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Abstract—Drinking fresh water, turning the lights on, travelling 

by tram, calling our family, or getting a medical treatment are 

usual activities, but the underlying SCADA (Supervisory Control 

and Data Acquisition) systems like CIS (Critical Infrastructure 

Systems), ICS (Industrial Control Systems) or DCS (Distributed 

Control Systems) were always the target of many types of attacks, 

endangered the above mentioned simple activities.  During the last 

decades because of the fast spread of the internet based services 

and the continuous technical development these systems become 

more vulnerable than ever. Full reconstruction and innovative 

changes in older SCADA systems has high cost, and it is not always 

rewarding. Communication protocols as Modbus (1979) serve as a 

main basis for SCADA systems, so security of Modbus has a major 

impact of the security of SCADA systems. Our paper raises and 

answers questions about the security of the Modbus RTU protocol. 

We focus on the serial Modbus protocol, because in that method 

we found many unsolved problems, like lack of authentication of 

the participants, lack of secure channel and so on. The aim of this 

paper to propose a secure communication alternative for Modbus 

RTU @ RS485 wire. The main advantage of the proposed method 

is the coexistence with traditional slaves and bus systems and only 

software update is necessary. 

 
Keywords—SCADA, Modbus RTU, secret sharing, secure 

communication 

I. INTRODUCTION 

OMMUNICATION protocols as Modbus (1979) or Profinet 

(2000) serve as a main basis for SCADA systems. Modbus, 

as the ‘de-facto’ standard is used in 22% of industrial 

applications (as of 2010), therefor the known weaknesses of the 

standard pose a significant security risk. [1] The main design 

features of the Modbus protocol were reliability, speed and 

accessibility, but a very important feature was left out, security 

or to narrow it down, security through cryptographic methods. 

As it is well-known the Modbus protocol is a request-response 

protocol, the participating devices are in master-slave 

relationship with each other. Only the master can initiate 

requests, the slave serves as a server. The master broadcasts 

these messages on the physical layer and the addressed slave 

answers, but neither the slave, nor the master can authenticate 

themselves in a satisfying manner. 

There are several different applications of the Modbus 

protocol. We focus on the Modbus RTU, where the security on 

the physical layer is as important as the network security in the 

case of Modbus TCP. Opposed to the Modbus RTU the Modbus 

TCP/IP is the object of numerous studies and has number of 

tested methods. 
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The goal of this article is to examine networks based on the 

Modbus RTU standard with the attack tree method, then present 

a security protocol that counteracts these vulnerabilities. In the 

second section we give a brief introduction to SCADA systems 

and some recent attacks, the third section is about the Modbus 

RTU protocol and its revealed vulnerabilities. In the fourth 

section we present the developed secure protocol. Section five 

stands for the practical implementation of the developed 

protocol, and in section six we briefly mention some related 

solutions. Then in the last section we present our conclusions of 

the research.  
 

 
Fig. 1. Structure of SCADA system 

II. SCADA SYSTEM 

SCADA stands for Supervisory Control and Data Acquisition, 

SCADA system is capable of   gathering, tracking, analyzing 

real time data and monitoring or controlling sensors and 

actuators. It is widespread in industrial application, like electric 

power generation, water distribution, waste control, 

transportation and so on.  SCADA systems typically consist of 

a central host computer - which usually marked as an MTU 

(Master Terminal Unit) - and field devices - Remote Telemetry 

Units (RTU) or Programmable Logic Controllers (PLC) -, like 

sensors or actuators. MTU is an input-output device controlled 

by a human operator through a Human Machine Interface 

(HMI), which is a collection of software components and 

databases. Field devices can measure or set values of parameters 

in a system depending on its function. PLC and RTU are almost 

the same, difference between them only that the RTU has more 

communication interfaces while PLC cannot just measure or set 

variables but can process and control them. MTU and 
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RTUs/PLCs can be connected through different communication 

systems, like radio signals, cables, wireless and so on. In these 

communication systems different communication protocols can 

help solving the problem of message exchange. The most 

commonly used industrial communication protocols are the 

following: Modbus, Profinet, DNP3 (Distributed Network 

Protocol), IEC 60780 (International Electrotechnical 

Commission), OPC (OLE for Process Control) or Ethernet/IP. 

A typical SCADA structure can be seen on Figure 1. 

III. MODBUS 

A. Modbus RTU 

Modbus is an open access communication protocol designed by 

the Modicon and released in 1979, it become a ‘de-facto’ 

standard in industrial applications for today. Modbus versions 

like Modbus RTU, Modbus ASCII and Modbus TCP/IP give 

solution for communication on data link and application layer 

of ISO/OSI model. The place in the ISO/OSI model of the 

protocol can be seen on Figure 2. Modbus is a master-slaves, 

request-response protocol where only the master can initiate a 

request, the slaves only able to response to it.  

Modbus TCP/IP is the type of Modbus which located on the 

application layer of the ISO/OSI model, it provides client server 

communication between devices, the client role is provided by 

the Master of the serial bus and the Slaves nodes act as servers. 

Numerous studies examine the security of this protocol, and 

offer different solutions. However older latency systems based 

on Modbus RTU/ASCII should revise the level of the security 

of the system too.  

Modbus RTU is located on the second layer of the ISO/OSI 

model, it communicates on a serial line usually on RS485 or 

RS232. It is a master-slaves protocol, where only one master 

and at most 247 slaves can be part of one network. Only the 

master can initiate a request as it above mentioned, depending 

on the type of the request the master is waiting for a single 

response or many responses. Request can be sent in unicast or 

broadcast mode, it requires that each slave have a unique 

address. The master starts only one transaction at a time. The 

slaves never transmit data without receiving a request from the 

master node and never communicate with each other. A Modbus 

RTU message consists of frames sending continuously, a frame 

contains four different fields, first is the address of the slave, 

second is the function code - it specifies the slave what kind of 

action to perform -, third one is the data, and last is the error 

checking code, it uses a Cyclical Redundancy Checking (CRC) 

method. The CRC is the only feature which supposed to provide 

the data integrity. On the serial bus between two frames should 

be at least a 3.5 characters long delay. Figure 3. shows the 

structure of the Modbus frame, and on Figure 4. a message 

exchange can be seen in unicast mode. 

 
 Fig. 2. Modbus protocol in ISO/OSI model 

 

 

Fig. .3 Modbus RTU Frame 

 

 
 

 

 

Fig. 4. Modbus RTU unicast communication 



PROPOSAL OF A SECURE MODBUS RTU COMMUNICATION WITH ADI SHAMIR'S SECRET SHARING METHOD 109 

 

 

B. Modbus vulnerabilities 

As it mentioned before during the design process the main 

features of the Modbus protocol were reliability, speed, and 

accessibility, but security, authentication and data integrity were 

left out. Our research addressed to find the vulnerabilities of the 

Modbus protocol, the following liabilities revealed from the 

literature: 

• Lack of Confidentiality. [2] 

• Lack of Integrity. 

• Lack of Authentication. 

• Sensibility for the Man in the middle (MITM) attack. [3] 

• Sensibility for the Denial of Service Attack (DoS). [4] 

• Interception [5] 

• Slave Reconnaissance 

• Modbus Network Scanning etc. 

• Interruption 

• Remote Restart 

• Baseline Response Replay etc.  

• Modification 

• Diagnostic Register Attack 

• Broadcast Message Spoofing etc. 

• Fabrication 

• Direct Slave Control etc. 
  
We summarized the revealed weaknesses of the Modbus 

RTU protocol with the simple and manageable method of attack 

tree [2,6].  In our previous papers, we focused on algorithmic 

security of the protocol, but not on the physical level, so the 

attack tree does not contain the analysis of the physical security 

of networks or methods to gain access to them, like through 

social engineering. The final attack tree is presented on Figure 

5. 

With this technique, the system can be examined from several 

points of view. Our first goal was to determine the purpose of 

the malicious attacker. As we can see many deficiencies can be 

found because the lack of the two most crucial components of 

security properties confidentiality and integrity. On Figure 4., 

we can see the attacker targets four weaknesses of the protocol, 

these are the root elements of the attack tree. First is the 

interception of data, which includes for example the channel 

monitoring, then the interruption of the communication - it can 

be caused by for example a DoS attack -, third one is the 

modification of messages and the last one is the fabrication of 

data. Our second goal was to uncover how can a malicious 

attacker achieve these targets, due to the related research all the 

root elements can be reached by MITM attack, like planting 

gateways or compromised slave or master devices into the 

network. 

1) Interception 

In the tree, the first root is the interception of data. During 

interception, the attacker captures messages sent over the 

network, thus acquiring information about the parameters and 

operation of the system, so the confidentiality of the data and 

system is lost in this attack. 

2) Interruption 

With the second root, the attacker's goal is to degrade the 

effectiveness of the system e.g. economic efficiency, or similar 

parameters or to manipulate them, or just simply overload the 

system to shut it down. Compromising the normal operation of 

the system cause the damage of data or system integrity. 

3) Modification 

The third root is for modification, which means that an 

unauthorized individual modifies the messages sent over the 

channel, resulting the damage of data or system integrity. 

4) Fabrication 

Last root is for fabrication, during fabrication a malicious 

attacker releases itself as an authorized user and send fabricated 

message to the participants of the system. Many properties of 

security lost through this attack, like data integrity, 

authentication, or confidentiality. 

IV. SECURE PROTOCOL 

A. Problem formulation 

In the previous section we showed that the main problems of the 

Modbus RTU protocol are the lack of security parameters as 

confidentiality, integrity, and authentication of master and 

slaves. The latter causes that a slave device accepts request and 

performs tasks any time if the destination address is its own 

address in the Modbus PDU, and the master does not verify the 

origin of the replies it receives. So, the problems to be solved 

are to prevent the messages from eavesdropping, to precisely 

authenticate the slaves and the master of the network and to 

provide data integrity. The authentication cannot be done by 

trusted third parties or organizations, for not every system is 

connected (or can be connected) to these organizations, so 

security protocols based on digital certificates are excluded. In 

our solution we take advantage of the fact that the Modbus RTU 

based communication not always uses the full of its 

standardized message length and the relative low update 

frequency of the messages. In most cases the MTUs and field 

devices have an Advanced Encryption Standard (AES) engine 

and encrypt the standard request and response before sending it. 

Many similar data put through the system in normal operation, 

- like usual requests from the master, or sensor data, which has 

long alteration times -, and because the physical layer is exposed 

to attacks, the attacker can obtain large magnitude of data, 

shortening the time needed to compute the shared secret key, 

which can be then used to read the slaves responses or alter the 

master requests. Also, the data encryption is not enough alone 

to solve all the earlier revealed security problems of the 

protocol. 
TABLE I  

NOMINATIONS 1. 

Nomination Explanation 

𝑀 Master. 

𝑆𝑖 Ith Slave. 

𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠𝑜𝑛𝑒 Number of the slaves in the network. 

𝑅𝑎𝑛𝑑𝑜𝑚𝑃(𝑥) A random polynomial over 𝐺𝐹(𝑝). 
(𝑥𝑖 , 𝑦𝑖) Ith point of 𝑅𝑎𝑛𝑑𝑜𝑚𝑃(𝑥) polynomial. 

𝑎𝑖 Ith coefficient of 𝑅𝑎𝑛𝑑𝑜𝑚𝑃(𝑥) polynomial. 

𝑛 Degree of 𝑅𝑎𝑛𝑑𝑜𝑚𝑃(𝑥) 
𝑝 Large prime number. 

𝑝𝑟𝑖𝑚𝑒() Prime generator function. 

𝑠𝑘𝑒𝑦() Secret key generator function. 

𝑒𝑛𝑐𝑟𝑦𝑝𝑡() Function for encryption. 

𝑑𝑒𝑐𝑟𝑦𝑝𝑡() Function for decryption. 

𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒𝐼𝑃() Function constructing secret by Lagrange 

interpolation. 

𝐾𝑆 Secret key of the master. 

𝐶𝑖 Challenge value of ith slave. 

𝑃𝑖𝑗 Share. 

𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑖 Address of the ith slave. 
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Fig. 5. Modbus RTU attack tree 

 

 
Fig. 6. Secure Modbus RTU Sensor slave side 
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TABLE II  
NOMINATIONS 2. 

Nomination Explanation 
𝑠𝑒𝑐𝑢𝑟𝑒
→     Secure channel. 
𝑝𝑢𝑏𝑙𝑖𝑐
→     Public channel. 

𝑆𝐶 "Send challenge" function code. 

𝑆𝐼 "Shares inside" function code. 

𝐹𝐶 Function code. 

𝑇𝑆 Time stamp. 

𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑞𝑢𝑒𝑠𝑡 Encrypted data part of a request. 

𝐷𝑎𝑡𝑎𝑅𝑒𝑞 Data part of a request. 

𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 Encrypted data part of a response. 

𝐷𝑎𝑡𝑎𝑅𝑒𝑠 Data part of a response. 

 

B. Initialization 

We recommend that the initial steps of the secure protocol be 

taken when the network is built or for latency systems at the 

time of regular revisions. First message exchange should be 

taken on a cryptographically secure channel. Both master and 

slave side require a random generator and a prime number 

generator. Generated prime and random numbers should be 

large enough, and all calculation of the protocol should be taken 

in a finite field. Through the initialization part we construct a 

random polynomial over a finite field 𝐺𝐹(𝑝), where the 

following restrictions needed for the proper working of the 

protocol: 

• Order of the field should at least be  

𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠2 + 𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠 + 1. 

• Generator prime of the finite field 𝑝 should be large enough. 

• The coefficients (𝑎𝑖) of the random polynomial are randomly 

chosen of a uniform distribution over  [0, 𝑝) 

• The 𝑦𝑖values of the random polynomial are computed 𝑚𝑜𝑑 𝑝 

for distinct 𝑥𝑖values chosen from [0, 𝑝) 
• The size of 𝑦𝑖  values of the random polynomial should be 

equal size to 𝑝. 

 

Secret key and challenge values generated in the initialization 

part will authenticate the slaves to the master, and vice versa, 

and these keys then planted in the devices so it is only accessible 

to the specific instruments. In this paper we assume that the AES 

engine is present in both the slave and the master devices, thus 

we recommend at least a 128 bit long secret key. [7] (In the 

example network described in section five we only generate a 

fairly strong secret key, and use this one for each device, due to 

limited time.) Initialization steps are as follows, nomination can 

be seen in Table I and II: 

 
1: 𝑀 and 𝑆𝑖 synchronize the time 

2: 𝑀 generates a large prime number: 

 𝑝 =  𝑝𝑟𝑖𝑚𝑒()  

3: 𝑀 generates a random private key: 

 𝐾𝑆  =  𝑠𝑘𝑒𝑦() 
4: 𝑀 constructs a random polynomial over 𝐺𝐹(𝑝): 
 𝑅𝑎𝑛𝑑𝑜𝑚𝑃(𝑥) = 𝑎0 + 𝑎1 𝑥 + 𝑎2 𝑥

2…+ 𝑎𝑛𝑥
𝑛  

 where: 𝑛 > 𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠 and  

 𝑅𝑎𝑛𝑑𝑜𝑚𝑃(0) = 𝑎0 = 𝐾𝑆 

5: 𝑀 selects 𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠 amount of points (𝑥𝑖 , 𝑦𝑖) on the 

polynomial, where: 

 𝑥𝑖 ≠ 𝑥𝑗  for 𝑖, 𝑗 = 1…  𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠 

6: 𝑀 sends unicast request consisting the shares to the slaves, and 

waits for challenges: 

 𝑀
𝑠𝑒𝑐𝑢𝑟𝑒
→     𝑆𝑖 ∶ (𝑥𝑖 , 𝑦𝑖)   

 request: [𝑖, 𝑆𝐶, (𝑥𝑖 , 𝑦𝑖), 𝐶𝑅𝐶]  

7: 𝑆𝑖  receives the share: 

𝑆𝑖   
𝑠𝑒𝑐𝑢𝑟𝑒
←     𝑀 ∶ (𝑥𝑖 , 𝑦𝑖)  

8: 𝑆𝑖  generates a challenge:  

 𝐶𝑖  =  𝑝𝑟𝑖𝑚𝑒()  
9: 𝑆𝑖  sends the challenge to the master: 

𝑆𝑖  
𝑝𝑢𝑏𝑙𝑖𝑐
→    𝑀 ∶  𝐶𝑖 ⊕𝑦𝑖    

response: [𝑖, 𝑆𝐶, 𝐶𝑖 ⊕𝑦𝑖  , 𝐶𝑅𝐶]  

10: 𝑀 receives the challenge:  

 𝑀 
𝑝𝑢𝑏𝑙𝑖𝑐
←     𝑆𝑖 ∶  𝐶𝑖 ⊕𝑦𝑖     

11: M calculates 𝐶𝑖 ∶ 
  𝐶𝑖  =  𝑦𝑖  ⊕ (𝐶𝑖 ⊕𝑦𝑖) 

12: 𝑀 sends unicast requests consisting of extra shares to the slaves: 

 𝑀 
𝑝𝑢𝑏𝑙𝑖𝑐
→     𝑆𝑖 ∶ (𝑃𝑖1||𝑃𝑖2 ||… ||𝑃𝑖𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠) ⊕ 𝐶𝑖      

request: [𝑖, 𝑆𝐼, (𝑃𝑖1||𝑃𝑖2 || … ||𝑃𝑖𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠), 𝐶𝑅𝐶] 
 𝑃𝑖𝑘  ≠   𝑃𝑖𝑙  𝑓𝑜𝑟 𝑎𝑛𝑦  𝑘 ≠  𝑙  
 𝑘, 𝑙 =  1…  𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠2 

13: 𝑆𝑖 receives the extra shares: 

 𝑆𝑖   
𝑝𝑢𝑏𝑙𝑖𝑐
←     𝑀 ∶ (𝑃𝑖1||𝑃𝑖2|| … ||𝑃𝑖𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠) ⊕ 𝐶𝑖     

14: 𝑆𝑖 reconstructs 𝐾𝑆 from the 𝑛 pieces of imprints it already has: 

 𝐾𝑆 = 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑒𝐼𝑃((𝑥𝑖 , 𝑦𝑖), 𝑃𝑖1, 𝑃𝑖2, … 𝑃𝑖𝑁𝑢𝑚𝑆𝑙𝑎𝑣𝑒𝑠) 
15: 𝑀 creates an address table about the slavess: 

(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑖 , (𝑥𝑖 , 𝑦𝑖), 𝐶𝑖) 

 

C. Communication 

A usual SCADA network contains two types of field devices if 

we consider the aim of the instruments, actuator and sensor type. 

Actuator in general means turning energy into motion, but in 

this paper term actuator is used in the meaning of an RTU/PLC 

which is able to modify a property of a SCADA system (e.g. 

setting the temperature or turning the lights off). Sensors are the 

same as commonly known, these are devices which, detects and 

measures some property of the system, input can be light, heat, 

motion, moisture, pressure, etc. We created two types of the 

communication method depending on the type of the field 

devices to use the benefits of unused registers in RTUs/PLCs, 

in case of sensors where the measured data is stored in the 

device, on the contrary of the actuators which never store any 

data. 

Through both type of communication, it is recommended to 

encrypt only the data segment of the messages, to evade known 

plain text attacks. 

1) Communication with actuator slaves 

Communication between master and a slave requires 

synchronized time and a shared secret key, which is provided by 

the initialization part of the protocol. Now every slave knows 

the secret key of the master and the master knows a unique 

challenge value from every slave, these two make possible that 

all the participants are capable of authenticate each other. 
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Communication description can be seen below: 
 

1: 𝑀 initiates a request: 

Encrypts the 𝑇𝑆 and data part of the request with 𝐾𝑆: 

𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑞𝑢𝑒𝑠𝑡 =  𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝐾𝑆, 𝐷𝑎𝑡𝑎𝑅𝑒𝑞||𝑇𝑆)  
2: 𝑀 sends the request to the slave: 

𝑀 
𝑝𝑢𝑏𝑙𝑖𝑐
→     𝑆𝑖 ∶  𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑞𝑢𝑒𝑠𝑡   

request: [𝑖, 𝐹𝐶, 𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐶𝑅𝐶]  
3: 𝑆𝑖 receives the request: 

𝑆𝑖  
𝑝𝑢𝑏𝑙𝑖𝑐
←     𝑀 ∶  𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑞𝑢𝑒𝑠𝑡  

4: 𝑆𝑖  makes the checks: 

5: 𝒊𝒇 𝑖 =  𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑖  𝒕𝒉𝒆𝒏 
    𝑆𝑖  decrypts the data part: 

   𝐷𝑎𝑡𝑎𝑅𝑒𝑞 =  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝐾𝑆, 𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑞𝑢𝑒𝑠𝑡||𝑇𝑆) 
  𝒊𝒇 𝑇𝑆 fresh enough 𝒕𝒉𝒆𝒏 

 𝒊𝒇 𝐷𝑎𝑡𝑎𝑅𝑒𝑞 is correct 𝒕𝒉𝒆𝒏 

    𝑆𝑖 performs the task 

 𝒆𝒍𝒔𝒆 
    𝑆𝑖  goes back to initial mode 

 𝒆𝒏𝒅 𝒊𝒇 

 𝒆𝒍𝒔𝒆 
   𝑆𝑖  goes back to initial mode 

 𝒆𝒏𝒅 𝒊𝒇 

 𝒆𝒍𝒔𝒆 
    𝑆𝑖 goes back to initial mode 

 𝒆𝒏𝒅 𝒊𝒇 

6: 𝑆𝑖  encrypts the data part of the response and the 

(𝑥𝑖⨁ 𝑦𝑖) with 𝐾𝑆:  

 𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =  𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝐾𝑆, 𝐷𝑎𝑡𝑎𝑅𝑒𝑠||(𝑥𝑖⨁ 𝑦𝑖  )) 
7: 𝑆𝑖  sends the response to the master: 

 𝑆𝑖  
𝑝𝑢𝑏𝑙𝑖𝑐
→     𝑀 ∶  𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒  

 response: [𝑖, 𝐹𝐶, 𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒, 𝐶𝑅𝐶]  
8: 𝑀 receives the response: 

9: 𝑀 
𝑝𝑢𝑏𝑙𝑖𝑐
←     𝑆𝑖 ∶  𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒  

10: 𝑀 decrypts the response: 

𝐷𝑎𝑡𝑎𝑅𝑒𝑠 ||(𝑥𝑖⨁ 𝑦𝑖)  =  𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝐾𝑆 , 𝐸𝐷𝑎𝑡𝑎𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒) 
11: 𝑀 makes the checks: 

 𝒊𝒇 𝑥𝑖  ⨁(𝑥𝑖  ⨁𝑦𝑖) =  𝑦𝑖  𝒕𝒉𝒆𝒏 

𝒊𝒇 𝐷𝑎𝑡𝑎𝑅𝑒𝑠 is correct 𝒕𝒉𝒆𝒏 

    𝑀 processes the response 

 𝒆𝒍𝒔𝒆 
      𝑀 goes back to initial mode 

 𝒆𝒏𝒅 𝒊𝒇 

 𝒆𝒍𝒔𝒆 
    𝑀 goes back to initial mode 

 𝒆𝒏𝒅 𝒊𝒇 

 
2) Communication with sensor slaves  

Communication method is basically the same between the 

sensor type devices and master, like between master and 

actuator type field instruments. Only the data part of the 

messages contains different information, till the method we 

presented in the previous section used a simple controlling or 

measured data as a data part this one uses a more complex data, 

because in order to extend the level of data integrity we 

increased the entropy of the system. Every other step is the same 

as above.  

The sensor device on Figure is end node of a data acquisition 

network. In predefined intervals the slave measures, then saves 

the gathered data in some registers used in the communication, 

then requested by the master to send this data. In our solution, 

we modified the Modbus RTU protocol, so the slave, after 

recording the fresh measurements, fills up the unused registers 

with data generated from the measurements by functions of the 

secret key and the challenge values. The number and the 

position of the secret parts defined by the secret key and the 

challenges too. All of these ’imprints’ of data is needed to 

recreate the original data – opposed to the traditional secret 

sharing method – because the creation of these imprints only 

makes the access more difficult to the secret. The more registers 

are needed to decrypt the secret, the more grows the entropy of 

the system, which in turn makes more difficult to an attacker to 

gather relevant data. Keep in mind that if the number of imprints 

are the same as the number of unused registers the decrypting of 

the encrypted data become trivial, but the message cannot be 

consisted only of these imprints, so after the secret sharing the 

free registers filled up with randomized data seemingly similar 

to the imprints. Nominations can be seen in Table III. Details 

can be seen on Figure 6 and below:  
 

TABLE III  

NOMINATIONS 3. 
 

Nomination Explanation 

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝐷𝑎𝑡𝑎 Measured data by the slave. 

𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆ℎ𝑎𝑟𝑒𝑠 Number of secret shares. 

𝑛𝑢𝑚𝑆ℎ𝑎𝑟𝑒𝑅𝑒𝑔𝑖 Position of the ith register that contains share inside. 

𝑛𝑢𝑚𝑅𝑎𝑛𝑑𝑜𝑚𝑅𝑒𝑔𝑖 Position of the ith register that contains random value 

inside. 

𝑛𝑢𝑚𝑂𝑓𝑈𝑈𝑅𝑒𝑔 Number of unused, empty registers. 

𝑆𝑅𝑎𝑛𝑑𝑜𝑚𝑃(𝑥) A random polynomial over 𝐺𝐹(𝑝). 

(𝑥𝑉𝑖) Ith x value of 𝑆𝑅𝑎𝑛𝑑𝑜𝑚𝑃(𝑥)polynomial. 

𝑐𝑓𝑖 Ith coefficient of 𝑆𝑅𝑎𝑛𝑑𝑜𝑚𝑃(𝑥) polynomial. 

𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑅𝑒𝑔𝑖 Content of the ith register. 

 

1: 𝑆𝑖 measures a data : 𝑀𝑒𝑠𝑢𝑟𝑒𝑑𝐷𝑎𝑡𝑎 

2: 𝑆𝑖 makes the following calculations: 

 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆ℎ𝑎𝑟𝑒𝑠 =  𝐾𝑆 𝑚𝑜𝑑 𝐶𝑖 
3: 𝑆𝑖 calculates the position of the registers to put shares inside: 

 𝒇𝒐𝒓 𝑚 = 0 𝒕𝒐 𝑚 < 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆ℎ𝑎𝑟𝑒 𝒅𝒐 

𝑛𝑢𝑚𝑆ℎ𝑎𝑟𝑒𝑅𝑒𝑔𝑚 =  
(𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆ℎ𝑎𝑟𝑒𝑠 +𝑚) 𝑚𝑜𝑑 (𝑛𝑢𝑚𝑂𝑓𝑈𝑈𝑅𝑒𝑔 + 1) 

         𝑐𝑓𝑚 =  𝑟𝑎𝑛𝑑𝑜𝑚( ) 
         𝑥𝑉𝑚 =  𝑟𝑎𝑛𝑑𝑜𝑚( ) 
 𝒆𝒏𝒅 𝒇𝒐𝒓  

4: 𝑆𝑖 calculates the position of the registers to put random values 

inside:   

 𝒇𝒐𝒓 𝑚 = 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆ℎ𝑎𝑟𝑒𝑠 + 1 𝒕𝒐 𝑚 < 𝑛𝑢𝑚𝑂𝑓𝑈𝑈𝑅𝑒𝑔 𝒅𝒐 

 𝑛𝑢𝑚𝑅𝑎𝑛𝑑𝑜𝑚𝑅𝑒𝑔𝑚 = 
 (𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆ℎ𝑎𝑟𝑒𝑠 + 𝑚) 𝑚𝑜𝑑 (𝑛𝑢𝑚𝑂𝑓𝑈𝑈𝑅𝑒𝑔 + 1) 

𝒆𝒏𝒅 𝒇𝒐𝒓  

5: 𝑆𝑖 constructs the random polynomial: 

 𝑆𝑅𝑎𝑛𝑑𝑜𝑚𝑃(𝑥𝑉) =  𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝐷𝑎𝑡𝑎 +  
 𝑐𝑓1𝑥𝑉 + 𝑐𝑓2𝑥𝑉

2… + 𝑐𝑓1𝑥𝑉
𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆ℎ𝑎𝑟𝑒𝑠 

6: 𝑆𝑖 puts share into the right register  

 𝒇𝒐𝒓 𝑚 = 0 𝒕𝒐 𝑚 < 𝑛𝑢𝑚𝑂𝑓𝑆ℎ𝑎𝑟𝑒 𝒅𝒐 

 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑅𝑒𝑔𝑛𝑢𝑚𝑆ℎ𝑎𝑟𝑒𝑅𝑒𝑔𝑚 =

  (𝑥𝑉𝑚|| 𝑆𝑅𝑎𝑛𝑑𝑜𝑚𝑃(𝑥𝑉𝑚 )) ⨁ 𝐶𝑖|| 00…0 

𝒆𝒏𝒅 𝒇𝒐𝒓  

7: 𝑆𝑖 puts random values into the right register 

8: 𝒇𝒐𝒓 𝑚 = 𝑛𝑢𝑚𝑂𝑓𝑆ℎ𝑎𝑟𝑒𝑠 + 1 𝒕𝒐 𝑚 < 𝑛𝑢𝑚𝑂𝑓𝑈𝑈𝑅𝑒𝑔 𝒅𝒐 

 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑅𝑒𝑔𝑛𝑢𝑚𝑅𝑎𝑛𝑑𝑜𝑚𝑅𝑒𝑔𝑚 = 

 (𝑟𝑎𝑛𝑑𝑜𝑚( )⨁𝐶𝑖|00…0 

𝒆𝒏𝒅 𝒇𝒐𝒓  

9: 𝑆𝑖 constructs the data part of the response: 

 𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑅𝑒𝑔1 ||𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑅𝑒𝑔2||𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑅𝑒𝑔𝑛𝑢𝑚𝑂𝑓𝑈𝑈𝑅𝑒𝑔 
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V. ATTEMPT OF PRACTICAL IMPLEMENTATION 

 
Fig. 7. Architecture of the test system 

 

A. Introducing the system and the method of measurement 

The first attempt of implementing the secure Modbus RTU 

protocol was on a device developed in the Department of 

Electrical Engineering and Mechatronics at the University of 

Debrecen. It is a data acquisition and control device which has 

several types of peripherals. The microcontroller, driving the 

device is an Atmel ATxmega 128a type. The firmware written 

by students of the department previously was made in Basic 

language. For the limited development time, the secure protocol 

was implemented in this Basic firmware. The data to be 

encrypted was supplied by eight PTC thermoresistors, because 

the thermic data is a frequent feature of SCADA communication 

networks. These thermic sensors measured the temperature of 

the MSc laboratory of the department, where the system was 

installed. The master of the network was a personal computer, 

with a simple Modbus client software running, and logging the 

gathered data to a comma separated text file. In this test, we only 

examined the applicability of the protocols on the slave’s side, 

for in our opinion it is the most critical point in the protocols 

development to be implementable on a relatively low 

performance device (such as the used data acquisition device). 

The physical layer of the network was RS485 2-wire bus, the 

end node connected with the master via a Moxa Serial-to-USB 

converter device. Figure 7. shows the structure of the example 

network. 

B. Results of the practical application 

During our test, it has become clear that though the time needed 

for the firmware to complete one cycle (accounted to the larger 

entropy and encryption of the message) is grown by 500 %, the 

overall performance of the device is not impaired in any mean, 

all of its functionality remained the same, thus the protocol can 

be implemented in lower performance end devices: 

• The time needed for the slave to run its program once 

(initialization not included, just the measurement and 

encryption) is grown to 500%. 

• The time of the program cycle, in which the response is sent 

to the master is grown by 23%. 

• Beside the above experiences, the devices performance is not 

impaired in any manner. 

• The protocol does not affect the communication, over the 

testing period, the number of dropped messages was 

1:15 000. 

C. State of art 

During our research we found out a few types of solutions to 

improve the security of the Modbus RTU protocol. There are 

papers which, provide only data integrity with the help of 

retransmitter devices, they are able to detect and correct errors. 

Other publication can detect the intrusion with a model-based 

system. [8,9] The most common solutions are the bump in the 

wire devices, many types are accessible on the market like Yasir 

(Yet Another SecurIty Retrofit), SEL-3021-2 (Serial Encrypting 

Transceiver) or AGA SCM (American Gas Association 

SCADA Cryptographic Module). These devices provide 

authentication, integrity, and confidentiality. [10,11,12]  

CONCLUSION 

Although our study is in no means near its end, the results 

thus are far more promising. The initial goal, to create a security 

measure, which can be applied over multiple types of industrial 

communication protocols, without modifying these protocols in 

any manner seems to be reachable in the near future. The initial 

tests conducted on typical SCADA end devices show that the 

proposed algorithm can be used on lower performance devices 

too, and we think that this protocol can work in systems that are 

based on protocols same as the Modbus RTU like Profinet and 

so on.  

Over the next period of our study, we would like to extend 

our research to other communication protocols as well as to 

prove our solution right with methods like Applied-Pi calculus, 

or discover its vulnerabilities or flaws of our reasoning. In the 

meantime, we seek the opportunity to test our solution in a 

larger, industrial system, to eliminate its applicability's 

weaknesses. 
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