDnet takes 

multichannel audio as input. From each input audio channel, 

phase and magnitude spectrograms are extracted, which are 

used as distinct features by neural network architecture 

(CRNN) for detection and localization. The CRNN predicts the 

active sound classes and their respective spatial locations as 

3D cartesian coordinates in each input spectrogram frame, 

where the spectrogram frames are taken in sequence. The 

multiple sound classes that are predicted active by CRNN from 

the input spectrogram are classified to their respective sound 

classes using multi-label classification model. In parallel to the 

classification process, the multi-output regression model is 

used to obtain the 3D cartesian coordinates of predicted active 

sound classes. Thus, the SELDnet detects the active sound 

classes and estimates their direction of arrival in parallel. The 

SELDnet's feature extraction process and neural network 

architecture (CRNN) used in the proposed work is elucidated 

in the following discussion. 

The REAL dataset [18], which uses real-life recordings of 

the urbansound8K to generate its audio records, are more 

pertinent for training home audio surveillance systems. The 

REAL dataset consists of separate one, two and three 

overlapping sounds (ov1, ov2 and ov3) datasets. Each dataset 

has 240 recordings for training and 60 recordings for testing. 

Thus, the proposed work has been tested and evaluated on the 

REAL dataset for its performance measures.  

A. Feature extractor 

 

 
Fig.1. Feature extractor for home audio surveillance 

 

The feature extractor as shown in Fig. 1, takes in the 

multichannel audio as input. The main objective of the feature 

extractor is to extract the magnitude and phase components of 

the audio signal for each audio channel. The input audio signal 

is sampled at a sampling rate, Fs which is 44.1 kHz. Then the 
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sampled audio signal is approximated to a standard length of L 

by truncating the signal if they exceed the length of L or 

padded with zeros if shorter than L. After standardizing the 

sampled audio signal’s length, an N-point Discrete Fourier 

Transform (DFT) with an N-point Hanning window of N/2 hop 

length is applied to extract the spectrogram for each audio 

channel. Thus, the resulting spectrograms have a dimension of 

T x N/2 x C, where T is the frame sequence taking only 

positive frequency bins (N/2) excluding the zeroth bin, for all 

C audio channels. Obtained spectrograms are normalized and 

then have been used to extract each channel’s respective 

magnitude and phase spectrograms. The magnitude and phase 

spectrogram extraction alters the dimension of the feature 

extraction output as T x N/2 x 2C. The extracted features are 

then taken as input by the CRNN to predict the active sounds 

and their DOAs. 

 

 
Fig. 2. SELD implementation for home audio surveillance using CRNN 

architecture 

B. CRNN architecture 

1) Convolutional Neural Network (CNN)  

The obtained magnitude and phase spectrograms (T x N/2 x 

2C) (which are feature extractor output) are divided into 

several segments where each segment have T number of 

frames. Each segment is taken as input by the three-layer 2D 

CNN which has been visualized in Fig. 2. The three layers of 

CNN learn the shift-invariant features from the magnitude and 

phase spectrogram. In each layer of CNN, P number of kernels 

(with a dimension of 3 x 3 x 2C) acts along the time-

frequency-channel axis of the spectrogram to get the 

convolution output. As kernels are spanned across the channels 

of the spectrogram, CNN is able to learn relevant features that 

correlate the channels, which are important for the localization 

process. Whereas the features within each channel that are 

required for both detection and localization process are learned 

by spanning its kernel across the time and frequency axis of 

the spectrogram. The convolved output given by the kernels in 

each layer of CNN is normalized using batch normalization. 

The normalized output is optimized using Rectified linear unit 

(ReLU) activation as it eludes the vanishing gradients. The 

output dimension of the CNN in each layer is reduced to ease 

the computation in the forthcoming layers using max-pooling 

that acts along the frequency axis to maintain the frame 

sequence length (T) constant. The max-pooling size in each 

layer is determined accordingly to obtain a frequency bin 

dimension of two at the last layer of CNN. Thus, the final layer 

output of CNN contains all the learned shift-invariant features 

with a dimension of T x 2 x P. 

2) Recurrent Neural Network (RNN)  

The RNN layers have different types of inbuilt memory 

units. The first RNN layer takes in the previous CNN layer's 

output as its input, after reshaping its dimension to T x 2P as 

shown in Fig. 2. The temporal features from the input are 

learned using two layers of bidirectional RNN. The SELDnet 

performance is tested using two different memory units present 

in the RNN in obtaining the sound classes and DOA. The 

tested memory units of RNN are gated recurrent unit (GRU) 

and long short-term memory (LSTM) unit.  The two layers of 

bidirectional RNN have Q number of considered memory units 

in each layer followed by tanh activation function for 

optimization of the output. Thus, the final output of the RNN 

contains the learned temporal information with a dimension of 

TxQ.  

3) Fully Connected Neural Network (FNN)  

The optimized output from the RNN is fed as input to two 

separate branches of FNN, each branch with two layers of 

FNN. One FNN branch is for SED output and the other for 

DOA estimation. The first layer in both the FNN branches has 

R number of nodes with linear activation, producing output 

with a dimension of T x R. The second layer in the SED 

branch has S number of nodes with sigmoid activation; each 

node's output represents one of the S sound classes of the input 

signal. The simultaneous activation of multiple classes is 

possible through sigmoid activation. The second layer in the 

DOA branch has 3S nodes with tanh activation, where the 3 in 

3S nodes represents the x, y and z of the 3D cartesian 

coordinates of the respective S sound classes. The tanh 

activation used in DOA estimation optimizes the DOA output 

ranges to [-1,1] as in 3D cartesian coordinates. The final 

outputs of the two FNN branches are the estimated SED and 

DOA values for each sound classes. 

The SED output for each sound classes will be in the 

continuous range of [0, 1] and DOA estimates in the 

continuous range of [-1, 1]. A threshold value of 0.5 is applied 

to the SED output to detect the active sound classes and its 

DOA. The detected active sound classes’ respective DOA 

estimates are taken into consideration for evaluation. Thus the 

sound events are detected and localized for home audios. The 

evaluation metrics for SED and DOA are mentioned in the 

following section. The results obtained are evaluated and the 

performance has been discussed. 
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III. RESULTS AND DISCUSSION 

A.    Evaluation metrics 

The detection and localization results are evaluated using 

separate metrics. F1-score and error rate(ER) as proposed in 

[20] are used for SED evaluation. DOA error and frame recall 

(FR) as in [18] are used for DOA evaluation. Higher F1-score 

and lower ER indicates better performance of the detection 

task. DOA error comprises of DOA-got (doa_gt) and DOA-

predicted (doa_pred). The doa_pred is calculated for sound 

classes that are estimated active in the SELDnet whereas 

doa_gt is calculated for sound classes that are mentioned active 

in the dataset. Lower DOA error and higher FR indicate better 

performance of the localization task. Lower the doa_pred value 

and the closer it gets to the doa_gt value indicate the 

improvement in the performance of the detection task. To 

evaluate the overall performance of both detection and 

localization, SELD-score is used [18]. Lower the SELD score, 

better the performance of SELDnet. 

B.   Results and discussions of the proposed method on 

different parameters 

The optimized neural network parameters specified in [18] 

are of 64 filters for each CNN layer, 128 GRU nodes for each 

RNN layer and 128 nodes for first FNN layer of both branches, 

and has no dropout layer. Using these optimized parameters, 

and to find the optimum window length for the proposed 

method, the neural network architecture with GRU memory 

unit is evaluated with two different windowing lengths: 512 

and 1024 points for 10 and 20 iterations or epochs, on one 

overlapping sound (ov1). For the window length of 1024, a 

max-pooling size of (8, 8, 4) and for the window length of 512, 

a max-pooling size of (8, 8, 2) for respective CNN layers are 

used in the proposed method such that the final frequency bin 

length is two. The frame sequence length of 512 is used for 

both window lengths. Compared to ten iterations, twenty 

iterations improve both the SED and DOA evaluation metrics 

values, for both the window lengths as given by Fig. 3 and Fig. 

4. The neural network architecture with 512-point window 

length outmatches the SELD performance of the 1024-point 

window length, which has been shown in Fig.3. Therefore, for 

further evaluations, 512-point window length and 20 iterations 

are used in the proposed method. 

 

 
Fig. 3. SED and  SELD evaluation metrics for different epochs and nfft points 

of GRU of the proposed method 

With the finalized parameters of SELDnet, the proposed 

SELDnet with LSTM is evaluated for different dropout rates: 

0.2, 0.3, 0.5 and 0.7, for one overlapping sound (ov1) to test 

the performance. LSTM with a dropout rate of 0.3 produces 

higher F1-score, lower ER and lower SELD-score whereas a 

dropout rate of 0.2 produces lower doa_pred and doa_gt error 

as seen in Fig. 5 and Fig. 6. Further experimenting with 0.0 

dropout rate, the SED and DOA performance of SELDnet 

improved as shown in Fig. 5 and Fig. 6. Therefore, LSTM with 

no dropout rate is preferred for further evaluation of ov2 and 

ov3 datasets in this proposed method. 

 
 

 
Fig. 4. DOA evaluation metrics for different epochs and nfft points of GRU of 

the proposed method 

 
Fig.5. SED and SELD evaluation metrics for different dropout rates of 

LSTM of the proposed method 

 

 
Fig.6. DOA evaluation metrics for different dropout rates of LSTM of the 

proposed method 
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C.  Performance comparison of GRU and LSTM for 1, 2 and 

3 overlapping sounds 

The SED and DOA performance results obtained for both 

GRU and LSTM of the proposed method for three different 

overlapping sounds (ov1, ov2 and ov3) are tabulated in Table 

I. Using GRU, the increase in ER and DOA error along with 

the reduction in F1 score and ER with the increase in the 

number of overlapping sound indicates the increase in 

complexity to detect and localize the sounds. The difference 

between doa_gt and doa_pred increases for an increase in the 

number of overlapping sounds, which further indicates the 

reduction in SED performance.  For LSTM, the performance 

of ov1 is better than ov2 and ov3. 

Between ov2 and ov3, SED performance of ov3 is better 

than ov2 for LSTM. The SED and DOA performance of GRU 

and LSTM for ov3 is more comparable than ov1 and ov2, 

which can be concluded from Table I. Further, the LSTM is 

able to perform without much degradation in overall SELD 

performance for the increase in overlapping sounds as 

compared to GRU, whose performance reduces constantly 

with the increase in overlapping sounds as seen in Fig. 7. 

 
Table I 

SED and DOA metrics for ov1, ov2 and ov3 of the REAL dataset using GRU 

and LSTM units of the proposed method for 20 epochs 

METRICS 
GRU LSTM 

ov1 ov2 ov3 ov1 ov2 ov3 

SED 

metrics: 

F1 0.67 0.56 0.51 0.57 0.46 0.51 

ER 0.45 0.57 0.61 0.51 0.67 0.62 

DOA 

metrics: 

doa_pred 0.63 0.79 0.93 0.7 0.85 0.94 

doa_gt 0.5 0.57 0.65 0.53 0.59 0.69 

FR 0.62 0.20 0.05 0.51 0.1 0.01 

 

 
 

Fig.7. SELD score with respect to GRU and LSTM for ov1, ov2 and ov3 

 

The confusion matrix for the predicted sound classes using 

GRU and LSTM is given in Fig. 8 and Fig. 9. It has been 

observed that true positive values are reducing with an increase 

in overlapping sounds. Comparing Fig. 8 and Fig. 9 of GRU 

and LSTM for ov1, it has been observed that LSTM doesn’t 

misclassify one overlapping sound as two as GRU does. Thus 

indicates that LSTM learns sequences better than GRU. The 

FR and DOA error for both GRU and LSTM still need to be 

enhanced. So to compare the SED and DOA performance of 

GRU and LSTM, both are evaluated on ov1 dataset for 1000 

epochs by the proposed method. 

(a) 

(b) 

(c)  
 

Fig.8. Normalized confusion matrix of SELDnet of the proposed method with   

GRU of the REAL dataset for 20 epochs: (a) ov1; (b) ov2; (c) ov3. The ‘p’ 
represents the predicted and the ‘r’ represents the reference number of sounds 

in the figure.  

(a) 

(b) 

(c)  

 

Fig.9. Normalized confusion matrix of SELDnet of the proposed method with 

LSTM of REAL dataset for 20 epochs: (a) ov1; (b) ov2; (c) ov3 

D. Performance comparison of SELDnet (LSTM) with other 

published methods 

Evaluating the SELDnet with LSTM unit on ov1 of the 

REAL dataset for 1000 epochs has given better SED and DOA 

results compared to the 20 epochs which can be observed from 

Table I and Table II. The obtained results of SELDnet with 

LSTM are compared with other SED and DOA baseline 

methods wherever possible and is as listed in Table II. The 

results of the proposed methods are highlighted in the table. 

The high F1 score and low ER of SELDnet with LSTM by the 

proposed method prove that the LSTM does the detection of 

REAL dataset better than MSEDnet [10], SEDnet and 

SELDnet (GRU) [18]. The FR of SELDnet with LSTM by the 

proposed method is very high compared to the SELDnet with 
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GRU [1] and DOAnet [17].  The 95% true positive rate of 

SELDnet with LSTM as seen in Fig. 10 supports the high FR 

value. 
Table II 

SED and DOA metrics for the REAL dataset for the ov1 of the proposed 

method (for 1000 epochs) compared with the published results 

 Method  Metrics values  

SED 

metrics:  

  F1  ER  

SELDnet (LSTM)   0.75  0.34  

SELDnet (GRU) [18]  0.603  0.40  

SEDnet [10]  0.646  0.38  

MSEDnet [10]  0.662  0.35  

DOA 

metrics:  

  doa_pred  FR  

SELDnet (LSTM)  0.40  0.828  

SELDnet (GRU) [18]  0.266  0.649  

DOAnet [17]  0.063  0.465  

SELD 

metrics:  

  SELD score  

SELDnet (LSTM)  0.191  

SELDnet (GRU) [18]  0.287  

Fig.10. Normalized confusion matrix of SELDnet for ov1 for 1000 epochs of 
the proposed method 

 

The DOAnet of the proposed method has the lowest DOA 

error compared to other methods. The SELDnet with LSTM 

gives the best SELD performance with low SELD score 

compared to SELDnet with GRU [18]. Even though SELDnet 

with LSTM gives very high FR value, the DOA error value is 

high compared to the DOA error value of DOAnet [17]. Thus 

considering both FR and DOA error values for the best DOA 

method, it is concluded that DOAnet gives better DOA 

performance. Therefore, the proposed SELDnet with LSTM 

gives the best SED and SELD performance with highest F1 

score and lowest SELD score and ER than the other published 

methods. 

IV. CONCLUSION 

In this paper, a CRNN architecture known as SELDnet is 

used for detection and localization of audio events for home 

audio surveillance. The SELDnet detects and localizes the 

audio events in parallel. The detection is carried out as a multi-

label classification approach and localization as a multi-output 

regression approach. SELDnet performance by CRNN with 

two different memory units: GRU and LSTM are compared 

and discussed in this paper.  From the results, it is concluded 

that the SELDnet with LSTM outperforms the SELDnet with 

GRU and other published methods in SED and overall SELD 

task. Therefore, the high performance given by LSTM on 

REAL dataset indicates that LSTM is able to learn the real-life 

sounds better than other methods, which is essential for 

surveillance systems. 

The SELDnet with LSTM has high FR value but their 

DOA error value has to be reduced to improve the DOA 

estimation. Therefore, the future work is focused on improving 

the DOA performance of the SELDnet with LSTM and also to 

evaluate their performance on more than one overlapping 

sounds for 1000 epochs. 
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