
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2018, VOL. 64, NO. 2, PP. 107-114

Manuscript received September 30, 2017; revised April, 2018. DOI: 10.24425/119357

Abstract—Drinking fresh water, turning the lights on, travelling

by tram, calling our family, or getting a medical treatment are

usual activities, but the underlying SCADA (Supervisory Control

and Data Acquisition) systems like CIS (Critical Infrastructure

Systems), ICS (Industrial Control Systems) or DCS (Distributed

Control Systems) were always the target of many types of attacks,

endangered the above mentioned simple activities. During the last

decades because of the fast spread of the internet based services

and the continuous technical development these systems become

more vulnerable than ever. Full reconstruction and innovative

changes in older SCADA systems has high cost, and it is not always

rewarding. Communication protocols as Modbus (1979) serve as a

main basis for SCADA systems, so security of Modbus has a major

impact of the security of SCADA systems. Our paper raises and

answers questions about the security of the Modbus RTU protocol.

We focus on the serial Modbus protocol, because in that method

we found many unsolved problems, like lack of authentication of

the participants, lack of secure channel and so on. The aim of this

paper to propose a secure communication alternative for Modbus

RTU @ RS485 wire. The main advantage of the proposed method

is the coexistence with traditional slaves and bus systems and only

software update is necessary.

Keywords—SCADA, Modbus RTU, secret sharing, secure

communication

I. INTRODUCTION

OMMUNICATION protocols as Modbus (1979) or Profinet

(2000) serve as a main basis for SCADA systems. Modbus,

as the ‘de-facto’ standard is used in 22% of industrial

applications (as of 2010), therefor the known weaknesses of the

standard pose a significant security risk. [1] The main design

features of the Modbus protocol were reliability, speed and

accessibility, but a very important feature was left out, security

or to narrow it down, security through cryptographic methods.

As it is well-known the Modbus protocol is a request-response

protocol, the participating devices are in master-slave

relationship with each other. Only the master can initiate

requests, the slave serves as a server. The master broadcasts

these messages on the physical layer and the addressed slave

answers, but neither the slave, nor the master can authenticate

themselves in a satisfying manner.

There are several different applications of the Modbus

protocol. We focus on the Modbus RTU, where the security on

the physical layer is as important as the network security in the

case of Modbus TCP. Opposed to the Modbus RTU the Modbus

TCP/IP is the object of numerous studies and has number of

tested methods.

Authors are with University of Debrecen, Faculty of Engineering, Hungary

(e-mail: adamko.eva@eng.unideb.hu, jakabockigabor@gmail.com,

szemespeter@eng.unideb.hu).

The goal of this article is to examine networks based on the

Modbus RTU standard with the attack tree method, then present

a security protocol that counteracts these vulnerabilities. In the

second section we give a brief introduction to SCADA systems

and some recent attacks, the third section is about the Modbus

RTU protocol and its revealed vulnerabilities. In the fourth

section we present the developed secure protocol. Section five

stands for the practical implementation of the developed

protocol, and in section six we briefly mention some related

solutions. Then in the last section we present our conclusions of

the research.

Fig. 1. Structure of SCADA system

II. SCADA SYSTEM

SCADA stands for Supervisory Control and Data Acquisition,

SCADA system is capable of gathering, tracking, analyzing

real time data and monitoring or controlling sensors and

actuators. It is widespread in industrial application, like electric

power generation, water distribution, waste control,

transportation and so on. SCADA systems typically consist of

a central host computer - which usually marked as an MTU

(Master Terminal Unit) - and field devices - Remote Telemetry

Units (RTU) or Programmable Logic Controllers (PLC) -, like

sensors or actuators. MTU is an input-output device controlled

by a human operator through a Human Machine Interface

(HMI), which is a collection of software components and

databases. Field devices can measure or set values of parameters

in a system depending on its function. PLC and RTU are almost

the same, difference between them only that the RTU has more

communication interfaces while PLC cannot just measure or set

variables but can process and control them. MTU and

Proposal of a Secure Modbus RTU Communication

with Adi Shamir's Secret Sharing Method

Éva Ádámkó, Gábor Jakabóczki, and Péter Tamás Szemes

C

108 É. ÁDÁMKÓ, G. JAKABÓCZKI, P. T. SZEMES

RTUs/PLCs can be connected through different communication

systems, like radio signals, cables, wireless and so on. In these

communication systems different communication protocols can

help solving the problem of message exchange. The most

commonly used industrial communication protocols are the

following: Modbus, Profinet, DNP3 (Distributed Network

Protocol), IEC 60780 (International Electrotechnical

Commission), OPC (OLE for Process Control) or Ethernet/IP.

A typical SCADA structure can be seen on Figure 1.

III. MODBUS

A. Modbus RTU

Modbus is an open access communication protocol designed by

the Modicon and released in 1979, it become a ‘de-facto’

standard in industrial applications for today. Modbus versions

like Modbus RTU, Modbus ASCII and Modbus TCP/IP give

solution for communication on data link and application layer

of ISO/OSI model. The place in the ISO/OSI model of the

protocol can be seen on Figure 2. Modbus is a master-slaves,

request-response protocol where only the master can initiate a

request, the slaves only able to response to it.

Modbus TCP/IP is the type of Modbus which located on the

application layer of the ISO/OSI model, it provides client server

communication between devices, the client role is provided by

the Master of the serial bus and the Slaves nodes act as servers.

Numerous studies examine the security of this protocol, and

offer different solutions. However older latency systems based

on Modbus RTU/ASCII should revise the level of the security

of the system too.

Modbus RTU is located on the second layer of the ISO/OSI

model, it communicates on a serial line usually on RS485 or

RS232. It is a master-slaves protocol, where only one master

and at most 247 slaves can be part of one network. Only the

master can initiate a request as it above mentioned, depending

on the type of the request the master is waiting for a single

response or many responses. Request can be sent in unicast or

broadcast mode, it requires that each slave have a unique

address. The master starts only one transaction at a time. The

slaves never transmit data without receiving a request from the

master node and never communicate with each other. A Modbus

RTU message consists of frames sending continuously, a frame

contains four different fields, first is the address of the slave,

second is the function code - it specifies the slave what kind of

action to perform -, third one is the data, and last is the error

checking code, it uses a Cyclical Redundancy Checking (CRC)

method. The CRC is the only feature which supposed to provide

the data integrity. On the serial bus between two frames should

be at least a 3.5 characters long delay. Figure 3. shows the

structure of the Modbus frame, and on Figure 4. a message

exchange can be seen in unicast mode.

 Fig. 2. Modbus protocol in ISO/OSI model

Fig. .3 Modbus RTU Frame

Fig. 4. Modbus RTU unicast communication

PROPOSAL OF A SECURE MODBUS RTU COMMUNICATION WITH ADI SHAMIR'S SECRET SHARING METHOD 109

B. Modbus vulnerabilities

As it mentioned before during the design process the main

features of the Modbus protocol were reliability, speed, and

accessibility, but security, authentication and data integrity were

left out. Our research addressed to find the vulnerabilities of the

Modbus protocol, the following liabilities revealed from the

literature:

• Lack of Confidentiality. [2]

• Lack of Integrity.

• Lack of Authentication.

• Sensibility for the Man in the middle (MITM) attack. [3]

• Sensibility for the Denial of Service Attack (DoS). [4]

• Interception [5]

• Slave Reconnaissance

• Modbus Network Scanning etc.

• Interruption

• Remote Restart

• Baseline Response Replay etc.

• Modification

• Diagnostic Register Attack

• Broadcast Message Spoofing etc.

• Fabrication

• Direct Slave Control etc.

We summarized the revealed weaknesses of the Modbus

RTU protocol with the simple and manageable method of attack

tree [2,6]. In our previous papers, we focused on algorithmic

security of the protocol, but not on the physical level, so the

attack tree does not contain the analysis of the physical security

of networks or methods to gain access to them, like through

social engineering. The final attack tree is presented on Figure

5.

With this technique, the system can be examined from several

points of view. Our first goal was to determine the purpose of

the malicious attacker. As we can see many deficiencies can be

found because the lack of the two most crucial components of

security properties confidentiality and integrity. On Figure 4.,

we can see the attacker targets four weaknesses of the protocol,

these are the root elements of the attack tree. First is the

interception of data, which includes for example the channel

monitoring, then the interruption of the communication - it can

be caused by for example a DoS attack -, third one is the

modification of messages and the last one is the fabrication of

data. Our second goal was to uncover how can a malicious

attacker achieve these targets, due to the related research all the

root elements can be reached by MITM attack, like planting

gateways or compromised slave or master devices into the

network.

1) Interception

In the tree, the first root is the interception of data. During

interception, the attacker captures messages sent over the

network, thus acquiring information about the parameters and

operation of the system, so the confidentiality of the data and

system is lost in this attack.

2) Interruption

With the second root, the attacker's goal is to degrade the

effectiveness of the system e.g. economic efficiency, or similar

parameters or to manipulate them, or just simply overload the

system to shut it down. Compromising the normal operation of

the system cause the damage of data or system integrity.

3) Modification

The third root is for modification, which means that an

unauthorized individual modifies the messages sent over the

channel, resulting the damage of data or system integrity.

4) Fabrication

Last root is for fabrication, during fabrication a malicious

attacker releases itself as an authorized user and send fabricated

message to the participants of the system. Many properties of

security lost through this attack, like data integrity,

authentication, or confidentiality.

IV. SECURE PROTOCOL

A. Problem formulation

In the previous section we showed that the main problems of the

Modbus RTU protocol are the lack of security parameters as

confidentiality, integrity, and authentication of master and

slaves. The latter causes that a slave device accepts request and

performs tasks any time if the destination address is its own

address in the Modbus PDU, and the master does not verify the

origin of the replies it receives. So, the problems to be solved

are to prevent the messages from eavesdropping, to precisely

authenticate the slaves and the master of the network and to

provide data integrity. The authentication cannot be done by

trusted third parties or organizations, for not every system is

connected (or can be connected) to these organizations, so

security protocols based on digital certificates are excluded. In

our solution we take advantage of the fact that the Modbus RTU

based communication not always uses the full of its

standardized message length and the relative low update

frequency of the messages. In most cases the MTUs and field

devices have an Advanced Encryption Standard (AES) engine

and encrypt the standard request and response before sending it.

Many similar data put through the system in normal operation,

- like usual requests from the master, or sensor data, which has

long alteration times -, and because the physical layer is exposed

to attacks, the attacker can obtain large magnitude of data,

shortening the time needed to compute the shared secret key,

which can be then used to read the slaves responses or alter the

master requests. Also, the data encryption is not enough alone

to solve all the earlier revealed security problems of the

protocol.
TABLE I

NOMINATIONS 1.

Nomination Explanation

𝑀 Master.

𝑆𝑖 Ith Slave.

𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠𝑜𝑛𝑒 Number of the slaves in the network.

𝑅𝑎𝑛𝑑𝑜𝑚𝑃(𝑥) A random polynomial over 𝐺𝐹(𝑝).
(𝑥𝑖 , 𝑦𝑖) Ith point of 𝑅𝑎𝑛𝑑𝑜𝑚𝑃(𝑥) polynomial.

𝑎𝑖 Ith coefficient of 𝑅𝑎𝑛𝑑𝑜𝑚𝑃(𝑥) polynomial.

𝑛 Degree of 𝑅𝑎𝑛𝑑𝑜𝑚𝑃(𝑥)
𝑝 Large prime number.

𝑝𝑟𝑖𝑚𝑒() Prime generator function.

𝑠𝑘𝑒𝑦() Secret key generator function.

𝑒𝑛𝑐𝑟𝑦𝑝𝑡() Function for encryption.

𝑑𝑒𝑐𝑟𝑦𝑝𝑡() Function for decryption.

𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒𝐼𝑃() Function constructing secret by Lagrange

interpolation.

𝐾𝑆 Secret key of the master.

𝐶𝑖 Challenge value of ith slave.

𝑃𝑖𝑗 Share.

𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑖 Address of the ith slave.

110 É. ÁDÁMKÓ, G. JAKABÓCZKI, P. T. SZEMES

Fig. 5. Modbus RTU attack tree

Fig. 6. Secure Modbus RTU Sensor slave side

PROPOSAL OF A SECURE MODBUS RTU COMMUNICATION WITH ADI SHAMIR'S SECRET SHARING METHOD 111

TABLE II
NOMINATIONS 2.

Nomination Explanation
𝑠𝑒𝑐𝑢𝑟𝑒
→ Secure channel.
𝑝𝑢𝑏𝑙𝑖𝑐
→ Public channel.

𝑆𝐶 "Send challenge" function code.

𝑆𝐼 "Shares inside" function code.

𝐹𝐶 Function code.

𝑇𝑆 Time stamp.

𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑞𝑢𝑒𝑠𝑡 Encrypted data part of a request.

𝐷𝑎𝑡𝑎𝑅𝑒𝑞 Data part of a request.

𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 Encrypted data part of a response.

𝐷𝑎𝑡𝑎𝑅𝑒𝑠 Data part of a response.

B. Initialization

We recommend that the initial steps of the secure protocol be

taken when the network is built or for latency systems at the

time of regular revisions. First message exchange should be

taken on a cryptographically secure channel. Both master and

slave side require a random generator and a prime number

generator. Generated prime and random numbers should be

large enough, and all calculation of the protocol should be taken

in a finite field. Through the initialization part we construct a

random polynomial over a finite field 𝐺𝐹(𝑝), where the

following restrictions needed for the proper working of the

protocol:

• Order of the field should at least be

𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠2 + 𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠 + 1.

• Generator prime of the finite field 𝑝 should be large enough.

• The coefficients (𝑎𝑖) of the random polynomial are randomly

chosen of a uniform distribution over [0, 𝑝)

• The 𝑦𝑖values of the random polynomial are computed 𝑚𝑜𝑑 𝑝

for distinct 𝑥𝑖values chosen from [0, 𝑝)
• The size of 𝑦𝑖 values of the random polynomial should be

equal size to 𝑝.

Secret key and challenge values generated in the initialization

part will authenticate the slaves to the master, and vice versa,

and these keys then planted in the devices so it is only accessible

to the specific instruments. In this paper we assume that the AES

engine is present in both the slave and the master devices, thus

we recommend at least a 128 bit long secret key. [7] (In the

example network described in section five we only generate a

fairly strong secret key, and use this one for each device, due to

limited time.) Initialization steps are as follows, nomination can

be seen in Table I and II:

1: 𝑀 and 𝑆𝑖 synchronize the time

2: 𝑀 generates a large prime number:

 𝑝 = 𝑝𝑟𝑖𝑚𝑒()

3: 𝑀 generates a random private key:

 𝐾𝑆 = 𝑠𝑘𝑒𝑦()
4: 𝑀 constructs a random polynomial over 𝐺𝐹(𝑝):
 𝑅𝑎𝑛𝑑𝑜𝑚𝑃(𝑥) = 𝑎0 + 𝑎1 𝑥 + 𝑎2 𝑥

2…+ 𝑎𝑛𝑥
𝑛

 where: 𝑛 > 𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠 and

 𝑅𝑎𝑛𝑑𝑜𝑚𝑃(0) = 𝑎0 = 𝐾𝑆

5: 𝑀 selects 𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠 amount of points (𝑥𝑖 , 𝑦𝑖) on the

polynomial, where:

 𝑥𝑖 ≠ 𝑥𝑗 for 𝑖, 𝑗 = 1… 𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠

6: 𝑀 sends unicast request consisting the shares to the slaves, and

waits for challenges:

 𝑀
𝑠𝑒𝑐𝑢𝑟𝑒
→ 𝑆𝑖 ∶ (𝑥𝑖 , 𝑦𝑖)

 request: [𝑖, 𝑆𝐶, (𝑥𝑖 , 𝑦𝑖), 𝐶𝑅𝐶]

7: 𝑆𝑖 receives the share:

𝑆𝑖
𝑠𝑒𝑐𝑢𝑟𝑒
← 𝑀 ∶ (𝑥𝑖 , 𝑦𝑖)

8: 𝑆𝑖 generates a challenge:

 𝐶𝑖 = 𝑝𝑟𝑖𝑚𝑒()
9: 𝑆𝑖 sends the challenge to the master:

𝑆𝑖
𝑝𝑢𝑏𝑙𝑖𝑐
→ 𝑀 ∶ 𝐶𝑖 ⊕𝑦𝑖

response: [𝑖, 𝑆𝐶, 𝐶𝑖 ⊕𝑦𝑖 , 𝐶𝑅𝐶]

10: 𝑀 receives the challenge:

 𝑀
𝑝𝑢𝑏𝑙𝑖𝑐
← 𝑆𝑖 ∶ 𝐶𝑖 ⊕𝑦𝑖

11: M calculates 𝐶𝑖 ∶
 𝐶𝑖 = 𝑦𝑖 ⊕ (𝐶𝑖 ⊕𝑦𝑖)

12: 𝑀 sends unicast requests consisting of extra shares to the slaves:

 𝑀
𝑝𝑢𝑏𝑙𝑖𝑐
→ 𝑆𝑖 ∶ (𝑃𝑖1||𝑃𝑖2 ||… ||𝑃𝑖𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠) ⊕ 𝐶𝑖

request: [𝑖, 𝑆𝐼, (𝑃𝑖1||𝑃𝑖2 || … ||𝑃𝑖𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠), 𝐶𝑅𝐶]
 𝑃𝑖𝑘 ≠ 𝑃𝑖𝑙 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑘 ≠ 𝑙
 𝑘, 𝑙 = 1… 𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠2

13: 𝑆𝑖 receives the extra shares:

 𝑆𝑖
𝑝𝑢𝑏𝑙𝑖𝑐
← 𝑀 ∶ (𝑃𝑖1||𝑃𝑖2|| … ||𝑃𝑖𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠) ⊕ 𝐶𝑖

14: 𝑆𝑖 reconstructs 𝐾𝑆 from the 𝑛 pieces of imprints it already has:

 𝐾𝑆 = 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒𝐼𝑃((𝑥𝑖 , 𝑦𝑖), 𝑃𝑖1, 𝑃𝑖2, … 𝑃𝑖𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠)
15: 𝑀 creates an address table about the slavess:

(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑖 , (𝑥𝑖 , 𝑦𝑖), 𝐶𝑖)

C. Communication

A usual SCADA network contains two types of field devices if

we consider the aim of the instruments, actuator and sensor type.

Actuator in general means turning energy into motion, but in

this paper term actuator is used in the meaning of an RTU/PLC

which is able to modify a property of a SCADA system (e.g.

setting the temperature or turning the lights off). Sensors are the

same as commonly known, these are devices which, detects and

measures some property of the system, input can be light, heat,

motion, moisture, pressure, etc. We created two types of the

communication method depending on the type of the field

devices to use the benefits of unused registers in RTUs/PLCs,

in case of sensors where the measured data is stored in the

device, on the contrary of the actuators which never store any

data.

Through both type of communication, it is recommended to

encrypt only the data segment of the messages, to evade known

plain text attacks.

1) Communication with actuator slaves

Communication between master and a slave requires

synchronized time and a shared secret key, which is provided by

the initialization part of the protocol. Now every slave knows

the secret key of the master and the master knows a unique

challenge value from every slave, these two make possible that

all the participants are capable of authenticate each other.

112 É. ÁDÁMKÓ, G. JAKABÓCZKI, P. T. SZEMES

Communication description can be seen below:

1: 𝑀 initiates a request:

Encrypts the 𝑇𝑆 and data part of the request with 𝐾𝑆:

𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑞𝑢𝑒𝑠𝑡 = 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝐾𝑆, 𝐷𝑎𝑡𝑎𝑅𝑒𝑞||𝑇𝑆)
2: 𝑀 sends the request to the slave:

𝑀
𝑝𝑢𝑏𝑙𝑖𝑐
→ 𝑆𝑖 ∶ 𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑞𝑢𝑒𝑠𝑡

request: [𝑖, 𝐹𝐶, 𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐶𝑅𝐶]
3: 𝑆𝑖 receives the request:

𝑆𝑖
𝑝𝑢𝑏𝑙𝑖𝑐
← 𝑀 ∶ 𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑞𝑢𝑒𝑠𝑡

4: 𝑆𝑖 makes the checks:

5: 𝒊𝒇 𝑖 = 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑖 𝒕𝒉𝒆𝒏
 𝑆𝑖 decrypts the data part:

 𝐷𝑎𝑡𝑎𝑅𝑒𝑞 = 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝐾𝑆, 𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑞𝑢𝑒𝑠𝑡||𝑇𝑆)
 𝒊𝒇 𝑇𝑆 fresh enough 𝒕𝒉𝒆𝒏

 𝒊𝒇 𝐷𝑎𝑡𝑎𝑅𝑒𝑞 is correct 𝒕𝒉𝒆𝒏

 𝑆𝑖 performs the task

 𝒆𝒍𝒔𝒆
 𝑆𝑖 goes back to initial mode

 𝒆𝒏𝒅 𝒊𝒇

 𝒆𝒍𝒔𝒆
 𝑆𝑖 goes back to initial mode

 𝒆𝒏𝒅 𝒊𝒇

 𝒆𝒍𝒔𝒆
 𝑆𝑖 goes back to initial mode

 𝒆𝒏𝒅 𝒊𝒇

6: 𝑆𝑖 encrypts the data part of the response and the

(𝑥𝑖⨁ 𝑦𝑖) with 𝐾𝑆:

 𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝐾𝑆, 𝐷𝑎𝑡𝑎𝑅𝑒𝑠||(𝑥𝑖⨁ 𝑦𝑖))
7: 𝑆𝑖 sends the response to the master:

 𝑆𝑖
𝑝𝑢𝑏𝑙𝑖𝑐
→ 𝑀 ∶ 𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒

 response: [𝑖, 𝐹𝐶, 𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒, 𝐶𝑅𝐶]
8: 𝑀 receives the response:

9: 𝑀
𝑝𝑢𝑏𝑙𝑖𝑐
← 𝑆𝑖 ∶ 𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒

10: 𝑀 decrypts the response:

𝐷𝑎𝑡𝑎𝑅𝑒𝑠 ||(𝑥𝑖⨁ 𝑦𝑖) = 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝐾𝑆 , 𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒)
11: 𝑀 makes the checks:

 𝒊𝒇 𝑥𝑖 ⨁(𝑥𝑖 ⨁𝑦𝑖) = 𝑦𝑖 𝒕𝒉𝒆𝒏

𝒊𝒇 𝐷𝑎𝑡𝑎𝑅𝑒𝑠 is correct 𝒕𝒉𝒆𝒏

 𝑀 processes the response

 𝒆𝒍𝒔𝒆
 𝑀 goes back to initial mode

 𝒆𝒏𝒅 𝒊𝒇

 𝒆𝒍𝒔𝒆
 𝑀 goes back to initial mode

 𝒆𝒏𝒅 𝒊𝒇

2) Communication with sensor slaves

Communication method is basically the same between the

sensor type devices and master, like between master and

actuator type field instruments. Only the data part of the

messages contains different information, till the method we

presented in the previous section used a simple controlling or

measured data as a data part this one uses a more complex data,

because in order to extend the level of data integrity we

increased the entropy of the system. Every other step is the same

as above.

The sensor device on Figure is end node of a data acquisition

network. In predefined intervals the slave measures, then saves

the gathered data in some registers used in the communication,

then requested by the master to send this data. In our solution,

we modified the Modbus RTU protocol, so the slave, after

recording the fresh measurements, fills up the unused registers

with data generated from the measurements by functions of the

secret key and the challenge values. The number and the

position of the secret parts defined by the secret key and the

challenges too. All of these ’imprints’ of data is needed to

recreate the original data – opposed to the traditional secret

sharing method – because the creation of these imprints only

makes the access more difficult to the secret. The more registers

are needed to decrypt the secret, the more grows the entropy of

the system, which in turn makes more difficult to an attacker to

gather relevant data. Keep in mind that if the number of imprints

are the same as the number of unused registers the decrypting of

the encrypted data become trivial, but the message cannot be

consisted only of these imprints, so after the secret sharing the

free registers filled up with randomized data seemingly similar

to the imprints. Nominations can be seen in Table III. Details

can be seen on Figure 6 and below:

TABLE III

NOMINATIONS 3.

Nomination Explanation

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝐷𝑎𝑡𝑎 Measured data by the slave.

𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆ℎ𝑎𝑟𝑒𝑠 Number of secret shares.

𝑛𝑢𝑚𝑆ℎ𝑎𝑟𝑒𝑅𝑒𝑔𝑖 Position of the ith register that contains share inside.

𝑛𝑢𝑚𝑅𝑎𝑛𝑑𝑜𝑚𝑅𝑒𝑔𝑖 Position of the ith register that contains random value

inside.

𝑛𝑢𝑚𝑂𝑓𝑈𝑈𝑅𝑒𝑔 Number of unused, empty registers.

𝑆𝑅𝑎𝑛𝑑𝑜𝑚𝑃(𝑥) A random polynomial over 𝐺𝐹(𝑝).

(𝑥𝑉𝑖) Ith x value of 𝑆𝑅𝑎𝑛𝑑𝑜𝑚𝑃(𝑥)polynomial.

𝑐𝑓𝑖 Ith coefficient of 𝑆𝑅𝑎𝑛𝑑𝑜𝑚𝑃(𝑥) polynomial.

𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑅𝑒𝑔𝑖 Content of the ith register.

1: 𝑆𝑖 measures a data : 𝑀𝑒𝑠𝑢𝑟𝑒𝑑𝐷𝑎𝑡𝑎

2: 𝑆𝑖 makes the following calculations:

 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆ℎ𝑎𝑟𝑒𝑠 = 𝐾𝑆 𝑚𝑜𝑑 𝐶𝑖
3: 𝑆𝑖 calculates the position of the registers to put shares inside:

 𝒇𝒐𝒓 𝑚 = 0 𝒕𝒐 𝑚 < 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆ℎ𝑎𝑟𝑒 𝒅𝒐

𝑛𝑢𝑚𝑆ℎ𝑎𝑟𝑒𝑅𝑒𝑔𝑚 =
(𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆ℎ𝑎𝑟𝑒𝑠 +𝑚) 𝑚𝑜𝑑 (𝑛𝑢𝑚𝑂𝑓𝑈𝑈𝑅𝑒𝑔 + 1)

 𝑐𝑓𝑚 = 𝑟𝑎𝑛𝑑𝑜𝑚()
 𝑥𝑉𝑚 = 𝑟𝑎𝑛𝑑𝑜𝑚()
 𝒆𝒏𝒅 𝒇𝒐𝒓

4: 𝑆𝑖 calculates the position of the registers to put random values

inside:

 𝒇𝒐𝒓 𝑚 = 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆ℎ𝑎𝑟𝑒𝑠 + 1 𝒕𝒐 𝑚 < 𝑛𝑢𝑚𝑂𝑓𝑈𝑈𝑅𝑒𝑔 𝒅𝒐

 𝑛𝑢𝑚𝑅𝑎𝑛𝑑𝑜𝑚𝑅𝑒𝑔𝑚 =
 (𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆ℎ𝑎𝑟𝑒𝑠 + 𝑚) 𝑚𝑜𝑑 (𝑛𝑢𝑚𝑂𝑓𝑈𝑈𝑅𝑒𝑔 + 1)

𝒆𝒏𝒅 𝒇𝒐𝒓

5: 𝑆𝑖 constructs the random polynomial:

 𝑆𝑅𝑎𝑛𝑑𝑜𝑚𝑃(𝑥𝑉) = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝐷𝑎𝑡𝑎 +
 𝑐𝑓1𝑥𝑉 + 𝑐𝑓2𝑥𝑉

2… + 𝑐𝑓1𝑥𝑉
𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆ℎ𝑎𝑟𝑒𝑠

6: 𝑆𝑖 puts share into the right register

 𝒇𝒐𝒓 𝑚 = 0 𝒕𝒐 𝑚 < 𝑛𝑢𝑚𝑂𝑓𝑆ℎ𝑎𝑟𝑒 𝒅𝒐

 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑅𝑒𝑔𝑛𝑢𝑚𝑆ℎ𝑎𝑟𝑒𝑅𝑒𝑔𝑚 =

 (𝑥𝑉𝑚|| 𝑆𝑅𝑎𝑛𝑑𝑜𝑚𝑃(𝑥𝑉𝑚)) ⨁ 𝐶𝑖|| 00…0

𝒆𝒏𝒅 𝒇𝒐𝒓

7: 𝑆𝑖 puts random values into the right register

8: 𝒇𝒐𝒓 𝑚 = 𝑛𝑢𝑚𝑂𝑓𝑆ℎ𝑎𝑟𝑒𝑠 + 1 𝒕𝒐 𝑚 < 𝑛𝑢𝑚𝑂𝑓𝑈𝑈𝑅𝑒𝑔 𝒅𝒐

 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑅𝑒𝑔𝑛𝑢𝑚𝑅𝑎𝑛𝑑𝑜𝑚𝑅𝑒𝑔𝑚 =

 (𝑟𝑎𝑛𝑑𝑜𝑚()⨁𝐶𝑖|00…0

𝒆𝒏𝒅 𝒇𝒐𝒓

9: 𝑆𝑖 constructs the data part of the response:

 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑅𝑒𝑔1 ||𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑅𝑒𝑔2||𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑅𝑒𝑔𝑛𝑢𝑚𝑂𝑓𝑈𝑈𝑅𝑒𝑔

PROPOSAL OF A SECURE MODBUS RTU COMMUNICATION WITH ADI SHAMIR'S SECRET SHARING METHOD 113

V. ATTEMPT OF PRACTICAL IMPLEMENTATION

Fig. 7. Architecture of the test system

A. Introducing the system and the method of measurement

The first attempt of implementing the secure Modbus RTU

protocol was on a device developed in the Department of

Electrical Engineering and Mechatronics at the University of

Debrecen. It is a data acquisition and control device which has

several types of peripherals. The microcontroller, driving the

device is an Atmel ATxmega 128a type. The firmware written

by students of the department previously was made in Basic

language. For the limited development time, the secure protocol

was implemented in this Basic firmware. The data to be

encrypted was supplied by eight PTC thermoresistors, because

the thermic data is a frequent feature of SCADA communication

networks. These thermic sensors measured the temperature of

the MSc laboratory of the department, where the system was

installed. The master of the network was a personal computer,

with a simple Modbus client software running, and logging the

gathered data to a comma separated text file. In this test, we only

examined the applicability of the protocols on the slave’s side,

for in our opinion it is the most critical point in the protocols

development to be implementable on a relatively low

performance device (such as the used data acquisition device).

The physical layer of the network was RS485 2-wire bus, the

end node connected with the master via a Moxa Serial-to-USB

converter device. Figure 7. shows the structure of the example

network.

B. Results of the practical application

During our test, it has become clear that though the time needed

for the firmware to complete one cycle (accounted to the larger

entropy and encryption of the message) is grown by 500 %, the

overall performance of the device is not impaired in any mean,

all of its functionality remained the same, thus the protocol can

be implemented in lower performance end devices:

• The time needed for the slave to run its program once

(initialization not included, just the measurement and

encryption) is grown to 500%.

• The time of the program cycle, in which the response is sent

to the master is grown by 23%.

• Beside the above experiences, the devices performance is not

impaired in any manner.

• The protocol does not affect the communication, over the

testing period, the number of dropped messages was

1:15 000.

C. State of art

During our research we found out a few types of solutions to

improve the security of the Modbus RTU protocol. There are

papers which, provide only data integrity with the help of

retransmitter devices, they are able to detect and correct errors.

Other publication can detect the intrusion with a model-based

system. [8,9] The most common solutions are the bump in the

wire devices, many types are accessible on the market like Yasir

(Yet Another SecurIty Retrofit), SEL-3021-2 (Serial Encrypting

Transceiver) or AGA SCM (American Gas Association

SCADA Cryptographic Module). These devices provide

authentication, integrity, and confidentiality. [10,11,12]

CONCLUSION

Although our study is in no means near its end, the results

thus are far more promising. The initial goal, to create a security

measure, which can be applied over multiple types of industrial

communication protocols, without modifying these protocols in

any manner seems to be reachable in the near future. The initial

tests conducted on typical SCADA end devices show that the

proposed algorithm can be used on lower performance devices

too, and we think that this protocol can work in systems that are

based on protocols same as the Modbus RTU like Profinet and

so on.

Over the next period of our study, we would like to extend

our research to other communication protocols as well as to

prove our solution right with methods like Applied-Pi calculus,

or discover its vulnerabilities or flaws of our reasoning. In the

meantime, we seek the opportunity to test our solution in a

larger, industrial system, to eliminate its applicability's

weaknesses.

REFERENCES

[1] Ádámkó, Éva., Jakabóczki, Gábor. „Security analysis of Modbus RTU.”

Proceedings of the Conference on Problem-based Learning in Engineering

Education. 2015. 5-11.
[2] Byres, E. J., Franz, M., & Miller, D. (2004, December). The use of attack

trees in assessing vulnerabilities in SCADA systems. In Proceedings of the

international infrastructure survivability workshop.
[3] Nardone, R., Rodríguez, R. J., & Marrone, S. (2016, December). Formal

security assessment of Modbus protocol. In Internet Technology and

Secured Transactions (ICITST), 2016 11th International Conference for
(pp. 142-147). IEEE.

[4] Chen, B., Pattanaik, N., Goulart, A., Butler-Purry, K. L., & Kundur, D.

(2015, May). Implementing attacks for modbus/TCP protocol in a real-
time cyber physical system test bed. In Communications Quality and

Reliability (CQR), 2015 IEEE International Workshop Technical

Committee on (pp. 1-6). IEEE.
[5] Huitsing, Peter, Chandia, Rodrigo, Papa, Mauricio & Shenoi, Sujeet

(2008). Attack taxonomies for the Modbus protocols. International Journal
of Critical Infrastructure Protection, 1, 37-44.

[6] Bruce, Schneier (1999). Attack trees. Dr Dobb's Journal, 24, .

[7] FIPS, PUB (2001). 197: Federal Information Processing Standards
Publication 197. Announcing the ADVANCED ENCRYPTION

STANDARD (AES)

[8] Yüksel, Ömer, Jerry den Hartog, and Sandro Etalle. "Reading between the
fields: practical, effective intrusion detection for industrial control

systems." Proceedings of the 31st Annual ACM Symposium on Applied

Computing. ACM, 2016.

114 É. ÁDÁMKÓ, G. JAKABÓCZKI, P. T. SZEMES

[9] Urrea, Claudio, Morales, Claudio & Mu\~noz, Rodrigo (2016). Design
and implementation of an error detection and correction method

compatible with MODBUS-RTU by means of systematic codes.

Measurement, 91, 266-275.
[10] R. Solomakhin, Predictive YASIR: High Security with Lower Latency in

Legacy SCADA, Technical Report TR2010-665, Department of

Computer Science, Dartmouth College, Hanover, New Hampshire, 2010.
[11] Transceiver, Serial Encrypting. "SEL-3021 Serial Encrypting Transceiver

[12] Moore, Tyler, and Sujeet Shenoi, eds. Critical Infrastructure Protection

IV: Fourth Annual IFIP WG 11.10 International Conference on Critical
Infrastructure Protection, ICCIP 2010, Washington, DC, USA, March 15-

17, 2010, Revised Selected Papers. Vol. 342. Springer Science & Business
Media, 2010. Security Policy." (2005).

[13] Shamir, Adi (1979). How to share a secret. Communications of the ACM,

22, 612-613.
[14] Harn, Lien & Lin, Changlu (2010). Authenticated group key transfer

protocol based on secret sharing. IEEE transactions on computers, 59, 842-

846.

[15] Liu, Yining, Cheng, Chi, Gu, Tianlong, Jiang, Tao & Li, Xiangming

(2016). A lightweight authenticated communication scheme for smart

grid. IEEE Sensors Journal, 16, 836-842.
[16] Narayana, V Lakshman & Bharathi, CR (2017). IDENTITY BASED

CRYPTOGRAPHY FOR MOBILE AD HOC NETWORKS. Journal of

Theoretical and Applied Information Technology, 95, 1173.
[17] Goldenberg, Niv & Wool, Avishai (2013). Accurate modeling of

Modbus/TCP for intrusion detection in SCADA systems. International

Journal of Critical Infrastructure Protection, 6, 63-75.

[18] Urrea, Claudio, Morales, Claudio & Kern, John (2016). Implementation

of error detection and correction in the Modbus-RTU serial protocol.
International Journal of Critical Infrastructure Protection, 15, 27-37.

[19] Erez, Noam & Wool, Avishai (2015). Control variable classification,

modeling and anomaly detection in Modbus/TCP SCADA systems.
International Journal of Critical Infrastructure Protection, 10, 59-70.

[20] Shahzad, Aamir, Lee, Malrey, Lee, Young-Keun, Kim, Suntae, Xiong,

Naixue, Choi, Jae-Young & Cho, Younghwa (2015). Real time MODBUS
transmissions and cryptography security designs and enhancements of

protocol sensitive information. Symmetry, 7, 1176-1210.

[21] Fovino, Igor Nai, Carcano, Andrea, Masera, Marcelo & Trombetta,
Alberto (2009). Design and Implementation of a Secure Modbus Protocol..

Critical Infrastructure Protection, 3, 83-96.

[22] Menezes, Alfred J, Van Oorschot, P & Vanstone, S (). Handbook of
Applied Cryptography, C R CP ress, 1 996. Chapter, 5, 12.

[23] Modicon, I (1996). Modicon modbus protocol reference guide. North

Andover, Massachusetts, , 28-29.
[24] Raiou, Costen (2016). Kaspersky Security Bulletin. Securelist, , 68-73.

[25] Communication network dependencies for ICS/SCADA Systems (2016).

,https://www.enisa.europa.eu/publications/ics-scada-dependencies
[26] Schneider Electrics, SCADA systems white paper (2012)

[27] Adrian Pauna, Konstantinos Moulinos, et.al. (2013). Can we learn from

SCADA security incidents?
https://www.enisa.europa.eu/publications/can-we-learn-from-scada-

security-incidents.

[28] Karl Rauscher (2013). It’s Time to Write the Rules of Cyberwar.
http://spectrum.ieee.org/telecom/security/its-time-to-write-the-rules-of-

cyberwar.

