
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2017, VOL. 63, NO. 3, PP. 329-336
Manuscript received May 27, 2017; revised June, 2017. DOI: 10.1515/eletel-2017-0044

Trust and Risk Assessment Model of Popular
Software Based on Known Vulnerabilities

Marek Janiszewski, Anna Felkner, and Jakub Olszak

Abstract—This paper presents a new concept of an approach to
risk assessment which can be done on the basis of publicly avail-
able information about vulnerabilities. The presented approach
uses also the notion of trust and implements many concepts used
in so called trust and reputation management systems (which are
widely used in WSN, MANET or P2P networks, but also in e-
commerce platforms). The article shows first outcomes obtained
from the presented model. The outcomes demonstrate that the
model can be implemented in real system to make software
management more quantified and objective process, which can
have real and beneficial impact on institutional security. In
article, however the emphasis was set not on the model itself
(which can be easily changed) but on the possibility of finding
useful information about vulnerabilities.

Keywords—software vulnerabilities, risk assessment, software
management, trust and reputation management models, 0-day
vulnerabilities forecast, risk of information systems, prediction
model

I. INTRODUCTION

R ISK assessment of software based on objective and quan-
tified measures is still very rare, because of the fact that

this task is not trivial. Most approaches use qualified measures
to assess risk of software or (more common) of information
systems which use various software. Risk assessment is tried
to be done on the basis of a methodology, which tries to ensure
that the outcome of risk assessment process will be objective.
Still such approach imposes that this task is always done by an
analyst or an auditor (of course with support of a methodology
and a system, which can simplify this process). Because of
human factor involved in the process of risk assessment, the
results of such process are always subjective to a certain
extent. Moreover, process is time-consuming and is repeated
at most once every couple of months (the most common risk
assessment interval is one or two years). Even more important
is the fact that such analysis is not often concentrated on
technical vulnerabilities of software, but such vulnerabilities
take a crucial role in the evaluation of security of a system.
On the other hand, new vulnerabilities are discovered every
time, so the risk assessment should be done in a real time.

Without any doubt one can claim that every piece of
software has some vulnerabilities, despite of the fact that many
of them are still not discovered. On the other hand, claims
that every software is equally vulnerable, cannot be justified,

M. Janiszewski is with NASK - Research and Academic Computer Net-
work, Kolska 12, Warsaw, Poland, and with the Institute of Telecommunica-
tion, Warsaw University of Technology, Nowowiejska 15/19, Warsaw, Poland
(e-mail: marek.janiszewski@nask.pl).

A. Felkner and J. Olszak are with NASK - Research and Academic
Computer Network, Kolska 12, Warsaw, Poland (e-mail: {anna.felkner;
jakub.olszak}@nask.pl).

and are simply not true. The normal disclosure process of
the new discovered vulnerability assumes that the vendor of a
software in which a vulnerability has been found is informed
at first. Vendor, after an investigation and research, prepares
an appropriate software fix (also called as a patch or an
update), which should dispatch this vulnerability. After a patch
is prepared, vendor informs (for example, through published
bulletins on a vendor’s website) all potential users and a
community about the new patch, and of course about the
vulnerability. This process is known as coordinated disclosure
process. Of course, vulnerabilities are discovered not only by
white hats (analysts of cybersecurity that aims is to increase
security of software), but also by black hats (crackers that
aims at breaking information systems to gain some information
or to prevent from honest usage of these systems). When a
cracker find a new vulnerability (0day), he is trying to use it
to gain benefits instead of informing a vendor. Because of that,
unknown vulnerabilities can have a great potential of breaking
security of the systems.

The aim of this paper is to present a new model of trust
and risk assessment of software which takes into account a
lot of publicly available information of existing discovered
vulnerabilities. The model on the basis of such information
tries to predict and evaluate vulnerabilities which can exists in
a software, but which are not yet discovered (more precisely:
which are not yet disclosed).

The paper is organized as follows. Section II discusses
related work connected to the area of software vulnerability
management and also to the area of technical risk assessment
of popular software. Section III describes in more detail
the main characteristics of proposed model of trust and risk
assessment. Section IV lists and describes the sources of
information used in proposed system. In section V the formal
model of proposed algorithm is presented. The results of trust
and risk assessment obtained for a few types of software and
for a few vendors are provided in section VI. Conclusions and
propositions of future works are provided in section VII.

II. RELATED WORKS

There many papers which have addressed the problem of
forecasting vulnerabilities. Authors of [3] emphasize that esti-
mating risk connected to zero-day vulnerabilities is important.
In paper [4] results of experiments on predicting the number
of vulnerabilities on each given day can be found.

Papers [1], [2] address similar problem, which is prediction
of the time to the next vulnerability for a given software
through various machine learning techniques. The paper use,
however, only information provided by NVD (National Vul-
nerability Database) [10]. The results obtained by the authors



330 M. JANISZEWSKI, A. FELKNER, J. OLSZAK

show that information about vulnerabilities provided by NVD
have poor prediction capability, and have a real value only for
a few vendors and types of software. Articles listed above used
only NVD as the most known vulnerability database. However,
NVD is not the only one database and is not the one which
provide the most information. The several limitations of NVD
database were also indicated by the author of paper [6].

Our work implements much different approach than in
papers [1] and [2] for several reasons. First of all, we use much
more information from several databases and, what is even
more important, we use data not only about vulnerabilities
itself but mainly about patches and software fixes. We also
provide an in-depth critical analysis of potential sources of in-
formation about vulnerabilities and patches. Secondly, authors
of the aforementioned papers use only some part of infor-
mation presented in the databases (namely: publication date
of a vulnerability and CPE identifier of vulnerable software),
they do not analyze severity of a vulnerability (for example
by means of CVSS), we try use as much information as it can
be beneficial. Thirdly, our main aim is not to predict when
a new vulnerability can occur but to estimate the risk related
to a piece of software on the base of evaluation of trust to
that software. Of course, our model can be used to predict
how many vulnerabilities would affect a software in a certain
period of time, but such forecasts can only be done for a quite
long periods and is used only to validate our model and select
appropriate values of parameters used in model. The exact date
of occurrence of new vulnerability cannot be easily predicted
also because of the fact that the date of publishing information
about new vulnerability is not related in a deterministic way
to the date of finding new vulnerability. One can assume that
the number of total vulnerabilities in a software is a function
of reliability of programmers of the software and the vendor
itself. Also, the number of discovered vulnerabilities can be
perceived as a function of total vulnerabilities. We can assume
that date of discovery of new vulnerability is correlated with
the total number of vulnerabilities, but still in the majority we
cannot analyze the date of finding a bug, but the publication
date of this bug. This means that the speed of providing a
patch to a software can influence the distribution of dates
of publishing vulnerabilities, which cannot be perceived as
a deterministic process.

III. THE NEED FOR VULNERABILITY MANAGEMENT

It is important that vulnerabilities exist in a software since
the release of this software (rarely a vulnerability can be
introduced by another patch), so the important thing is to
evaluate how many vulnerabilities are not discovered.

The number of published vulnerabilities is generally in-
creasing (in 2017 till May the number of vulnerabilities is
almost equal to the number of vulnerabilities found in previous
years during whole year), which can be observed in Fig. 1.
It can be noticed also even more important fact [15] - the
overall severity of vulnerabilities is also increasing. Nowadays
no one can claim that any software is free from vulnerabilities,
but of course some types of software are more vulnerable
than the other, and also some vendors produce software more

Fig. 1. Number of published vulnerabilities (in NVD database) by year

vulnerable than the one produced by the other vendors or
communities. Because of these facts, the need for effective
vulnerability management is high.

Vulnerability management system should be present in two
areas. First of all, it should support an administrator in update
management process. An administrator of a system should
be able to indicate all software components composing the
system. The vulnerabilities and patches published since the
last update should be detected by using an automatic system
which aggregates information about patches and vulnerabilities
gained from various sources. Secondly, vulnerability manage-
ment system should estimate technical risk related to software
used. The risk is the effect of existing but not discovered and
published vulnerabilities. The risk could be estimated on the
base of previous experience in using the software and other
software provided by the same vendor, in the area of security.

The aim of this work is to address these two very important
aspects of vulnerability management: first of all, by review
and analysis the sources of information and by presenting a
framework to aggregate such information, and secondly by
proposing a new model of risk estimation for different software
and vendors. The result of such model should indicate whether
such software could be used in important or critical systems.

IV. INFORMATION SOURCES

A. Vulnerability management

Vulnerable software can be indicated by its name and
version, but many other ways of identification exist. CPE
(Common Platform Enumeration) can be perceived as such
way of identification of vulnerable software and hardware.
CPE dictionary [24] is managed by Mitre. Software identi-
fication by CPE has some disadvantages. First of all, CPE is
tightly related to vulnerabilities (the interesting fact is that CPE
identifier is assigned to a software only when a vulnerability
in that software is found). Secondly, CPE is not commonly
used by software vendors.

CVSS (Common Vulnerability Scoring System) is a frame-
work and a methodology for characterization of the impact of
vulnerabilities. CVSS score can be perceived as an indicator
of severity of a vulnerability. CVSS score can be between 0.0
and 10.0, where values between 0.0 and 3.9 indicate ”low”
severity, and values between 7.0 and 10.0 indicate ”high”



TRUST AND RISK ASSESSMENT MODEL OF POPULAR SOFTWARE BASED ON KNOWN VULNERABILITIES 331

or ”critical” severity. CVSS score is commonly used as and
indicator of severity of vulnerabilities, but it cannot be found
in all information sources.

B. Review and analysis of sources of information

During our research we have analyzed widely available
databases of vulnerabilities and patches. Some of the databases
have been rejected because of various reasons (such as am-
biguity of dispatches, inactivity in adding new vulnerabilities,
lack of basic information, problems with accessibility). After
elimination of such databases, the following sources have been
analyzed:

• Symantec [7]
• CVE (Common Vulnerabilities and Exposures) [8]
• Dragonsoft [9]
• NVD (National Vulnerability Database) [10]
• SecurityFocus [11]
• Security Tracker [12]
• US-CERT Vulnerability Notes Database [13]
• CIRCL [14]
• CVEdetails [15]
• Fulldisclosure [16]
• Exploit-db [17]
• Intelligent Exploit [18]
• Metasploit [19]
• Sans [20]
• Vulnerability-lab [21]
• Vulners [22]
• vfeed [23]

During that research some of initially selected sources
(namely: Dragonsoft [9] and Intelligent Exploit [18] have
stopped functioning, which prove that all issues related to
vulnerabilities are highly dynamic (we have also noticed
during research many changes in most of analyzed sources
of information).

The main aim of the analysis is an assessment of usability of
information in various sources and a description of utilizations
of gained information in further works.

1) Symantec:
Symantec provides one of the most popular portal about secu-
rity of information systems. Portal shares information about
recently discovered threats such as viruses, vulnerabilities
and spam campaigns. The structure of information enables
automatic processing of available information.

2) CVE - Common Vulnerabilities and Exposures:
CVE is a list of identificators of vulnerabilities, which is
managed by Mitre. Most of publicly disclosed vulnerabilities
have its own CVE-id, which is globally unique and commonly
used. The database provided by Mitre do not present many
information about vulnerabilities.

3) NVD - National Vulnerability Database:
NVD repository is managed by National Institute of Standards
and Technology (NIST). All vulnerabilities in this repository
are connected to CVE identifier and precisely characterized.
Information in the database can be automatically processed.

4) SecurityFocus:
SecurityFocus provides BugTraq (which is a mailing list aimed
at exchange of information about the newest vulnerabilities),
SecurityFocus Vulnerability Database (which provides the
most current information related to all platforms and services)
and SecurityFocus Mailing List (consisted of 31 mailing lists
dedicated to information security professionals).

5) US-CERT:
US-CERT coordinates protection and reacts in case of in-
cidents in the Internet in the USA. US-CERT Vulnerability
Notes Database provides information about vulnerabilities in
software.

6) CIRCL - The Computer Incident Response Center Lux-
embourg:
CIRCL team provides CVE-search interface, which enables
search of information about publicly disclosed vulnerabilities
in hardware and software. It aggregates information gained
from: NIST National Vulnerability Database and statistics
about incidents and threats ranking provided by CIRCL.

7) CVEdetails:
CVEdetails provides an easy to use interface which presents
various data about vulnerabilities. It could be also used to
present various statistics about vulnerabilities. Information in
the portal is retrieved in the majority from NVD database, but
also from different sources (such as Exploit-db and Metas-
ploit).

8) Fulldisclosure:
Fulldisclosure enables exchange of specific information about
vulnerabilities as well as tools, documents and events related
to cybersecurity. Sometimes description about new vulnera-
bilities can be found in Fulldisclosure earlier than in official
sources, but the structure of the portal do not enable automatic
processing of information.

9) Exploit-db:
Exploit-db provides extensive repository of exploits, which
can be used to hack information systems. Information about
vulnerabilities cannot be gained from this database in a direct
and an easy way.

10) Vulners:
Vulners.com is an Internet portal, created by group of experts
and researches in the area of IT security. Vulners provides
database of large amount of vulnerabilities (and also secu-
rity patches of some vendors). The structure of information
provided enables automatic processing. This source is very
comprehensive. Vulners aggregates data from many various
sources (for example from most of sources which was de-
scribed in the analysis) and still the number of supported
sources is increasing.

11) Vendor’s Biulletins:
All vendors provide information about vulnerabilities and
patches related to software created by them. Of course the
quality of information in various bulletins is very diversified.
Most of security bulletins of vendors have cross-reference
do CVE-ID, but the characteristic of platform affected by
a vulnerability is done in various ways (for example by
providing only name an version of the affected application,
or in very rare case by providing CPE of affected systems).



332 M. JANISZEWSKI, A. FELKNER, J. OLSZAK

12) Summary:
Some of the selected sources aggregate information form
different sources, for example Fulldisclosure uses information
from Vulnerability Lab, Portcullis Advisories, Asterisk Secu-
rity Team, Securify B.V. Exploit-db uses information from
Secunia, Vulnerability-lab and Intelligent Exploit. Vulners
aggregates information from many sources.

C. Limitations and inconsistencies

During research in the area of vulnerability management
we have found many limitations and inconsistencies related to
publicly accessible vulnerability and patch databases. Some of
them are indicated in this section.

In a perfect world, the date of vulnerability discovery
combined with the date of issuing a patch to prevent this
vulnerability would make a fundamental set of information
to assess the reliability of a vendor. However, vendors in most
do not provide information about the date of discovery of a
vulnerability. Despite the fact that for some of vulnerabilities
date of discovery could be found in the Internet, such infor-
mation is not provided in any of the common well-known
sources and is relatively rare. Finding such information would
be connected to an in-depth analysis of every vulnerability and
it cannot be done through automatic information processing.

It is worth to note that in Mitre CVE database, another date
can be found which indicate when a particular CVE-ID was
allocated or reserved, but Mitre says [8]:

”The entry creation date may reflect when the CVE-
ID was allocated or reserved, and does not necessar-
ily indicate when this vulnerability was discovered,
shared with the affected vendor, publicly disclosed,
or updated in CVE.”

Because of that we cannot be sure that this date reflects
the date of discovery of vulnerability. In practice this date
can be before or after the date of discovery a vulnerability.
Big vendors which have become CVE Number Authorities
- CNA (currently 58) are authorized to assign CVE-IDs to
vulnerabilities affecting products within their distinct. Such
organizations can reserve in advance some of CVE-ID and
because of that the entry creation date can be before the
date of discovery a vulnerability. On the other hand, a vendor
(which may or may not be a CNA) can assign a number of a
vulnerability just before public disclosure.

It should be noted that CPE, which is a very good way
to characterize an affected software of a vulnerability, is not
used in all types of sources. For example vendors bulletins
which provides information about patches related to certain
vulnerability, in the majority do not use CPE to identify
software to which the patch is released. Because of that the
relation between vulnerabilities and patches connected to a
software cannot be easily identified.

In many cases different sources present various information
about a vulnerability, which sometimes are contradictory. The
most common inconsistencies are related to characteristics of
affected software and version affected by a vulnerability or a
patch.

D. Selection of useful information and information sources

Most of vulnerabilities are full disclosed after a patch
by a vendor is provided, but sometimes for some reason
vendor cannot provide patch before the vulnerability are
widely known. In general, such case can be perceived as a
vulnerability of vendor itself and because of that the penalty
of vendor’s reputation should be higher in such case than when
a vulnerability is disclosed after providing a patch.

As we have pointed out we cannot acquire information
about discovery date of a new vulnerability, on the other hand
information about quickness of releasing security update by a
vendor, would be very useful characteristics to estimate trust
to vendor. Because of that we decide to make use of slightly
different information. When a vulnerability can affect various
vendors (which can occur when a vulnerability is for example
related to a package used in various systems), various vendors
can provide a patch at different time. Of course, the sooner
patch will be provided the greater trust can be put to the
vendor (and of course to that specific software). On the other
hand, a vulnerability can affect various versions of a software
provided by a vendor. For different versions, the vendor can
release a patch at different time (for example sooner for current
software), or even do not provide patch at all (because of
reaching end of support time for that version). Because of
that, in our model, we try to find a first date anywise connected
to a vulnerability (this could be date of releasing a patch by
a different vendor or date of publishing a vulnerability) and
measure a delay of releasing a patch by specific vendor or to
that specific version of software.

When a piece of software has few vulnerabilities, it could
be a result of two main reason:

• in optimistic view: due to the fact that such software is
highly secure and has no or not many vulnerabilities,

• in pessimistic view: due to the fact that software has not
many users or is not very important, vulnerabilities are
not explored or reported.

Because of that we should address in our model all above
cases.

Information taken into account during assessment of trust
or risk to a software or vendor:

• number and severity of vulnerabilities in software (in
general the higher CVSS of a vulnerability is, the higher
risk and the lower trust is)

• the existence of patch to prevent the vulnerability (un-
expected and unpatched vulnerability has more serious
impact on trust and risk)

• time of reporting a vulnerability (the newest vulnerabili-
ties have greater impact on trust and risk)

• time (number of days) between first information about a
patch and publishing a patch (or patches)

Information which could be taken into account in the future
(currently not used):

• vulnerabilities in other products of the same vendor
• popularity of a software affected (this parameter is taken

from external sources - is provided by operator of the
system)



TRUST AND RISK ASSESSMENT MODEL OF POPULAR SOFTWARE BASED ON KNOWN VULNERABILITIES 333

Cross-correlation of information about vulnerabilities which
do not have CVE identifier provided, is not possible. On the
other hand, great majority of vulnerabilities of well-known
software have CVE-ID provided. The above statement is true
especially in steady state (it means that after a patch has
been released). Because of these facts, we decide to use
only information about vulnerabilities with CVE identifier
provided.

On the basis of our analysis we have decided to use the
following set of information:

• information about software:
– vendor
– software name / package name
– software version
– platform specification (if present)

• information about vulnerability:
– CVE-ID
– CVSS
– CPEs of affected software
– disclosure date

• information about patch:
– vendor
– affected software name / package name
– software version
– platform specification (if present)
– release date
– CVE-IDs related

Such types of information on the one hand can be relatively
easy retrieved from public sources and on the other hand could
be sufficient to characterize vendor’s approach to the area of
vulnerability management (and to evaluate risk related to such
vendor or software).

We do not use information of patches which are not related
to any CVE-ID.

As we have pointed out it is not possible to match software
name or package name to CPE directly. To match information
about vulnerability to specific software defined by its name or
name of the package we use two different approaches. First of
all, we use CVE-ID. Secondly, we use our search algorithm to
find the best matching between software name and CPE and
then to decide whether the scope of the CPE and the name of
the software are the same or whether the one set are a subset
of the other or whether the sets are disjoint.

All needed information are retrieved in the majority from
Vulners but also from NVD database and vendors’ security
bulletins.

V. MODEL OF TRUST AND RISK ASSESSMENT

A. Variables
Let us denominate:
1) Parameters of model:
• α - forgetting factor: α ∈ (0, 1)
• β - weight of risk of unpatched vulnerabilities:
β ∈< 0, 1 >

• T - period length in days (The time from 1999 - when
the first CVE was aligned, is split in periods, that has
length T ), default period length = 1 quarter

• Tn - the n-th period
2) Parameters gained by analysis of information from

sources:
• V Ti:N

V :a - number of vulnerabilities of Vendor a published
during period Ti

• V Ti:S
V :a - sum of CVSS score for all vulnerabilities of

Vendor a published during period Ti
• DTi:S

V :a - sum of delay in days of publishing patches to
all vulnerabilities related to Vendor a published during
period Ti

Analogously:
• V Ti:N

S:a - number of vulnerabilities of Software a pub-
lished during period Ti

• V Ti:S
S:a - sum of CVSS score for all vulnerabilities of

Software a published during period Ti
• DTi:S

S:a - sum of delay in days of publishing patches to
all vulnerabilities related to Software a published during
period Ti

3) Derived values:
• EV

Tn+1:N
V :a - expected number of vulnerabilities of Ven-

dor ”a” published during period Tn+1, estimated on the
basis of data from previous periods

• V V
Tn+1:N
V :a - expected error of estimations of number of

vulnerabilities published during period Tn+1

• EV
Tn+1:S
V :a - sum of CVSS score for all vulnerabilities of

Vendor ”a” published during period T+1, estimated on
the basis of data from previous periods

• V V
Tn+1:S
V :a - expected error of estimations of CVSS sum

for all vulnerabilities published during period Tn+1

In an analogous way can be defined values for specific
software (instead of vendor)

4) Trust and risk values:
• P

Tn+1

V :a - total penalty of vendor a during period T(n+1)
• P

Tn+1

V = max(P
Tn+1

V :a , P
Tn+1

V :b , . . .) - maximum penalty
of all vendors

• R
Tn+1

V :a - total risk of vendor a during period Tn+1

• T
Tn+1

V :a - total trust to vendor a during period Tn+1 Trust
and risk values are between 0 and 1. Analogously:

• P
Tn+1

S:a - total penalty of software ”a” during period Tn+1

• P
Tn+1

S = max(P
Tn+1

S:a , P
Tn+1

S:b , . . .) - maximum penalty of
all software of the same type (for example: web browsers,
operating systems, etc.)

• R
Tn+1

S:a - total risk of software a during period Tn+1

• T
Tn+1

S:a - total trust to software a during period Tn+1

B. Main algorithm

1) get all information from sources
2) match all vulnerabilities with software and patches by

using algorithm described in section C
3) for each vendor:

• calculate the number and the sum of vulnerabilities
in each period - V Ti:N

V :a , V Ti:S
V :a

• calculate the sum delay between vulnerability dis-
closure and patch publishing - DTi:S

V :a

• remember vulnerabilities without patches



334 M. JANISZEWSKI, A. FELKNER, J. OLSZAK

• calculate expected number and severity
of vulnerabilities in next period -
EV

Tn+1:N
V :a , EV

Tn+1:S
V :a and expected error of

estimations - V V Tn+1:N
V :a , V V

Tn+1:S
V :a

• calculate the total penalty - PTn+1

V :a

• calculate the total risk - RTn+1

V :a

4) calculate the maximum penalty PTn+1

V

5) for each vendor:
• calculate the total trust - TTn+1

V :a

6) for each software:
• calculate the number and the sum of vulnerabilities

in each period - V Ti:N
S:a , V Ti:S

S:a

• calculate the sum delay between vulnerability dis-
closure and patch publishing - DTi:S

S:a

• remember vulnerabilities without patches
• calculate expected number and severity

of vulnerabilities in next period -
EV

Tn+1:N
S:a , EV

Tn+1:S
S:a and expected error of

estimations - V V Tn+1:N
S:a , V V

Tn+1:S
S:a

• calculate the total penalty - PTn+1

S:a

• calculate the total risk - RTn+1

S:a

7) calculate the maximum penalty PTn+1

S

8) for each vendor:
• calculate the total trust - TTn+1

S:a

C. Algorithm to match vulnerabilities with software and
patches

for every vulnerability (identified by CVE-ID):
• find all vulnerable software (identified by CPE or by

name and version) related to this vulnerability
• find all patches related to this vulnerability (by matching

CVE-ID of this vulnerability)
• compare publication dates of all patches and the publica-

tion date of the vulnerability and choose and remember
the earliest date

• for every patch related to this vulnerability
– if vendor of the current patch is not the same as

current vendor for which trust and risk is calculated,
continue with the next patch

– calculate the difference in days between publication
date of the patch and the date remembered in the
previous step

– remember every software (identified by CPE or by
name and version) which is related to the patch

• compare whether for every software affected by the
vulnerability, a patch was published

D. Calculations

To calculate the expected number of vulnerabilities of a
software or of a vendor in the next period we take into account
number of vulnerabilities in the previous periods weighted by
forgetting factor, which can be seen on equation 1.

EV
Tn+1:N
V :a =

(1− α)
∑n

i=1 α
n−i ∗ V Ti:N

V :a

1− αn
(1)

To calculate the expected error of estimation of number of
vulnerabilities in the next period we can use equation 2. To do
this we take into account the difference between numbers of
vulnerabilities in the previous periods and the expected number
of vulnerabilities calculated for previous periods weighted by
forgetting factor.

V V
Tn+1:N
V :a =

√√√√ (1− α)
∑n

i=2

[
(V Ti:N

V :a − EV Ti:N
V :a )2αn−i

]
α2(1− αn)

(2)
We can calculate in the same way the expected sum of

CVSS of vulnerability in the next period, and the expected
error of estimation, by using equations 3 and 4.

EV
Tn+1:S
V :a =

(1− α)
∑n

i=1 α
n−i ∗ V Ti:S

V :a

1− αn
(3)

V V
Tn+1:S
V :a =

√√√√ (1− α)
∑n

i=2

[
(V Ti:S

V :a − EV
Ti:S
V :a )2αn−i

]
α2(1− αn)

(4)
To calculate total penalty of a vendor (or a software) we can

use the equation 5. The penalty is based on two components:
the first is penalty for a vulnerability itself - any vulnerability
decreases trust (even if it is patched), because vendor should
do everything it can to prevent from vulnerabilities. The
second component is the penalty for delays (which indicate
how fast a vulnerability will be patched if it appears). It can
be noticed, that we take into account the sum of CVSS of
all vulnerabilities related to the vendor (or software) - which
is the first summand and the average severity of existing

vulnerability (which is V
Ti:S

V :a

V
Ti:N

V :a

) multiplied by the sum of delay
of releasing a patch - which is the second summand.

P
Tn+1

V :a =

n∑
i=1

(
V Ti:S
V :a +

DTi:S
V :a ∗ V

Ti:S
V :a

V Ti:N
V :a

)
(5)

After calculating penalty for each vendor, a trust for each
vendor can be calculated by using equation 6.

T
Tn+1

V :a = 1−
P

Tn+1

V :a

P
Tn+1

V

(6)

Trust can range between 0.0 (the lack of trust) to 1.0 (the
highest trust). It can be noticed that the trust is relative and
the takes into account only historic data (do not include any
estimations about the future).

The risk of each vendor can be calculated by using equa-
tion 7. The first component estimates the risk related to
vulnerabilities which are predicted to appear in the next period
and also take into account risk related to the fact that patches
can be delayed. The second component is related to the risk
connected to vulnerabilities which are still unpatched.

R
Tn+1

V :a = (1− β) ∗min

(
10,

V
Tn+1:S
EV :a +

DTn:S
V :a

T

V
Tn+1:N
V :a

)
+

+ β ∗maxCV SSV :a (7)



TRUST AND RISK ASSESSMENT MODEL OF POPULAR SOFTWARE BASED ON KNOWN VULNERABILITIES 335

maxCV SS in the equation 7 is the highest value of CVSS
of a vulnerability which is not patched by the vendor a. Risk
can range from 0.0 to 10.0 (similar to CVSS).

Calculations for software can be done analogously. β should
be relatively small for estimating risk of vendors but relatively
high for estimating risk of specific software.

VI. RESULTS

Our results are presented for a few vendors and for one
specific types of software (namely: operating systems). How-
ever in practice, presented system/model can be applied to all
types of software and all vendors. The area of research was
narrowed down because of the fact that some works have to
be done to achieve information about other kinds of software
due to the necessity of gain information directly from vendor’s
bulletins. The process of gaining information is related to some
technical problems but not to research problems.

The results were obtained for vendors:
• Microsoft
• Debian
• Canonical (Ubuntu)
• Redhat
• Mozilla
The results were obtained for OS:
• RedHat Enterprise Linux 6
• RadHat Enterprise Linux 7
• Debian 7 (Wheezy)
• Debian 8 (Jessie)
• Ubuntu 15
• Ubuntu 16
Vulnerabilities and patches published to 2015.12.31 was

used to train our model. Vulnerabilities and patches published
since 2016.01.01 to 2016.12.31 was used to test our model.
The period length was set as one quarter and the following
parameters was evaluated:

• number of vulnerabilities,
• sum of CVSS of vulnerabilities.

and these parameters was compared to the real values obtained
in the same periods. The results are presented in Table I and
in Table II. The forgetting factor was adapted individually for
each software and vendor on the base of the training set. The
results in Table I and in Table II can be different from the
results obtained from public sources (e.g. CVEdetails [15])
due to the fact that we take into account a vulnerability even
if it was anywise related to a software or vendor (not only
directly).

It is worth to note that the trust or risk assessment cannot
be compared directly to the real data because these parameters
indicate only expectations about a future. The results are
presented in table III and in table IV.

Results show that the prediction of the number and sum of
CVSS of vulnerabilities is sometimes not possible due to high
changeability of different factors, which was not considered
in the model. On the other hand, the main aim of the model
is to evaluate risk connected to usage of specific software or
provided by specific vendors as a way to differentiate such
software in the context of security. Results suggest that the

model can be used in that purpose. Trust of vendors which
release closed software is higher than trust of vendors related
to open-source software. On the other hand risk related to such
software is also generally higher (due to lack of information
provided by such vendors). The highest risk is related to Red
Hat due to the highest number of delays in releasing patches.

VII. CONCLUSIONS AND FUTURE WORKS

Results of our work, far from being comprehensive, indicate
that the proposed approach is promising, but it needs further
research. The paper has proved that information needed for
effective vulnerability management are dispersed over many
databases and usage of all information is not a trivial task.

In the future we plan to develop our model through tak-
ing into account more information about vulnerabilities and
patches (for example: how a vulnerability was discovered)
and also through including different factors (for example
connections between different software). The main aim is to
create a comprehensive model which can assess in a real time
risk related to specific software.

REFERENCES

[1] S. Zhang, X. Ou, and D. Caragea, ”Predicting Cyber Risks
through National Vulnerability Database,” Information Security Jour-
nal: A Global Perspective, vol.24, 2015, pp. 194-206, DOI:
10.1080/19393555.2015.1111961

[2] S. Zhang, D. Caragea, and X. Ou, ”An Emperical Study on Using
the National Vulnerability Database to Predict Software Vulnerabilities,”
LNCS 6860, 2011, pp. 217-231, DOI: 10.1007/978-3-642-23088-2 15

[3] K. Ingols, M. Chu, R. Lippmann, S. Webster, S. Boyer, ”Modeling
modern network attacks and countermeasures using attack graphs,” An-
nual Computer Security Conference, ACSAC, 2009, DOI: 10.1109/AC-
SAC.2009.21

[4] M. McQueen, T. McQueen, W. Boyer, M. Chaffin, ”Empirical estimates
and observations of 0day vulnerabilities,” 42nd Hawaii International
Conference on System Sciences, 2009, pp. 1-12

[5] A. Ozment, Vulnerability Discovery & Software Security, PhD thesis,
University of Cambridge, 2007

[6] A. Felkner, ”Review and analysis of sources of information about vul-
nerabilities,” Przegld telekomunikacyjny i wiadomoci telekomunikacyjne,
vol. 8-9/2016, 2016, pp. 929-933, DOI: 10.15199/59.2016.8-9.37

[7] Symantec http://www.symantec.com/security response/landing/ vulner-
abilities.jsp - access date: 02.05.2017

[8] Common Vulnerabilities and Exposures (CVE)
http://www.cve.mitre.org/ access date: 02.05.2017

[9] Dragonsoft vulnerability database http://vdb.dragonsoft.com/ - access
date: 02.05.2016, currently not accessible

[10] National Vulnerability Database http://nvd.nist.gov/ access date:
02.05.2017

[11] SecurityFocus http://www.securityfocus.com/vulnerabilities/ - access
date: 02.05.2017

[12] Security Tracker http://www.securitytracker.com/ - access date:
02.05.2017

[13] US-CERT vulnerability notes database http://www.kb.cert.org/vuls/ -
access date: 02.05.2017

[14] The Computer Incident Response Center Luxembourg http://cve.circl.lu/
- access date: 02.05.2017

[15] CVEdetails http://www.cvedetails.com/ - access date: 02.05.2017
[16] Fulldisclosure http://seclists.org/fulldisclosure/ - access date: 02.05.2017
[17] Exploit-db http://www.exploit-db.com/ - access date: 02.05.2017
[18] Intelligent Exploit http://www.intelligentexploit.com/ - access date:

02.05.2016, currently not accessible
[19] Metasploit (Rapid7) https://www.rapid7.com/db/ - access date:

02.05.2017
[20] Sans http://isc.sans.edu/diary/ - access date:02.05.2017
[21] Vulnerability-lab http://www.vulnerability-lab.com - access date:

02.05.2017
[22] Vulners.com https://vulners.com/ - access date:02.05.2017
[23] Vfeed https://github.com/toolswatch/vFeed - access date:02.05.2017
[24] CPE dcitionary: https://cpe.mitre.org/ - access date:02.05.2017



336 M. JANISZEWSKI, A. FELKNER, J. OLSZAK

TABLE I
RESULTS - NUMBER OF VULNERABILITIES AND SUM OF CVSS FOR VENDORS

Vendor 1st quarter of 2016 2nd quarter of 2016 3rd quarter of 2016 4th quarter of 2016
#vuln CVSS #vuln CVSS #vuln CVSS #vuln CVSS

Microsoft 102 763.1 178 1398.2 124 803.5 172 1242.8
117.0±39.0 769.0±317.0 114.0±37.0 769.0±302.0 124.0±42.0 826.0±345.0 124.0±39.0 824.0±329.0

Debian 342 1986.8 292 1800.0 274 1649.7 197 1025.6
243.0±19.0 1426.0±124.0 291.0±71.0 1701.0±402.0 292.0±50.0 1701.0±287.0 283.0±38.0 1676.0±208.0

Ubuntu (Canonical) 246 1532.5 317 1816.4 280 1703.5 355 1876.5
243.0±27.0 1494.0±135.0 245.0±19.0 1519.0±85.0 284.0±55.0 1712.0±245.0 282.0±37.0 1707.0±145.0

Redhat 265 1816.6 359 2399.5 317 2155.8 224 1308.7
266.0±86.0 1828.0±724.0 266.0±79.0 1826.0±659.0 280.0±81.0 1923.0±645.0 285.0±76.0 1963.0±596.0

Mozilla 65 424.9 29 183.2 45 273.1 0 0.0
31.0±16.0 214.0±126.0 32.0±17.0 219.0±128.0 32.0±17.0 218.0±127.0 32.0±16.0 219.0±126.0

Expected values from the model is set in italics, the real values is set in romans
Expected values consist of the estimated value and expected error of estimation

#vuln - number of vulnerabilities; CVSS - sum of CVSS of vulnerabilities

TABLE II
RESULTS - NUMBER OF VULNERABILITIES AND SUM OF CVSS FOR OPERATING SYSTEMS

OS 1st quarter of 2016 2nd quarter of 2016 3rd quarter of 2016 4th quarter of 2016
#vuln CVSS #vuln CVSS #vuln CVSS #vuln CVSS

RedHat EL 6 230 1596.9 322 2217.5 267 1856.9 182 1044.1
232.0±77.0 1603.0±651.0 232.0±71.0 1602.0±596.0 245.0±74.0 1702.0±599.0 248.0±69.0 1727.0±552.0

RedHat EL 7 163 967.5 207 1251.6 172 1013.9 132 550.0
162.0±58.0 968.0±284.0 162.0±49.0 968.0±230.0 175.0±48.0 1065.0±250.0 174.0±40.0 1047.0±205.0

Debian 7 (Wheezy) 227 1271.2 27 176.8 4 26.6 2 17.2
161.0±14.0 845.0±96.0 226.0±66.0 1267.0±424.0 29.0±198.0 188.0±1086.0 4.0±32.0 28.0±194.0

Debian 8 (Jessie) 325 1904.4 298 1744.2 272 1628.2 194 910.6
224.0±59.0 1303.0±322.0 298.0±91.0 1748.0±543.0 298.0±48.0 1745.0±277.0 279.0±33.0 1659.0±173.0

Ubuntu 15 58 345.4 129 708.8 3 9.2 0 0.0
40.0±11.0 249.0±68.0 44.0±12.0 269.0±70.0 58.0±31.0 344.0±165.0 50.0±34.0 295.0±188.0

Ubuntu 16 - - 125 656.1 15 60.6 8 50.0
- - - - 125.0±125.0 656.0±656.0 16.0±108.0 66.0±587.0

Expected values from the model is set in italics, the real values is set in romans
Expected values consist of the estimated value and expected error of estimation

#vuln - number of vulnerabilities; CVSS - sum of CVSS of vulnerabilities

TABLE III
RESULTS - TRUST AND RISK OF VENDORS

Vendor 1st quarter of 2016 2nd quarter of 2016 3rd quarter of 2016 4th quarter of 2016
trust risk trust risk trust risk trust risk

Microsoft 1.0 7.9 1.0 7.9 1.0 8.0 1.0 7.5
Debian 0.6 7.2 0.6 6.9 0.6 6.6 0.6 6.5

Ubuntu (Canonical) 0.6 7.6 0.6 7.9 0.5 7.6 0.5 6.7
Redhat 0.0 9.4 0.0 9.3 0.0 8.7 0.0 7.8
Mozilla 1.0 7.0 1.0 6.9 1.0 6.8 1.0 6.9

TABLE IV
RESULTS - TRUST AND RISK OF OPERATING SYSTEMS

Vendor 1st quarter of 2016 2nd quarter of 2016 3rd quarter of 2016 4th quarter of 2016
trust risk trust risk trust risk trust risk

RedHat Enterprise Linux 6 0.1 8.2 0.0 7.6 0.0 7.5 0.0 7.1
RadHat Enterprise Linux 7 0.7 7.7 0.7 7.3 0.7 7.4 0.6 6.7

Debian 7 (Wheezy) 0.9 6.2 0.9 6.2 0.9 6.2 0.9 6.2
Debian 8 (Jessie) 0.9 6.9 0.9 6.7 0.9 6.5 0.9 6.5

Ubuntu 15 1.0 6.5 1.0 6.4 1.0 6.1 1.0 6.0
Ubuntu 16 - - - - 1.0 5.7 1.0 5.5


