
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2016, VOL. 62, NO. 2, PP. 173–178
Manuscript received November 21, 2015; revised June, 2016. DOI: 10.1515/eletel-2016-0024

Performance of IP address auto-configuration
protocols in Delay and Disruptive Tolerant

Networks
Radosław O. Schoeneich, Patryk Sutkowski

Abstract—At this moment there is a lack of research respecting
Mobile Ad-hoc Networks (MANET) address assignment methods
used in Delay Tolerant Networks (DTN). The goal of this paper
is to review the SDAD, WDAD and Buddy methods of IP address
assignment known from MANET in difficult environment of
Delay and Disruptive Tolerant Networks. Our research allows
us for estimating the effectiveness of the chosen solution and,
therefore, to choose the most suitable one for specified conditions.
As a part of the work we have created a tool which allows to
compare these methods in terms of capability of solving address
conflicts and network load. Our simulator was created from
scratch in Java programming language in such a manner, that
implementation of new features and improvements in the future
will be as convenient as possible.

Keywords—address assignment, auto configuration, MANET,
DTN.

I. INTRODUCTION

DELAY and Disruptive Tolerant Network (DTN) [1] is
composed of highly mobile, wireless nodes which co-

operatively form a network. The DTN network origins from
Mobile Ad-Hoc Networks (MANET) and has similar charac-
teristics. A network node usually communicates directly with
other nodes within its range, and is independent from any
infrastructure. For a long range communication the node uses a
multi-hop communication through other nodes in the network.
The extension of DTN network is, in contrast to the MANET
network where the path set up is necessary, the use of carry
messages between isolated nodes and sub-networks. It is done
by the use a store-carry-forward paradigm [2, 3].

A high mobility of network nodes is the reason for changes
in the network topology and its frequent disruptions. The
classic multi-hop ad-hoc routing protocols like DSR [4],
AODV [5], OLSR [6] etc. are in-effective in this difficult con-
ditions. Therefore, DTN communication is done by specialized
routing protocols like Spray-and-Wait [7], Spray-and-Focus
[8], Prophet [9], Maxprop [10], BubleRap [11] and Rapid [12].

Most of DTN routing protocols are IP-based. Most of
research effort bypasses the issue of node configuration and
network address assign. Usually, it is assumed that nodes
in network are configured in advance, before the network
is established. Due to the mobility of nodes, it should be
able to enter and leave the network. Therefore all nodes

R. Schoeneich is with the Institute of Telecommunications, Warsaw Uni-
versity of Technology, Warsaw, Poland, e-mail: rschoeneich@tele.pw.edu.pl

P. Sutkowski is with Faculty of Electronics and Information Tech-
nology, Warsaw University of Technology, Warsaw, Poland, e-mail:
sutkowski.p@gmail.com

should have procedures for dynamic address configuration.
The uniqueness of assigned IP address should be maintained
despite the separation between sub-networks, and should not
be changed during the network node activity.

The standard dynamic address configuration protocols
known from a wired network like DHCP [13] and SAA [14]
are ineffective in ad-hoc environment, because of a centralized
server as a basic approach. Since MANET is distributed in
nature and there is no centralized point of administration, this
approach cannot be taken. Hence, some protocols for MANET
networks have been proposed. All this work has been done
with the assumption of at least one path between any pair
of nodes in the network. Some solutions like DAD [15] and
based on binary split (Buddy System) [16] are very popular.

In DTN network a path formulation is often impossible,
and the nodes work separately. There are no DTN specific
auto-configuration protocols. Therefore, the question how the
MANET auto-configure protocols work in difficult DTN en-
vironment appears. In this paper we present the simulation
results of selected MANET protocols. The selection was done
based on popularity of each solution.

The paper is organized as follows: Section 2 presents
existing auto-configuration protocols, their performance, and
reasons for selection. Section 3 presents simulation assump-
tions and results. The work is concluded in Section 4.

II. BASIC AUTO-CONFIGURATION PROTOCOLS

The IP address auto-configuration in wireless ad-hoc net-
works can be divided into three basic categories: (a.) conflict
detection, (b.) free allocation, (c.) best-effort allocation. The
first group of algorithms is based on finding a free IP-address
for a new node based on detection of conflicts. The idea of this
solution is that the new node initially chooses an IP address,
and sends the question for acceptance to all other nodes in the
network. The conflict is detected if the sending node receives
negative response. The negative response is sent by the node
with the same IP address. If the address conflict is detected
a new address is chosen and the procedure is repeated until
there is no duplicate address. Once the procedure is completed,
a new chosen address is stable and it is set as permanent.
The conflict-detection algorithm is the protocol proposed in
[15]. Other solution dedicated for IP v6 was proposed in work
[17]. The procedure is called as Duplicate Address Detection
(DAD). This solution is characterized by a lack of routing
protocol dependency, it is fully distributed and it does not use



174 R. O. SCHOENEICH, PATRYK SUTKOWSKI

any centralized server. The solution does not support nodes and
networks merging. For this reason there exist modifications
which handle network merging like Weak Duplicate Address
Detection [18]. This solution uses proactive routing protocols
and requires some modification to routing protocols.

Free of conflict allocation algorithms are the second group
of protocols. The main idea of this solution is the assignment
of an unused IP address to a new node which is based on
collective work of the nodes taking part in allocation by
using disjoint address pools. Disjoint pools make sure that the
allocated addresses are different. Dynamic Configuration and
Distribution Protocol (DCDP) proposed in [19] is an example
of this group of solutions. The idea of this protocol is that
every new node joining to the network receives half of the
address pool from the first node in the network with which
it had communicated. The main advantage of DCDP is that
it takes into account network partition and merger, because
if the network becomes partitioned, the nodes in different
partitions still have different address pools. This means that
the allocated IP addresses are different as well. For the sub-
network merge, there is no necessary further work to be done.
Another improved solution is presented in [20] where the pool
is split into equal parts in the whole network.

The third group of protocols are best-effort allocation al-
gorithms. The solution works basing on nodes responsible for
allocation which assign an unused address to a new node as
far as possible. At the same time, the new node uses conflict
detection to guarantee the free address. A Distributed Dynamic
Host Configuration Protocol (DDHCP) is an example of the
best-effort allocation protocol. This solution maintains a global
allocation state, which means that all mobile nodes are tracked.
This way is known which IP addresses have been used, and
which addresses are still free [21].

A full discussion of the various address assignment proto-
cols is presented in the documents of MANET Zero-config
Group [22] and [23]. For the purposes of this study we has
chosen basic, but reliable and popular protocols designed for
MANET networks. Selected protocols are Strong Duplicate
Address Detection [15], Weak Duplicate Address Detection
[18] and based on binary split idea [20] which we call Buddy.
We compare their performance in difficult environment of
DTN networks.

III. SIMULATIONS

A. The Simulator
We made simulations based on our specially designed

tool. The basic assumption was that the tool has to support
events which are the key features of DTN, such as frequent
disconnections or network merging. They could be a challenge
in a field of address assignment. Therefore, the following
features determine if chosen algorithm suits conditions well:
a network simulator creates nodes, and connections between
them, it merges and disconnects networks, and collects desired
statistics like number of resolved conflicts, a number of
messages relayed trough the network during one simulation
etc.

Simulation tool is a program written in Java programming
language. It is built of objects executing various tasks, starting

Fig. 1. Relation between number of nodes and address space

from reading options out of certain option file, representing
network nodes, connections and data flow, through log cre-
ation, and finally gathering statistics. The number of objects is
not fixed, because of the adding new features to the simulator
for future work.

There are two most fundamental objects this project is
built on: Supervisor and Simulator. Supervisor is responsible
for reading simulation options, instructing lower level classes
to take certain actions and running actual simulation. Each
mode (Buddy, Strong, Weak) has its own supervisor, e.g.
Supervisor Buddy. These lower level supervisors inherit from
main Supervisor and are responsible for various actions taken
in network simulations such as: (a.) Creating new single
nodes or new networks, (b.) Creating new nodes connected
to existing network, (c.) Connecting already existing nodes
within the same network, (d.) Connecting nodes between dif-
ferent networks, and (e.) Disconnecting nodes from networks.
Actions listed above are the most basic and they are extended
by more specific actions, depending on used mode such as
different ways of looking for conflicts.

Simulator is an object responsible for choosing right action
before each cycle, basing on the settings given by Supervisor.
Afterwards, it passes that information to Supervisor, which
instructs its inheritors about actions they have to take. These
two main objects provide core methods which allow certain
events to happen.

Objects connected with node management are the lower
level of application objects necessary to run it. Each mode
has its own node management object which is responsible for
storing and processing various information, i.e. ID, address,
lists of neighbours, routing tables and others.

Separate group of methods is held in objects connected with
utility tools. These tools are not required to run simulator, but
they are necessary to have any knowledge about actions that
are happening inside. These tools are used to analyse network,
to gather data, and to present them in a readable and usable
form.

B. Results

This section presents results obtained by simulations. The
first result which we present is Fill factor.

Fill factor (see Figure 1) is the ratio between total amount
of nodes created in the network and the total number of
available addresses in the simulation. It helps to determine



PERFORMANCE OF IP ADDRESS AUTO-CONFIGURATION PROTOCOLS IN DELAY AND DISRUPTIVE TOLERANT NETWORKS 175

Fig. 2. Success rate.

Fig. 3. DAD - network load.

what configuration the user has chosen. Fill factor has a
significant influence on received results and it is important to
keep it in mind. The ratio is calculated for the worst scenario
when all created nodes are present in networks at the same
time, which hardly ever happens because of disconnections.

The Figure 2 presents how many of the nodes created
during this simulation caused conflicts. Next columns present
percentage of conflicts that were resolved successfully. If
we discuss small networks containing around 60-70 nodes
created during 157 iterations (FF=0.6) BUDDY and Weak
DAD algorithms do not have problems with solving conflicts.
Free address space is big enough so that, in case of conflict,
it is easy to find a replacement. It is clearly visible, that
Strong DAD effectiveness departs from other two competitors.
Despite the fact of the existence of many free addresses,
Strong DAD does not handle network merging. These 19% of
conflicts that occur are partially conflicts of new node joining
the network and partially conflicts connected with network
merging. Taking into consideration free address space, we
can deduce that all of new node conflicts (71%) were solved
successfully while failed attempts are connected with network
merges.

Figure 3 shows the number of relayed ICMP packets
during one simulation run. The 27% growth of Weak DAD
in comparison with Strong DAD is justified by the complete
elimination of non-solved conflicts during network merges.
Such price is worth paying. In this case the size of the
network is quite small, therefore the number of transmitted
packets is not breathtaking. With the growth of the number
of devices in the network, number of connections may grow
even faster. At some point it becomes problematic, as in

Fig. 4. Changes in address pools.

Fig. 5. Success rate.

epidemic routing message is relayed from one node to every
device connected with it, when generated traffic starts to load
resources significantly.

Figure 4 presents how many changes were done to address
tables in context of two events. Every event of transferring
IP address to neighbouring node during its configuration or
deleting addresses from address pools forces resynchronization
of the whole structure. The traffic generated by this synchro-
nization is even bigger than the one caused by multiple ping
request in case of Strong DAD or Weak DAD.

On the basis of Figure 5 it is clearly visible, that growth
of fill factor has a great influence on the number of conflicts
in case of Strong and Weak DAD. However, it did not have
a great influence on the effectiveness of conflicts solving.
Although the number of nodes is close to the number of
available addresses, it did not cause any network to be almost
filled. It was rather the case that nodes spread among available
networks. It is worth to notice that in case of the Buddy
algorithm there is a number of nodes rejected by network due
to the lack of free address in master node. As it is presented in
a Figure 5, 62% of connecting nodes, which in this case is total
to 40 nodes, is rejected by the algorithm. Extended versions of



176 R. O. SCHOENEICH, PATRYK SUTKOWSKI

Fig. 6. Influence of fill factor on success rate.

Buddy are able to borrow addresses from master neighbours
if there is such necessity, but in the basic algorithm we
implemented as reference, one of this disadvantage becomes
serious. Full statistics presenting the number of node rejects
due to the lack of address in master node while there are still
addresses available in total versus the fill factor is presented in
the later part of this work. More than half of nodes for Strong
and Weak DAD ran into its duplicate during process of first
initialization or merging. The Weak DAD did not manage to
solve all conflicts before passing the maximum number of
trials, which was set to 10000. In case of a bigger number of
trials allowed, simulation time becomes inconveniently long.
During the process of network filling it is harder and harder
to blindly pick a free address. Every Weak DAD repetition
generates, if taking bigger networks into consideration, huge
network traffic caused by ping messages alone.

Figure 6 presents relation between the number of iterations
corresponding to Fill factor and the ability to solve conflicts.
None of the tested algorithms, in case of the smallest simulated
network, have problems connected with configuring new node
joining certain network, due to the excess number of addresses
in comparison to created nodes. Score of 71% in case of
Strong DAD is achieved in the context of network merges,
which situations the Strong DAD algorithm can not handle.
With Fill factor of 1.11 for 315 iterations, both Weak DAD
and Buddy are able to handle nodes joining already existing
networks. Created nodes are spread among few networks, so
probability of filling in completely one of them is relatively
low, considering simulation settings. Further increase of the fill
factor causes the fall of success rate down to 40%. Relatively
good score of Buddy algorithm is caused by the fact that
it does not allow a node to connect in case of lack of free
address in certain node. It is obviously a disadvantage and it
is presented on a Figure 9, later in this paper. We can also
draw obvious conclusion, that with the growth of the network
size, the kind of algorithm used to assign addresses has less
and less impact, because all of them fail in case a nodes trying
to join full network.

Figure 7 presents the cost, in terms of transmitted packets,
which is paid for solving conflicts. When the networks are
small and probability of solving a conflict in one or few trials
is high, network is not flooded by information propagating
constantly back and forth. In this case, the cost of reassign-
ments is worth paying. On the other side of the coin are

Fig. 7. Cost comparison.

Fig. 8. Table maintaining cost.

situations in which network is almost full and merges or tries
to accept the incoming node. Let us assume that there are 124
out of 126 nodes in one of the networks. There are only two
addresses that can be accepted which give us 1.5% chance of
resolving conflict. Theoretically, we should pick the available
address in less than 100 trials, but if we are unlucky, it may
take many more. This situation becomes even worse when
there is no address available at all. Reassignment is then done
10.000 times as there is no protection again repeating the same
trials, which is maximum set by us, as algorithms provide
no feedback information to connecting node i.e. network is
already full, try again later. This leads to generation of huge,
unnecessary, traffic.

The Figure 8, similarly to the Figure 7, shows the cost which
we have to pay for maintaining the list of available addresses in
every node by every node. Thanks to this the feature algorithm
is able to prevent conflicts, which was clearly visible in figures
above. These numbers of transferred and deleted addresses
may not look so impressive as number of transmitted packets
in case of 1000 iterations of DAD algorithms, but we must
remember that nodes have to synchronize all the address
tables. As a result, every change of address pool connected
to transfer or to deletion forces resending all tables among
whole networks which generates huge traffic comparable or
even bigger that one caused by DAD.

The buddy node rejects are presented in the Figure 9. The
amount of rejected nodes is not, in to a large extent, dependent
on the number of nodes created during simulation. It is due to
the fact of dividing free address spaces into halves and passing
them to connecting node. After few such divisions in one line,
endpoint node has no addresses to pass left and the new device
trying to connect to this node is rejected by the network. As



PERFORMANCE OF IP ADDRESS AUTO-CONFIGURATION PROTOCOLS IN DELAY AND DISRUPTIVE TOLERANT NETWORKS 177

Fig. 9. Buddy node rejects.

the network grows, there is more and more of such empty, in
terms of addresses and nodes. Picking randomly one of them
becomes more probable. We must also notice, that the root
of the network, if only it is connected to the one node in the
beginning of the simulation, holds half of addresses available
in the whole network, which is an inefficient way of resource
management.

In our research we compared three address assignment
algorithms simulated in DTN environment. Basing on obtained
results, we are able to draw the following conclusions. Strong
DAD algorithm is the simplest among all tested solutions. It
does not require big computational power. However, it has one
critical disadvantage, i.e. it does not support network merges.
There is no tool designed to handle already configured nodes
joining together. While in the traditional stationary wireless
network it would not cause problems, but in DTN this makes
this solution not acceptable. In this environment, the constant
movement is the basic feature of the network, so any solution
that does not support it, must be discarded.

The situation looks better when we take into consideration
Weak DAD algorithm. Here the mobility support is imple-
mented. Conflicts after network merges can be detected thanks
to the unique key generated by each device generated most
often on the basis of its physical address. Another advantage
is that it is quite easy to predict when algorithm would behave
well. During normal network conditions, when we can predict
the number of nodes in the network, we are designing and
aptly adjust network mask, i.e. sensor network, then it has very
good success rate in terms of solving conflicts. Unfortunately,
it starts to cause problems as the network fills in. It is difficult
to assign an address which is not already occupied, and every
trial generates traffic which grows to really great numbers.

The last of the tested solutions, Buddy algorithm, has com-
pletely different way of approaching the problem. Surprisingly,
it has a really good ability to prevent conflicts. If we use
this algorithm in our network address conflicts occur around
10 times less than in case of the remaining solutions. Of
course, this does not come without cost. It happens way too
often that connecting node is rejected due to the lack of free
addresses in master node, even though there still available
addresses in the network as a whole. If specifics of the network
being designed demand low conflict occurrence rate, but at
the same time, we can pay in node rejects, this solution is
perfect. The Buddy algorithm is no perfect solution. It has

one other important disadvantage. To prevent conflicts well, it
has to store free address tables of every node in every node. It
demands significant amount of memory, processing power and
bandwidth to exchange all these data in case of any changes.
The leaked addresses connected with leaving nodes may be
recalculated and returned by the algorithm to the network if
only we want to spend additional resources on it.

The choice between the three methods in terms of DTN
is obvious only in case of Strong DAD. It simply cannot
be used in such specific kind of network, as it fails to
fulfill the most basic requirement. The remaining two may
be switched between, accordingly to various conditions, such
as the available infrastructure or network specifics. As always,
there is no universal solution, but considering pros and cons of
certain solutions in chosen environment, we are able to choose
optimal one for our use.

IV. CONCLUSION

In this paper we have presented performance analysis of
IP address auto-configuration solutions in DTN environment.
We decided to create this work due to the lack of research
respecting to MANET address assignment methods in Delay-
Tolerant Networks environment. Our research allows us for
estimating effectiveness of a chosen solution and, therefore
to choose the most suitable one for specified conditions.
For simulations we chose the popular solutions, such as:
Strong DAD, Weak DAD and solution based on binary split
of addressing pule. For this work we proposed simulation
tool which was designed for address assignment performance
analysis. Our simulation results allow us for estimating of the
effectiveness of a chosen solution and, therefore, choose the
most suitable one for specified conditions.

REFERENCES

[1] S. Jain, K. Fall, and R. Patra, ,,Routing in a delay-tolerant network”, In
Proc. ACM SIGCOMM, 2004

[2] D. Jea, A. Somasundara, and M. Srivastava, ,,Multiple Controlled Mobile
Elements (Data Mules) for Data Collection in Sensor Networks”, In
Proc. IEEE/ACM International Conference on Distributed Computing
in Sensor Systems (DCOSS), June 2005.

[3] R. Shah, S. Roy, J. Sushant, and W. Brunette, ,,Data MULEs: Modeling
a Three-tier Architecture for Sparse Sensor Networks” In Proc. IEEE
SNPA Workshop, May 2003.

[4] D. Johnson, D. Maltz, and J. Broch, ,,DSR: The Dynamic Source
Routing Protocol for Multi-Hop Wireless Ad Hoc Networks”, in Ad
Hoc Networking, chap. 5, pp. 139–172, Addison-Wesley, 2001

[5] C. E. Perkins and E. M. Royer, ,,Ad hoc on-demand distance vector
routing”, In The Second IEEE Workshop on Mobile Computing Systems
and Applications, February 1999

[6] T. Clausen, P. Jacquet, A. Laouiti, et al., ,,Optimized Link State Routing
Protocol, RFC 3626, 2003

[7] T. Spyropoulos, K. Psounis, and C. Raghavendra, ,,Spray and wait: An
efficient routing scheme for intermittently connected mobile networks”,
In WDTN 05: Proceeding of the 2005 ACM SIGCOMM workshop on
Delay-tolerant networking, 2005.

[8] T. Spyropoulos, K. Psounis, and C. Raghavendra, ,,Spray and focus:
Efficient mobility-assisted routing for heterogeneous and correlated
mobility”, In Fifth Annual IEEE International Conference on Pervasive
Computing and Communications Workshops, 2007.

[9] A. Lindgren, A. Doria, and O. Scheln, ,,Probabilistic routing in in-
termittently connected networks”, In Proceedings of the Fourth ACM
International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc 2003), 2003



178 R. O. SCHOENEICH, PATRYK SUTKOWSKI

[10] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, ,,MaxProp:
Routing for vehicle-based disruption-tolerant networks”, In Proc. IEEE
INFOCOM, April 2006.

[11] P. Hui, J. Crowcroft, and E. Yoneki, ,,Bubble rap: Social-based for-
warding in delay-tolerant networks”, IEEE Transactions on Mobile
Computing vol. 10, pp. 1576-1589.

[12] A. Balasubramanian, B. N. Levine, and A. Venkataramani, ,,DTN
routing as a resource allocation problem”, In Proc. ACM SIGCOMM,
August 2007.

[13] R. Droms, ,,Dynamic Host Configuration Protocol, Network Working
Group RFC 2131, March 1997

[14] S. Thomson and T. Narten, ,,IPv6 Stateless Address Autoconfiguration,
Network Working Group RFC 2462, December 1998

[15] C. Perkins, J. Malinen, R. Wakikawa, E. Belding-Royer, and Y. Sun, ,,IP
Address Autoconfiguration for Ad Hoc Networks, Internet Draft, Nov.
2001, http://tools.ietf.org/html/draft-perkins-manet-autoconf-01

[16] M. Mohsin, and R. Prakash, ,,IP Address Assignment in a Mobile Ad
Hoc Network”, MILCOM 2002, pp. 856-861, 2002

[17] K. Weniger and M. Zitterbart, ,,IPv6 Autoconfiguration in Large Scale
Mobile Ad-Hoc Networks, Proceedings of European Wireless 2002,
Florence, Italy, Feb. 2002

[18] N.H. Vaidya, ,,Weak Duplicate Address Detection in Mobile Ad Hoc
Networks”, Proceedings of ACM MobiHoc 2002, Lausanne, Switzerland.
June 2002; pp. 206-216

[19] A. Misra, S. Das, A. McAuley, and S. K. Das, ,,Autoconfiguration,
Registration, and Mobility Management for Pervasive Computing, IEEE
Personal Communication, August 2001, pp 24-31

[20] A. Tayal, and L. Patnaik, ,,An address assignment for the automatic
configuration of mobile ad hoc networks”, in Personal Ubiquitous
Computing, 2004.

[21] S. Nesargi and R. Prakash, ,,MANETconf: Configuration of Hosts in a
Mobile Ad Hoc Network, in proc. InfoCom 2002, June 2002

[22] Bernardos C, Calderon M, H. Moustafa, ,,Survey of IP Address Au-
toconfiguration Mechanisms for MANETs”, Nov, 2008. Internet Draft,
http://tools.ietf.org/html/draft-bernardos-manet-autoconf-survey-04

[23] Zero Configuration Networking, http://www.ietf.org/html.charters/zeroconf-
charter.html

[24] H. Moustafa, C. Bernardos, and M. Calderon, ,,Evaluation Con-
siderations for IP Autoconfiguration Mechanisms in MANETs”,
draft-bernardosautoconf-evaluation-considerations-03(work in progress)
November,2008.


