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Is Swarm Intelligence Able to Create Mazes?
Dawid Połap, Marcin Woźniak, Christian Napoli and Emiliano Tramontana

Abstract—In this paper, the idea of applying Computational
Intelligence in the process of creation board games, in particular
mazes, is presented. For two different algorithms the proposed
idea has been examined. The results of the experiments are shown
and discussed to present advantages and disadvantages.
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I. INTRODUCTION

THE first evolutionary algorithms have been shown in
the 70s [1], [2]. Where in [1] J. Holland has shown

that the nature is giving best optimization techniques, which
are implementable in various optimization problems. Further
with research on possible applications computer scientists have
developed several techniques that map behavior of various
animals into computer algorithms. In [3] cuckoos breeding
habits were implemented to search for optimum solutions,
[4] and [5] present nature based algorithms applied to solve
metal solidification modeling, [6] shows how to modify har-
mony search method to more efficiently optimize differential
models of solidification models, [7], [8]; [9], [10] and [11]
present evolutionary approach to model and optimize cloud
based system for efficient user verification and network traffic
positioning. In [12] text data clustering was optimized by
application of ant colony, in [13] significant operating points
were solved, while in [14] presents dedicated particle swarm
modeling for dynamic routing problems. Computational intel-
ligence based on swarm algorithms is also efficient in various
image processing problems, like key-point search [15], [16],
[17]. Other important application of swarm intelligence leads
to implementations with neural networks or other intelligent
systems [18], [19], [20], [21] and [22]. Until this day these
algorithms found numerous applications as an alternative to
existing solutions in almost every field of science.

One of them, where a swarm intelligence has been used,
are various games. In [23] evolutionary approach was imple-
mented to automatically solve playing strategies, while in [24]
similar approach is presented to efficiently help in optimization
of evaluation function for various games. Regardless of the
type of game, the environment must be strongly varied in order
to enhance playability. Second important feature is proper
security that enables players to develop gaming playability
[25]. The greater playability, the quality of the game is bigger.
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In this paper we would like present a novel approach
to board games automatic development based on dedicated
swarm intelligence implementation. In the case of 2D games,
board is generated depending to the level of complexity. The
higher the level, the board should be more difficult to pass.
In most cases, each board for 2D game may be presented as
a maze which is a system of many roads, where the majority
does not lead anywhere. Mazes are designed in accordance
with certain principles which are specified for each game
separately. In general, a maze has one entrance and one exit
and the player’s task is to find the road leading through a
maze without crossing the walls. A similar case is for 3D
games where the walls have been replaced by models of nature
or some dedicated architecture models. The main problem of
creating this type of board games that are focused on the
playability is to reduce complexity to create an shape which
may be an appropriate maze. Many maze generators are based
on the graph theory which mainly uses tree search algorithms
such as Prim’s or Kruskal’s algorithms, which are efficient for
energy saving routing design [26] and gaming systems [27].
In this paper, we would like to propose an alternative methods
to create mazes. We base our approach on Swarm Intelligence
(SI) with dedicated strategies for boards construction.

II. SWARM INTELLIGENCE ALGORITHMS WITH

DEVELOPED PROCEDURES TO COMPOSE MAZES

Swarm Intelligence is an algorithmic description of the
coordinated moves that all swarm particles do together. This
movement is based on communication between them, when
information about surrounding conditions is passed to optimize
strategy of movement. Mathematical model of this type of
optimization is developed on observation of animals. Various
species perform several optimization strategies to breed, feed,
spread and escape. In this paper we want to concentrate on
two algorithms simulating colony of ants and bees.

In nature ants search for sources of food. Information
about their locations is left for other ants in special traces
of pheromones. Model of this behavior is very efficient in
many optimization problems, like heat transfer modeling [28].
Similarly, it is possible to model a colony of bees. Among bees
information is passed in a kind of dance that bees performs in
the hive if a source of nectar was found. This algorithm can
be applied i.e. for key point search in 2D pictures [15]. These
two algorithms can be implemented to create mazes. In the
following sections we present dedicated versions developed
for the purpose of maze construction.

A. Artificial Ant Colony Algorithm

Artificial Ant Colony Algorithm (AACA) was inspired by
the life of ants and more specifically the search for food. Ants
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are able to find a way back to the nest, mark it for other ants
and also carry several times more weight of food than theirs to
home. This particular modeling of nature inspired optimization
AACA has been applied in various tasks, like solidification
modeling [5], image processing [29] and data clustering [12].
In AACA, the movement of ants is done in random directions
leaving behind a trail of pheromone which allows them to
return to the nest or reconstruct a path to the food. In each
case going in search of food and after finding a source of food
at the way to home ant is able to move both directions because
of the left pheromone track. This pheromone marking process
is performed by all ants in the home. Every ant that leaves the
home can follow tracks of the others. In the situation, when the
number of paths is more than one, ants will choose the road
in which trail pheromones is the strongest after a temporary
evaporation. This guarantees that before many other ants were
traveling this path, so at the and of it a large source of food can
be found. Model of this marking is performed in the following
iterations in the algorithm. Each iteration means that all the
ants left home in the search of food and moved over the space
leaving pheromone trials. In the next iteration these trials are
evaluated by others and if leading to better source of food
improved with new portion of pheromones or if leading to
weak source abandoned.

During the first iteration, the pheromone value is everywhere
the same. In subsequent iterations, the value is updated by

f t+1(xi,xj) = (1− ρ)f t(xi,xj) + Γti, (1)

where ρ is evaporation rate, t is the current iteration and Γ is th
distance between the xi and all individuals n in the population.
The distance is calculated by

Γti =

n∑
i=1

1

Ltij
, (2)

where Ltij is the length of the path between ants i and j, which
is defined as Cartesian metric

Lij = ‖xi − xj‖ =

√√√√ 2∑
k=1

(xi,k − xj,k)2, (3)

where xi and xj are points in R × R space, xi,k, xk,j-k-th
components of the spatial coordinates xi and xj representing
insect.

The probability of choosing the road to the ant xj by xi is
calculated by

pt(xi,xj) =
[f t(xi,xj)]

α
[

1
Ltij

]β
∑
α∈Nki

(
[f t(xi,xα)]α

[
1
Ltiα

]) , (4)

where Nk
i is a set of unknown roads for k ant which lead to

the i, α means the impact of left pheromones.
The movement of ants is based on the highest probability

pt and it is defined as

xt+1
i = xt

i + sign(xt
i (ind(t))− xt

i ), (5)

where ind(t) means a set of neighbor indicts after sort. Imple-
mentation of the algorithm is shown in Algorithm 1.

Algorithm 1 AACA to Create Mazes
1: Start,
2: Define all coefficients: n size of workers population, α

impact of left pheromones, ρ evaporation rate, ζ the
minimum value of the pheromone,r number of random
alleys,

3: Create array with α values and two different exits,
4: while the queen does not pass the entire maze do
5: Update pheromone values using (1),
6: Calculate distances between worker ants (3),
7: Calculate possible path to follow by worker i to location

j pt(xi,xj) using (4),
8: Determine the best position to follow,
9: Move population of workers using (5),

10: end while
11: Recalculate the value of pheromone according to (11),
12: Return array of recalculated values of pheromone.
13: Stop.

B. Artificial Bee Colony Algorithm

Artificial Bee Colony Algorithm (ABCA) reflects the behav-
ior of honey bees during the search for food. When bees are
looking for nectar sources, they can communicate with each
other. One of the most common communication techniques is
the waggle dance, during which bees inform each other about
the quality of the found source, distance from the hive and
direction. Waggle dance allows to find the location where the
best nectar is to be found. In the algorithm, there are different
types of bees because of their role in the hive. The first group
are scouts who look for food at random way and communicate
with others by waggle dance in the hive. The second group
are an onlookers who choose the best areas for exploration
after the watch of the dance. The last are employed bees who
are looking for the best quality nectar in the designated areas.
All of them communicate to pass the information. Model of
this process is performed in the following iterations in the
algorithm. Each iteration means that all the bees left home in
the search of food and came back pass the information to the
others. In the next iteration other bees fly to these locations
to search for food. If a better source of food is found this is
information is passed at the end of iteration.

In the first stage of the algorithm, we create an array that
reflects the map of meadow where bees are moving in search
of the best flowers. At the beginning, all fields (except entrance
and exit) has the same value of ζ. The exits are marked
threefold value of ζ. Depending on the quality of the place,
each bee may modify this value by the following equation

Θ(ζ) =

{
ζ + 0, 1 if Γ(xi, ζ) < 0, 5

ζ − 0, 05 if Γ(xi, ζ) > 0, 5
, (6)

where f(xi, ζ) is called fitness function and it is calculated
by

Γ(xi, ζ) = ζ
√

(xr,0 − xi,0)2 + (xr,1 − xi,1)2, (7)

where r is a index of exit to which the distance is the smallest
from current position.
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In the implementation of the algorithm, we assume that each
bee is a point in space. When the new sources are found,
the bees can leave the current position towards better. Bees
are looking for a new source when they receive information
from the hive after watching the waggle dance. At the end
of each iteration, all the bees are compared in order to
obtain information about the location of the best source. It
is interpreted as the waggle dance. An onlooker bee choose
the best area through by

p(xi) =
Γ(xi, 1)∑i=n
i=1 Γ(xi, 1)

. (8)

After gaining information about the fitness of bees, they are
sorted to find the best positions. After that, onlookers can move
in this direction. The movement of bees is made by

xi
t+1 = xi

t + αk ·∆xik, (9)

where k is a random index from the set of the best sources,
αk is a random number from 〈−1, 1〉 and ∆xik is obtained
by

∆xik = (xij − xkj), (10)

where j is randomly chosen spatial coordinate of the chosen
bee. The implemented algorithm is illustrated in Algorithm 2.
The algorithm returns an array that is a map on which the
bees moved.

Algorithm 2 ABCA to Create Mazes
1: Start,
2: Define all coefficients: n size of population, m - number

of chosen best bees, ζ the minimum value to create a wall,
r number of random alleys,

3: Create position array with value ζ and two different exits,
4: Create population,
5: while the queen does not pass the entire maze do
6: Evaluate the values in array according to (6)
7: Evaluate population using (8)
8: Sort bees according to the value of location,
9: Select m best locations among all bees,

10: Other bees replace with randomly selected bees
11: using (9) move the bees toward nectar source (exits)

defined in (10),
12: end while
13: Recalculate the value from position array according to

(11),
14: Return array,
15: Stop.

C. An Adaptation of AACA and ABCA to Create Mazes

An adaptation of presented Swarm Intelligence algorithms
to create mazes requires additional operations to obtain picture
of the maze. Each of the presented algorithms returns an array
of values (ants an array of pheromones, bees the map of

meadow) which represent the maze. Each of these values is
calculated by the following function

Λ(y) =

{
y ∈ 〈0, κ) empty space
y ∈ (κ, 1〉 walls

, (11)

where κ is the limit value for which it will create a wall of
the maze. Presented AACA and ABCA algorithms are used

Algorithm 3 The Algorithm for Maze Design Using Swarm
Intelligence

1: Start,
2: Use Algorithm 1 or Algorithm 2 to create an array

representing a maze,
3: Create a bitmap I ,
4: for all value v in array do
5: if v is 1 then
6: if r > 0 then
7: if random value is less than 0.5 then
8: Create a wall.
9: end if

10: else
11: Create a wall.
12: end if
13: else
14: for all neighbor of v do
15: if neighbor is 1 then
16: Create a wall.
17: end if
18: end for
19: end if
20: end for
21: Stop.

in Algorithm 3 to create various mazes. However to improve
the efficiency of board games creation we have implemented
a dedicated stop construction process. This is based on stop
condition that is used to verify if it is still necessary to continue
to compose of the paths in the maze.

D. Stop Condition

To adapt the AACA and ABCA algorithms described in
subsection II-A and II-B, a dedicated stop condition must be
adjusted to create a road from entrance to exit of the maze.
For this purpose, the queen (a moving supervisor) is added
to each of the algorithms. After each iteration, the queen is
called to check whether exists a passage through constructed
maze. If the passage exits, the algorithm is complete and the
maze is ready. Otherwise, the next iteration begins since the
queen is not satisfied with the work of their subordinates.

Seeking for an exit, the queen moves according to the
Cartesian metric defined in (3) where we assume that

Lij = 1. (12)

The possibility of passing diagonally across the maze is locked
in this way. That helps to ensure that the queen moves only in
horizontal or vertical line. The whole stop condition algorithm
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Algorithm 4 The imperial march of the Queen
1: Start,
2: Create an array in accordance with (11),
3: Find all the entrances to the maze,
4: for all entry to the maze do
5: while there is no other movement do
6: Find neighboring fields,
7: Remove fields in a row, in which the Queen was in

the previous step,
8: for all neighboring fields do
9: if equation (12) is not true or the field is a wall

then
10: Delete field,
11: end if
12: end for
13: Select at random one of the existing movements,
14: end while
15: if the last field is one of the entrances then
16: End of the algorithm - there is a way out of the maze,
17: end if
18: end for
19: End of the algorithm - there is no way out of the maze,
20: Stop.

is shown in Algorithm 4. For even more complicated construc-
tions of mazes, the r parameter can be added. Parameter r will
represent the number of random alleys which is the number
of walls to be removed in random way. In this case, when
an initial board is created we can improve efficiency of the
swarm to create the passage.

III. EXPERIMENTS

Presented approach was implemented to create various
mazes in different resolutions and combinations. We have
performed benchmark tests on various dimensions of boards.
Let us present sample results for:
• square mazes (Fig. 1 and Fig. 2) with parameters values
n = 30, r = 20, ζ =, ABCA (m = 10%n), AACA
(α = 0, 4, ρ = 0, 3),

• rectangle mazes (Fig. 3 and Fig. 4) with parameters
values n = 200, r = 120, ζ =, ABCA (m = 10%n),
AACA (α = 0, 4, ρ = 0, 3).

Fig. 5 presents a chart of time comparison for creation of
mazes by both AACA (blue line) and ABCA (orange line).

Fig. 1. An example of 40× 15 maze generated by the AACA

Fig. 2. An example of 40× 15 maze generated by the ABCA

Up to 3000 fields in the maze AACA is less efficient in time

Fig. 5. Time to generate the maze for applied algorithms

comparison to ABCA. If the maze we create contains between
3000 and 6000 fields AACA take advantage. From 6000 to
9000 fields both algorithms present similar time efficiency.
Above 10000 fields AACA is much faster.

IV. FINAL REMARKS

In the research, many experiments have been realized for
different dimensions of mazes. The results allow to conclude
that Swarm Intelligence is capable to create mazes. Fig 5
shows that the maze of complex up to 3000 fields is best
to use ABCA presented in section II-B, but for larger mazes
AACA presented in section II-A seems to be a better choice.

Generating maze is quite a complex process but the results
are very satisfied mazes are created randomly which gives a
feature of uniqueness. As a result, the algorithms presented
in this paper can be used to create not only mazes but
environments for 2D or even 3D games and also applicable to
smart cities models for prediction and evaluation purposes.
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and M. Woźniak, “Simplified firefly algorithm for 2D image key-
points search,” in IEEE SSCI 2014 - 2014 IEEE Symposium Series on
Computational Intelligence - CIHLI 2014: 2014 IEEE Symposium on
Computational Intelligence for Human-Like Intelligence, Proceedings.
9-12 December, Orlando, Florida, USA: IEEE, 2014, pp. 118–125, DOI:
10.1109/CIHLI.2014.7013395.
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