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 

Abstract—This paper presents analysis of object location 

accuracy of a mobile device on the basis of the iBeacon 

technology. The research starts with radio signal strength 

indicator analysis along the corridor in order to create a path loss 

model for iBeacon. Two cases are taken into account: line of sight 

and non-line of sight for model creation. For both cases two tests: 

Chi-square, Shapiro-Wilk have been performed. It has also been 

checked if the HCI (Host Controller Interface) is a source with a 

memory. Acquired data have been filtered with different type of 

filters, e.g. median, moving average and then compared. Next, the 

authors evaluated the indoor positioning trilateration algorithms 

with the use of created model for exemplary hall. The RSSI map 

(radiomap) was created and the logarithm propagation model 

was designed. The logarithmic model estimated distance with 

average error 1.09m for 1 – 9m and 1.75m for 1-20m and after 

trilateration, the positions with average error 2.45m was 

achieved. A statistical analysis for acquiring data led to the final 

conclusion which enhanced knowledge about positioning based on 

the popular iBeacon technology. 

 
Keywords—bluetooth, indoor environments, navigation, radio 

link, radiowave propagation. 

I. INTRODUCTION 

HE customer’s positioning is important in relatively wide 

indoor areas like museums where localization and 

pathway creation may be crucial. Moreover, observation and 

analysis of the customer behavior in the hipermarket may 

improve different actions (discounts) addressed to a particular 

group of people. 
Many indoor positioning techniques [1]–[5] have been 

proposed for mobile devices and for more specified, dedicated 
hardware. Some of them are based on custom hardware 
utilizing Bluetooth Classic [6], [7], especially in scanning 
phase to obtain RSSI (Radio Signal Strength Indicator) or Link 
Quality [8]–[10]. Unfortunately, Bluetooth Classic scanning 
phase is energy-consuming, because obtaining Link Quality 
metrics requires devices connection. The Bluetooth 4.0 (also 
known as Low Energy or BLE-Bluetooth Low Energy) was 
released in 2011 and today, it is widely supported by 
smartphone vendors. This has opened a new opportunity for 
identification of devices and obtaining RSSI in the lower 
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energy cost way. BLE beacon devices broadcasts short packets 
in specific interval, which gives a new possibility to use 
beacon standard in a wide range for a population of people 
holding these devices in their pockets. 
In 2013, Apple released iBeacon standard [7], [11], [12] as a 
proximity location method, which utilizes Bluetooth 4.0 
Generic Attribute (GATT) profile and standardized frame data 
contents. The iBeacon standard by Apple enabled mobile 
devices to recognize Beacon tags by receiving Bluetooth 
signals from them. In addition, the Eddystone standard was 
proposed by Google in order to extend the iBeacon, which are 
both widely supported by mobile device vendors in hardware 
and in software by implementing iBeacon and Eddystone into 
operating systems running on these devices. Then, many 
vendors started producing low-cost hardware broadcasting 
beacon frames, which h can be discovered by mobile devices. 
This standard is natively supported on Apple iOS mobile 
devices, also, it is easy to carry out in every platform which 
delivers access to Bluetooth Host Controller Interface (HCI), 
such as on devices running on Android or Windows Phone. 
The iBeacon frame is sent over the air with an interval of about 
350ms. Its structure is presented in Figures 1 and 2. In Figure 
1, the Bluetooth device is sending an advertisement type 
packet without establishing a connection, that is, a device 
invites to connect by sending some data but rejects incoming 
connections.  

 
Fig. 1. iBeacon Advertisement Bluetooth packet structure. 

 

 
Fig. 2. iBeacon Advertisement packet data payload contents. 

 

While iBeacon became popular, in 2015, Google released 
extended specification of the standard called Eddystone. The 
standard is very similar to the iBeacon in the way it works, but 
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the frame content is different. Eddystone (so far) assumes three 
types of data frame [12]:  

1) Eddystone-UID (User IDentifier) which is the same as 
beacon frame, the data packet is filled by 16 byte beacon ID 
(10 bytes namespace ID and 6 byte instance ID),  

2) Eddytone-URL filled by encoding and shortened URL 
that can be opened by mobile devices without accessing the 
cloud to relate broadcasted ID by beacon to assigned URL. 
This URL is directly from the source IoT (Internet of things) or 
Physical Web URL. Mobile customers can open real online 
application found under this URL or only run some designed 
custom URI protocol in the operating system.  

3) Eddytsone TLM (also known as Telemetry) allows 
devices to send small pieces of data such as temperature, 
battery voltage and so on. Eddystone extends the iBeacon 
standard, enabling users to send small pieces of data. The 
beacon can transmit different types of frames over time. 

Power-based positioning techniques rely on the signal 
attenuation property of the radio wave propagation to estimate 
distance from wave emitter [8], [10], [13], [14]. There are two 
common approaches to determine an object’s position. One is 
creating the radiomap of a room in offline (static) phase, this 
means there are many RSSI once-collected samples in many 
points stored in the database and in the online phase, when an 
object collects samples of RSSI to determine its position, some 
nearest-neighbor algorithms determine the object’s position 
comparing this to samples from the database [4], [15]. Another 
one employs surveying to build path-loss signal model that 
estimates the distance from emitter based on signal-strength. 
By knowing three or more distances, the trilateration 
algorithms can be applied in order to obtain the final position 
of an object.  

In the case of changing environment the another way to 
improve results is using adaptive distance estimation methods 
by continuously computing reference RSSI0 values between 
reference nodes at d0 distances instead of creating static 
calibration. In [2] authors reduced distance estimation error 
from 10% to 4%. For this research, the Logarithmic Distance 
Path-Loss estimation model was tuned by the simplex 
algorithm to determine distance based on RSSI. Additionally, 
radiomaps were created for all accessible beacons in a number 
of points in the room. Created model were used to determine 
distances from beacons in each radiomap point and 
trilateration algorithms were used to compute the final 
position. Estimated distances and positions were compared to 
radiomap data in order to designate errors and measure the 
effectiveness of the proposed approach. This paper is thus 
organized as follows: Section 2 and 3 introduce the path loss 
model and trilateration algorithms, respectively. Section 4 
describes the data acquisition process and presents 
fundamental statistical analysis of gathered data. Next, Section 
5 explains the tuning process; and finally, experimental results 
are presented in section 6. 

II. PATH-LOSS MODEL 

There are several path-loss models available to measure the 

distance from wave emitter by measuring signal strength [6], 

[8], [16], [17]. Typically, log-distance path loss model was 

investigated: 

 X
d

d
RSSIRSSI 

0

100 log10  (1) 

where: d is the distance from wave emitter, RSSI indicates 

the received power [dBm] (signal strength), RSSI0 is power 

measured in the distance d0, Xσ is the Gaussian random noise 

variables with mean value of zero and mean variance of σ. The 

coefficient γ represents the path-loss exponent defining the rate 

at which the power falls. In free space, it is equal to 2, but in 

real environment, it depends on many elements, such as 

surrounding objects, wave reflections, scattering, diffraction 

and signal multipath [3], [13], [18]. The factory was 

designated in the optimization process by fitting gathered RSSI 

samples to the model (1). The process gave results from 1 to 

1.4 for coefficient γ. Another investigation of the radio channel 

has been described in [19]. 

The equation (1) can be rearranged and the distance, d as a 

function of RSSI was: 
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What is important is that estimated d value should be greater 

than d0, because the formula is based on on path loss and RSSI0 

- RSSI should be greater than 0. There is no sense in making 

distance estimation for d < d0 in context of path-loss, because 

in this case, power will increase. 

I. TRILATERATION ALGORITHMS 

There are two main trilateration algorithms investigated for 

an unbounded n number of beacons at positions (xi, yi) and 

distances di. Both algorithms are described in the following 

two subsections [3], [20]. 

A. Algorithm 1 (3.A.) 

Denote matrix Bn2 as reference points and distances vector 

Rn1: 
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One primary reference point is selected Pr(xr, yr) at the 

distance dr, for example, B1(x1, y1), and matrix D(n-1)2 for I = 1 

.. n  and  I ≠ r is filled as follows: 
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 for I = 1 .. n  and  I ≠ r is defined as follows: 
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Matrix Q12 indicates the final position of object relative to 

reference points and distances, by resolving equation: 

bDDDQ TT

 )(  (6) 

B. Algorithm 2 (3.B.) 

Pick one primary reference point Pr(xr, yr) at the distance dr, 

for example, B1(x1, y1), and matrix H(n-1)2 for I = 1 .. n  and I ≠ 

r is filled as follows: 
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Vector b(n-1)1 for I = 1 .. n  and  I ≠ r is defined as: 
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Next, the equation is resolved: 
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Where X-1 is Moore-Penrose pseudoinverse of X. The final 

position is defined as matrix Q, after computing: 
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The aforementioned approaches were used to define 

estimated positions at given points on the radiomap. Both 

algorithms were compared against input data after distance 

estimation using the path-loss model in order to measure error-

tolerance. 

II. DATA ACQUISITION AND ANALYSIS 

A. Path-loss model creation 

In order to create a relatively high precision path loss model, 

data acquisition and fundamental statistical analysis were 

applied. 

 
Fig. 3. Data acquisition points (red) from beacon (triangle). 

 

For a single position in the room, a set of 100 RSSI readings 

per beacon (anchor) was collected. The distance between 

following points was set to 1m which gave a total of 21 points 

in a straight line. 
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where: RSSI(p) - the set of RSSI readings from a beacon in the 

point p;RSSI(p, n) - the n-th reading from a beacon in the point p  

The human body wave power absorbiton was also taken into 

account – RSSI readings were collected for line-of-sight (LOS) 

facing towards the beacon and non-LOS directed back to the 

beacon. The measurements were collected on a 5m wide 

hallway (presented in Fig. 3) with walls made of two materials: 

from one side glass (windows) and another side, reinforced 

concrete. All data (RSSI(p)) in the position were aggregated into 

a single RSSIM(p) value by computing median: 
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The aggregated RSSIM(p) values and standard deviation 

RSSI(p, n) over distance (p) is presented in Fig. 4, 5.  

The relationship between distance from the beacon and 

RSSI for both LOS and non-LOS was calculated using Pearson 

correlation coefficient (4) which gave a value of 90.1%. 
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where X denotes RSSIM(p) value and Y denotes the distance 

at point p from the beacon and: 
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Evidently, the distance from the source has the highest 

impact on signal intensity. Moreover, there was a weak 

correlation between standard deviation and distance, even 

when the input samples was reduced by filtering 20% extreme 

values with respect to median (Fig. 5). The signal quality 

indicator cannot rely on this metric. 

In equation (1), Xσ is denoted as the Gaussian random noise 

variables with zero mean and mean variance of σ. The RSSI 

samples distribution was measured for a distance of 1m (Fig. 

6), 3m (Fig. 7), 5m, 7m, 10m, 15m and 20m. The Chi-square 

statistical test with 5% significance level and Shapiro-Wilk 

with 5% significance level was ran to ensure, that the RSSI 

samples have Gaussian distribution. Tests have rejected this 

hypothesis in several cases, so empirically measured Xσ is a 

noise with Gaussian distribution (Fig. 7). In this case, it was 

decided to tune γ path-loss exponent factor and Xσ  noise in the 

model optimization process. 

According to Apple documentation for iBeacon standard, 

the reference RSSI0 value for 1m distance must be assumed (or 

measured) at first. Fortunately, the acquired samples have 

Gaussian distribution in this instance, which is important for 

formula model (1) and Xσ value. 

 

 
Fig. 4. Median of measured RSSI (LOS and non-LOS). 

 

 

 
Fig. 5. Standard deviation of measured RSSI (LOS and non-LOS). 



374   D. E. GRZECHCA, P. PELCZAR, L. CHRUSZCZYK 

 

 
Fig. 6. RSSI distribution on distance 1m. 

 
Fig. 7. RSSI distribution on distance 3m. 

 
Fig. 8. RSSI samples vs. time on distance 1m. 

 

Another important doubt flows from a source of 

measurements, that is, HCI (Host Controller Interface). The 

question is whether the HCI is a source with a memory or it 

produces random values while being independent of history. In 

other words, a source stability and the unexpected randomness 

was investigated. To detect if RSSI samples are time-

dependent, the series test was carried out for window size w = 

5 and w = 7, which contains sequenced n samples. The test was 

performed for the whole dataset (100 samples) in one chosen 

point, where RSSI0 reference value was obtained from d0 

equals to 1m. We performed n-w tests on samples x1, x2, … xn-

w. All performed tests have rejected hypothesis, this means that 

samples are time-independent and random RSSI samples 

obtained over time are presented in Fig. 8. 

B. The radiomap creation 

The trilateration algorithms (3.A. and 3.B. – described in 

section 3) position estimation and validation of the tuned 

model of the radiomap was created for the exemplary room. 

One hundred RSSI samples from 5 different beacons in each 

radiomap point were acquired. The radiomap was placed on 

the 8m  6m mesh with a gap of 1m (Fig. 9). 

 

 
),,()2,,()1,,(),( ,,, nbpbpbpbp RSSIRSSIRSSIRSSI   (15) 

 
Fig. 9. Data acquisition points (red) from beacons (blue points). 

 

 
Fig. 10. Radiomap (RSSI mean value) for one beacon device placed in point 

P(2,0). 

 
where: 

 RSSI(p, b) - the set of RSSI readings from beacon b in point p 

 RSSI(p, b, n) - the n-th reading from beacon b in point p. 
 

A basic statistic like median for all accessible devices 

(anchors) in each point was computed. A beacon (an anchor) 

was mounted under the ceiling (on the top part of the wall to 

minimize furniture signal absorption) at a height of 2m from 

the floor, but measurements were collected at the height of 1m, 

because it seems to be a natural position for smartphones while 

being used by humans. Exemplary radiomap for one beacon 

device is presented in Fig. 10. 

III. TUNING PATH-LOSS MODEL 

Formula (1) path-loss model was tuned by using the data 

collected (in section 3. A. Matlab) environment has been used 

for fitting data with model (1). The Nelder-Mead simplex 

direct search, iterative method (known also as downhill 

simplex method) against quality function based on MSE of 

model was used as an unconstrained nonlinear optimization 

method. The algorithm returns γ = -1.33379 for RSSI0 equals to 

-56.8687 dBm (the model was compared with the acquired 

data and results are presented in Fig. 11). Equation (1) was 

transformed to Equation (2) and the distance based on RSSI 

was estimated as presented in Fig. 12. 
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Figure 11. Tuned path-loss model. 

 
Figure 12. Distance estimated by tuned model compared to real distance. 

 
Fig. 13. Error of Distance estimation by tuned model over the distance. 

 

 
Fig. 14. Distance estimation error for one beacon device placed in point P(2,0). 

 
Fig. 13 presents the error between obtained model and mean 

measured distance. Its effectiveness and accessibility is true for 

the first 9 meters, but it is enough because it will be the most 

common distance from the beacon in small areas. In [21] the 

two-function, path loss model was proposed in which distance 

was estimated by different coefficients for near and far 

distances. In addition, only the nearest 3 beacons can be used 

for trilateration to reduce long distances from far beacons to 

minimize trilateration algorithm errors. Fig. 14 shows the 

correlation of distance estimation error by a model related to 

beacon RSSI value from Fig. 10 and the error growth 

presented on Fig. 13. 

The distance estimation error is computed as follows: 

|ˆ|)ˆ( estimatedreal ddde   (16) 
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where: 

B – the beacon position, 

P – the measurement point. 

Another important data processing has been applied, that is, 

a filter for input data. The survey indicated whether the 

processing was required and what kind of processing was 

preferred. Model (1) for distance estimation was used. The 

following methods of filtering data (all collected samples) in 

order to obtain a single RSSI(b, p) reference value for beacon b 

in a specific point p were applied: 

1. The average value for all (n) samples acquired at the 

specific point p over distance up to 20m (step 1m); 
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2. The median value for all samples acquired at the specific 

point over distance up to 20m (step 1m); 
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3. The average value after applying moving average filter 

with window size w = 6; 
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4. The average value after deleting 50% samples of the input 

data at the specific point. The subset contains acquired RSSI 

with the smallest error with respect to the average of all data. 

(in short: Average of 50% near Average); 

4.1. Calculate the average RSSI value (see point. 1). Mark 

this value as reference RSSIavgref: 

),( pbavgavgref RSSIRSSI   

4.2. Create the empty final set F of filtered RSSI(b, p) values. 

Set the final set F count FC to 0. 

4.3. Make k the subsets of values (series of intervals) Bk of 

size, w that contains RSSI(b, p, n) values as follows: 
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Subsets (bins width) are sorted ascending by its containing 

values. 
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 (23) 

Each RSSI(b, p, n) value is now assigned to the exactly one of 

the Bk subset. Each Bk subset contains BCk values: 

|| kk BBC   

4.4. Set i = 0 (step counter); Match the reference RSSIref 

value with one subset (such as one of the values in step 4.3) 
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and get its index denoted by mref. All values in Bmref subset are 

very close to the reference value. 

4.5. Move all values from sets: 

a. Bmref (if i = 0) – the center 

b. Bmref-i (if mref - i ≥ 0 and i ≠ 0) 

c. Bmref+i (if mref + i ≤ k and i ≠ 0) 

to the final F set and add their count to the FC if added. 

4.6. If F set contains more than 50% values (FC ≥ 0.5n), go 

to step 4.7, otherwise increment i (check), then go to step 4.5 

(to take next left- and right-side subsets). 

4.7. Make an average of values from set F: 
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5. The average value after deleting 50% samples of the input 

data at a specific point. The subset contains acquired RSSI 

with the smallest error with respect to the median of all data. 

(in short: Avg. of 50% near Median); Methodology: 

The same as in 4), but RSSIref  is represented by the Median 

from RSSI (as in method 2) values rather than the Average. 

 
Fig. 15. Error of Distance estimation by tuned model over the distance 

(Average method). 

 
Fig. 16. Error of Distance estimation by tuned model over the distance (Avg of 

50% hist. values near Avg). 

 

The aforementioned techniques allow for obtaining a single 

RSSI value (reference value) at a specific distance from the 

beacon. The results of distance estimation using filtering data 

are shown in figures 15 and 16 and also in Table I. 

 
TABLE I.  

PATH-LOSS MODEL DISTANCES ESTIMATION ERROR FOR PROPOSED DATA 

PROCESSING METHODS 

Method of 

transformation input 

data 

RSSI0 

[dBm] 
γopt 

Avg. dist. 

estim. Error 

[m] 

Median -57 -1.41279 2.6533 

Average -56.87 -1.33379 2.4914 

Moving average  

(window size 6) 

-56.83 -1.41455 2.4696 

Avg. of 50% near Avg. -56.79 -1.33330 2.2703 

Avg. of 50% near Median -56.79 -1.41982 2.6799 

 

The candles plots represent the variation of error changes 

over the distance. The average value from the subset of 50% 

values that are near average value results in less standard 

deviation and less error dynamics. The average distance 

estimation error is 1.09m for distance 0-9m and equals to 

4.05m for higher distance from the source; overall, the error is 

equal to 1.75m for 1-20m. For both examples (Fig. 15, 16), the 

model is accurate enough in the range 0-9 m, while over 10 m, 

dynamics of estimation error increases. It means the model 

proposed can be investigated and applied in the near range 

distance. 

Rejecting 50% values from histogram that are not close to 

average reduces standard deviation and final distance 

estimation error. In case of median value distance estimation 

for the assumed model, it is less accurate because of the 

sorting phase while significant values can be shifted from the 

center. 

IV. EXPERIMENTAL RESULTS 

The tuned model was applied to surveyed roadmap to 

compare estimated distances and positions after trilatration. 

The reference value RSSI0 was obtained at d0=1.532m 

distance. For each radiomap point, the RSSI aggregate based 

on 100 samples was calculated by using different methods of 

filtering and aggregating to a single value presented in section 

5. Moreover, for all the above aggregating methods, the tuned 

model was recalculated using the same method to obtain new 

γopt value. The average distance estimation error was calculated 

as an absolute value of difference from model estimation and 

real distance (15), which is presented in Table II. The error is 

also presented as heat map in Fig. 17. 

 
Fig. 17. Distance estimation error for trilateration algorithms considering three 

the nearest beacons by estimated distance. 

 
Fig. 18. Distribution of position estimation errors computed by algorithms 

comparing the number of beaons considered while trilateration. 
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The trilateration algorithms (III.A. and III.B.) were applied 

in the exemplary hall (5m x 7m, most distances up to 9m), that 

is, algorithms for all visible beacons and for 3 with the highest 

RSSI at the present position were evaluated. Cumulative 

number of correct positioning with respect to the distance from 

the real location is presented in Fig. 18. The average 

positioning error in the range 0-9m for both algorithms is 

depicted in Table II. 
 

TABLE II.  

TRILATERATION ALGORITHMS – NUMBER OF INPUT BEACONS COMPARISON – 

RESULTS 

Selected beacons 
Total Avg. positioning error [m] 

Alg. 3.A. Alg. 3.B. 

All visible beacons 3.2524 2.3150 

3 the nearest beacons (distance is 
estimated) 

2.7658 2.4495 

 

All visible beacons are ascending, sorted with respect to 

estimated distances (based on RSSI) at a current position of 

mobile device. Obtained results (see Table II) showed better 

results when compared to algorithm 3.B by examining the 3 

nearest (chosen based on the estimated distances) beacons for 

first algorithm (3.A). However, algorithm 2 (3.B), where all 

visible beacons were taken into account achieved the best 

average result and its distribution is narrow, right skewed and 

concentrated near minimum error (Fig. 18). It is more tolerant 

for errors. In further considerations, the second algorithm (3.B) 

with only 3 beacons was used because accuracy of 0.12m costs 

two more beacons. 

Analyzing Table I (and Table III), it can be said that data 

preprocessing (see explanation below in Table III) indicated 

lower distance estimation error: about 0.04m which is only 

~2%. It is doubtful whether model calibration for specific 

metric is needed. The results of estimating distance for 

radiomap ( Table III) are better than distance estimation 

presented for the tuned model (Table I) because almost all 

distances in radiomap are in the range 0-9 m, where estimation 

error is about 1m for tuned model (Fig. 13). The right most 

colomn shows average distance estimation error for (RSSI0 

calculated by indicated algorithm), γopt calculated by median 

(*) (check) and indicated method (#), respectively. 

 
TABLE III.  

PATH-LOSS MODEL DISTANCES AND POSITIONS ESTIMATION ERROR – RESULTS 

Processing method 
RSSI0 

[dBm] 
γopt 

Avg. distance 

estim. error [m] 

Median -81.00 -1.33379 2.20171 

Average -81.45 -1.33379*) 

-1.41279#) 

2.10073*) 

2.06802#) 

Moving average 

(window size 6) 

-81.28 -1.33379*) 

-1.41455#) 

2.11107*) 

2.06361#) 

Avg of 50% near Avg -80.90 -1.33379*) 

-1.41982#) 

2.23454*) 

2.23513#) 

Avg of 50% near 

Median 

-81.56 -1.33379*) 

-1.33330#) 

2.15095*) 

2.09592#) 

The symbols: #) denotes that the path-loss log model which was built with 

data processed by the indicated method; *) represents the model calculation 

with the use of median. 

 

Estimated distances were utilized as input parameters for 

trilateration algorithms to compute the final position. The 

average error of all points in a whole radiomap was measured 

by comparing the estimated position and real radiomap 

position. Results are presented in Table IV. 

Second algorithm (3.B) achieved better results. In each case, 

the effectiveness of estimating position is strictly related to the 

quality of input data, the smaller the distance estimation error 

using filtering method, the greater the precision of position 

estimation achieved. Average-based filtering gives surprisingly 

good results. It was proven that the filtering methods may give 

better results than median preprocessing, while the second 

approach to compute metric is less time and memory 

consuming. In addition, the error of distance estimation using 

the average of 50% data close to the average value which 

reduces the standard deviation of estimated distance 

significantly (Table I and Table III) have no positive effect on 

trilateration algorithms results. 
 

TABLE IV.  

FINAL POSITION ESTIMATES AND ERRORS 

Method of 

transformation 

input data 

RSSI0 

[dBm] 
γopt 

Avg. position error after 

trilateration [m] 

Alg. 3.A.  Alg. 3.B. 

Median -81.00 -1.33379 

n/a 

2.90381 2.81877 

Average -81.45 -1.33379*) 

-1.41279#) 

2.76580*) 

2.73706#) 

2.44952*) 

2.44984#) 

Moving average 

(window size 6) 

-81.28 -1.33379*) 

-1.41455#) 

2.78216*) 

2.74580#) 

2.45469*) 

2.44152#) 

Avg of 50% near 

Avg. 

-80.90 -1.33379*) 

-1.41982#) 

2.93677*) 

2.89945#) 

2.58144*) 

2.58771#) 

Avg of 50% near 

Median 

-81.56 -1.33379*) 

-1.33330#) 

3.02006*) 

3.02047#) 

2.65461*) 

2.65490#) 

The symbols: #) denotes that the path-loss log model has been built with 

data processed by the indicated method; *) represents the model calculation 

with the use of median. 
 

 
Fig. 19. Final position estimation error for whole radiomap. 

 

Most of final position estimation errors after trilateration 

using the second algorithm (3.B)are less than 2.5m (60.87%), 

what is presented in fig. 19. 

V. CONCLUSION 

Bluetooth Low Energy and iBeacon standard opened a novel 

way to build low-power based positioning techniques. 

Obtained RSSI can be used for the estimation of device 

positioning but the preprocessing and good path-loss model is 

required. Distance estimation model gives more information 

than standard API’s defined in iBeacon standard, which returns  
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only proximity range name if the object is immediate, near or 

far away (without estimating distance as a value). BLE is 

widely supported on devices so it can be utilized to customer’s 

waypath or shop indoor segments tracking. 

The proposed path-loss distance model is a good solution to 

determine device distance from the beacon in a range 1 – 9 m, 

because 1.09 m error is acceptable (Fig. 15, 16). For surveyed 

radiomap in room (Fig. 9), almost all distances are in the range 

1 – 9 m which mean that estimated distances can be used as 

input of trilateration algorithms. The standard deviation of 

surveyed samples does not depend on distance from the 

beacon. Research proved that the wave multipath, 

interferation, diffraction has an impact on the RSSI distribution 

[9], especially, the human body absorbs the signal strength 

what should be included while determining position. Samples 

distribution are not Gaussian in all surveyed points. Filtering 

data for assumed path-loss model has no significant impact 

(Table IV) on the final position but other advanced methods 

may improve accuracy significantly. After trilateration, the 

positions with average error 2.45m (Table IV) was achieved. 

In positioning context, the better results can be achieved by 

correlating RSSI’s with accelerometer, gyroscope and other 

sensors. Another solution is to use more sophisticated metrics 

than Euclidean, such as: excluding zones where an object 

cannot move, restricting situations when objects moved back 

while accelerometer measurements does not notice this fact. 

Such problem must be under investigation in the near future. 
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