
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2018, VOL. 64, NO. 2, PP. 173–178
Manuscript received January 24, 2018; revised March, 2018. DOI: 10.24425/119366

Block Cipher Based Public Key Encryption via
Indistinguishability Obfuscation

Aleksandra Horubała, Daniel Waszkiewicz, Michał Andrzejczak and Piotr Sapiecha

Abstract—The article is devoted to generation techniques of the
new public key crypto-systems, which are based on application
of indistinguishability obfuscation methods to selected private
key crypto-systems. The techniques are applied to symmetric
key crypto-system and the target system is asymmetric one.
As an input for our approach an implementation of symmetric
block cipher with a given private-key is considered. Different
obfuscation methods are subjected to processing. The target
system would be treated as a public-key for newly created
public crypto-system. The approach seems to be interesting
from theoretical point of view. Moreover, it can be useful for
information protection in a cloud-computing model.

Keywords—indistinguishability obfuscation, public key cryp-
tosystems, homomorphic encryption, cloud-computing, informa-
tion protection

I. INTRODUCTION

PROGRAM obfuscation is the process of making it unintel-
ligible for user without changing its functionality. There

are many code obfuscators that make mechanical changes
in the code (for example Stunnix [11], Zelix KlassMaster
[12] or Opy [13]). They change special words, order of
instructions or precompile programs. But those mechanical
changes are not proven to be non invertible. In this article by
program obfuscation we mean a cryptographic scheme that is
computationally secure, what can be proven in mathematical
way. Known program obfuscators rely on two cryptograhic
primitives: fully homomorphic encryption (proposed by Craig
Gentry in 2009 [6]) and multilinear maps (proposed by Sanjam
Garg in 2013 [7]). Thanks to homomorphic encryption one
can perform operations on ciphertexts, execute programs in
their obfuscated (encrypted) form and get the proper result. It
is essential property that programs are being executed in their
obfuscated form without being decrypted. Usage of multilinear
maps guarantee that only entity that can be decrypted is the
output of the program.

The security of obfuscation is usually defined as Indis-
tinguishability Obfuscation (IO). Having two programs with
the same input-output behaviour we obfuscate one of them
and give it to the user. Indistinguishability means that user
will not be able to decide which of those programs was
obfuscated. Indistinguishability obfuscation is not possible for
arbitrary circuits - it has been proven by Boaz Barak in 2011
[2]. We need to specify certain classes of programs that are

D. Waszkiewicz, A. Horubała and P. Sapiecha are with Warsaw Univer-
sity of Technology, Poland (e-mail: d.waszkiewicz@tele.pw.edu.pl, aleksan-
dra.horubala@gmail.com, p.sapiecha@krypton-polska.com).

M. Andrzejczak is with Military University of Technology in Warsaw,
Poland (e-mail: michal.andrzejczak@wat.edu.pl).

indistinguishable from each other.
There are many applications of program obfuscation such

as protecting intellectual property or providing security for
cloud computations. Let us introduce the software producer
who wants to protect his intellectual property but also needs
to sell his programs. If he sells obfuscated program, everyone
can use it but cannot modify it and does not know what they
are actually computing (which operations are performed, in
which order). The situation is illustrated in the Fig. 1. Growth
of interest in cloud computing results in growing need of new
secure solutions for clients that want to execute their programs
on the external servers. If clients put their programs in the
cloud in obfuscated form no one will know what they are
computing.

Fig. 1. Application of program obfuscation.

In cryptography obfuscation can be used to accomplish
other cryptographic primitives, among others creating asym-
metric cryptosystems from symmetric ones, which was the
dream of Diffie and Hellman in 1980’s and is showed in the
Fig. 2. In this work we give the first approach to realize this
dream. We introduce method of obfuscating block ciphers with
many rounds and exchangeable key by implementing changes
in Alex Malozemoff software (published on github [9]) allow-
ing to obfuscate a block cipher. We also performed obfuscation
of two round of Mini-AES cipher. The computational result
are presented at the end of the article.

II. CRYPTOGRAHIC BACKGROUND

To be obfuscated, program needs to be presented in the spe-
cial form. Every program executable on the Turing Machine
can be described by boolean formula (using Shannon theo-
rem). Then boolean formulas are represented as a product of
matrices, in the form of so called matrix branching programs.
Matrix branching program is a set of pairs of matrices. Every
pair of matrices is connected with one input boolean variable,
one matrix from pair for each variable value. Execution of



174 D. WASZKIEWICZ, A. HORUBAŁA, M. ANDRZEJCZAK, P. SAPIECHA

Fig. 2. Creating assymetric cryptograhic scheme from symmetric one.

a program consists of choosing one matrix from each pair
(depended on the input value) and taking the product of
them. Boolean function can be converted to matrix branching
program in many ways for example: by constructing binary
decision diagrams (described by Malozemoff and Katz [1])
or by using bilinear or multilinear forms (described by Sahai,
Zhandry [10]). When we have our program represented in the
matrix form, we need to encrypt it. To do that private and
public parameters of obfuscation scheme must be generated.
Then matrices are encrypted element by element using private
parameters of the scheme. Encrypted matrices with public
parameters (that allow to decrypt result of the program) form
obfuscated program. Execution of encrypted program consists
of multiplying encrypted matrices. In the end result of the
multiplication can be decrypted with public parameters of the
scheme. Steps described above are presented on the diagram
in Fig. 3.

When matrix multiplication is performed two operations are
performed on matrix elements: addition and multiplication.
Thanks to homomorphic encryption one can perform addition
and multiplication on ciphertexts and get proper results after
decryption. To ensure that only output of the program can
be decrypted we use multilinear maps and graded encoding
scheme. Every ciphertext (matrix element) is associated with
a level of encryption. After every multiplication of matrix
elements the level of result grows. Only the ciphertext with
maximal level - received after all planned multiplications -
can be decrypted. Idea is illustrated in Fig. 4. Next subsection
contains exact description of this process.

A. Graded encoding scheme

Fully homomorphic encryption allows to perform any
operations on ciphertexts. In obfuscation scheme it is
necessary to limit users possibilities, so that he can only
perform operations planned by software producer. For security
of obfuscated program it is crucial that user cannot examine
its properties and draw conclusions about its structure. What
is even more important it must be impossible to decrypt any
part of a program, but its result must be easily decryptable. To
implement these functionalities we need additional structure
connected with ciphertexts, such structure can be added
by using technique called encryption over sets. With every
ciphertext is connected a set of variables. Ciphertexts can be
added if they are connected with the same set and the sum is
also connected with these set. Ciphertexts can be multiplied

Fig. 3. Obfuscation scheme in general.

Fig. 4. Cryptographic primitives used in matrix multiplication.

if their sets are disjoint and their product is connected with
the sum of sets connected with factors.

Example. Let Z = {z1, z2, z3, z4} be a finite set. Let
s1 be a homomorphic ciphertext connected with set
{z1, z2} ∈ Z, s2 - homomorphic ciphertext connected with
set {z1, z2} ∈ Z and s3 - homomorphic ciphertext connected
with set {z3, z4} ∈ Z. Ciphertexts over sets are expressed as
follows:

c1 =
s1

z1 · z2
,

c2 =
s2

z1 · z2
,



BLOCK CIPHER BASED PUBLIC KEY ENCRYPTION VIA INDISTINGUISHABILITY OBFUSCATION 175

c3 =
s3

z3 · z4
.

Ciphertexts c1 and c2 can be added - denominators are
the same, nominators can be added due to homomorphic
encryptions. Notice that sum c1 + c2 is connected with set
{z1, z2}:

c1 + c2 =
s1

z1 · z2
+

s2
z1 · z2

=
s1 + s2
z1 · z2

.

Ciphertexts c1 and c3 can be multiplied - their sets are
disjoint so after multiplying all factors of the product denom-
inator will be different, nominators can be multiplied due to
homomorphic encryption. Product is connected with the sum
of sets - {z1, z2, z3, z4}:

c1 · c2 =
s1

z1 · z2
· s3
z3 · z4

=
s1 · s2

z1z2z3z4
.

Now let us consider multiplying matrices presented in
Fig. 4. If we connect different sets with elements of different
matrices, elements of different matrices can be multiplied
and then products of element can be sumed (because they
are ciphertext over the same sets). So matrix multiplication
can be performed with specified above rules. If we create
a public parameter of a system that has product of every
element of set Z (here: z1z2z3z4) in the nominator we would
be able to shorten denominator of output ciphertext - that is
the idea of decryption of the output. Details of this process
may be found in papers [1], [4], [7]. The security of these
systems is based on the hard problems in multilinear maps:
MDL (Multilinear Discrete Logarithm Problem) and MDDH
(Multilinear Decisional Diffie Hellman Problem).

B. Choosing homomorphic scheme

As a homomorphic scheme different cryptographic systems
can be chosen. There are two main groups of graded encoding
systems: CLT13, CLT15 by Coron, Tibbouchi and Lepoint
published in papers [4], [5] (based on homomorphic scheme
DGVH, based on integer numbers) and GGH13, GGH15 by
Garg, Gentry and Halevi published in papers [7], [8] (based on
Gentry’s homomorphic scheme [6], based on ideal lattices). In
our experiment we used CLT13 scheme, but we plan to test
other schemes in the future.

C. Choosing matrix branching program form

As we mentioned at the beginning there are many ways to
obtain matrix branching program from a boolean formula. We
compared to solutions: using BDD trees proposed by Katz,
Malozemoff and others in [1] and using multilinear forms
proposed by Sahai and Zhandry in [10]. Using BDD trees
bigger much matrices are obtain, they are square matrices
and their dimension is the number of inputs to the program.
Because every matrix has the same size this solution is
more secure (the structure of the program is well hidden)
but highly inefficient (matrices are bigger than it is needed).
Using multilinear forms instead dimension of matrices can
be diverse. Smaller sizes of matrices make solution more
efficient, but imposes responsibility on system designer - he

must examine how different dimensions of matrices narrows
down the class of indistiguishable functions. In our work
experiments we decided to use multilinear forms because of
efficiency of the solution and because we are more concerned
about hiding the secret key than the cipher structure (as we
will explain in the next section).

III. DESIGN AND IMPLEMENTATION

To introduce our approach we begin with defining the
problem being solved and with description of the tools we
have used.

A. Problem definition

The main aim of these work was obfuscation of block cipher
with many rounds and exchangeable key. During research we
have faced and solved following dilemmas and problems:

• many round problem - how to choose matrices depend
on ciphertexts,

• exchangeable key problem - how to store matrices con-
nected with the secret key bits,

• whitebox dilemma - what is the profit of not hiding
structure of the cipher (that is often public) but only the
secret key,

• matrices storage dilemma - is it more efficient to pre-
multiply some of stored matrices.

We describes these problems and proposed solutions in next
subsections.

B. Used tools

For our computations we used Microsoft Corporation cloud
server machine with 32 cores and 448 GB RAM. We used
implementation of obfuscation created by Alex Malozemoff
and published on github [9]. We used variant of this imple-
mentation based on CLT13 graded encoding scheme proposed
by Coron, Lepoint and Tibouchi [4]. For creating matrix
branching program from boolean formula we used method of
Sahai and Zhandry based on bilinear forms [10] (which we
extended in our implementation to multilinear case).

C. Our approach

To obfuscate Mini-AES cipher firstly we needed to describe
the round of it by boolean formulas. Then formulas were
minimized and presented in the optimal form. On the base
of these formulas matrix branching program was created. See
Fig. 5.

1) Many rounds problem: Having obfuscated version of
one round of the cipher one faces important question: how
to perform the next round not knowing the output from the
previous round? Let us notice that decryption of the outputs
from the inner rounds cannot be possible - otherwise there
would be no point in performing many rounds. But how to
choose one matrix of pair depend on ciphertext?

To this problem we propose solution, which introduces one
more multiplication to computations. Consider the output bit
from previous round - bit w1 - and consider two variables:
y1 = w1 and y2 = encrypted(1) − w1. Note that if w1 is



176 D. WASZKIEWICZ, A. HORUBAŁA, M. ANDRZEJCZAK, P. SAPIECHA

Fig. 5. Obfuscating a round of a block cipher.

Fig. 6. Problem of many rounds

encrypted one then y1 is encrypted one and y2 is encrypted
zero. In the other case, when w1 is encrypted zero, then y1 is
encrypted zero and y2 is encrypted one. So let us multiply
every element of matrix connected with zero with y2 and
every element of matrix connected with one with y1 and sum
these matrices. Then if w1 is encrypted one then all elements
of matrix connected with zero are multiplied with encrypted
zero (and by this action deleted) and all elements of matrix
connected with one are multiplied by encrypted identity. In
result sum of matrices is exactly the matrix connected with
one. Analogically when w1 is encrypted zero matrix connected
with one is deleted and matrix connected with zero is chosen.
Fig. 7 illustrates this situation.

Fig. 7. Choosing matrices conditionally depend on the value of ciphertext

2) Exchangeable key problem.: So far we have not dis-
cussed how to perform operations on the secret key. For
ciphers publicly used their structure is known and does not

need to be hidden. A real secret is a key - sequence of bits that
is a private parameter of cryptosystem. In Mini-AES cipher
key bits are added to the input of the round by exclusive OR
operation. Let us notice that the key is different in every round
and it has influence on boolean formulas describing rounds.
So we cannot obfuscate one round and use encrypted matrices
periodically in successive rounds - we need to store every
encrypted round in the memory. This case is illustrated in the
Fig. 8.

Fig. 8. Key placed inside round block results in different round blocks.

It would more convenient to change only the part of the
program connected with the secret key (matrices connected
with key-bits). To do that we need to extract key part and
treat it as separate block of program. It means that we have to
choose inputs to the round conditionally two times: one time
in the key-block and one time in round-block, and because of
it we need to perform one more multiplication in the round for
every matrix. Now we can store much less matrices in memory,
but the size of ciphertexts grows (in homomorphic encryption
size of ciphertext depends on the number of multiplications).
Fig. 9 shows discussed variant.

Fig. 9. Separated key block, external from the round description.

Choice of key storage method should be the subject of
optimization in every special case. For Mini-AES cipher key
storage methods will be compared in Table I and in section
IV.

3) Whitebox dilemma: As we have already mentioned
Mini-AES cipher is a wide known cipher, its structure is public
and does not need to be hidden. In many cases we do not want
to reveal structure of a cipher or other obfuscated program, but
for now consider the case when only important secret is the
key. Presentation of the cipher that hides only the secret key is
called whitebox implementation of a cipher. Let’s have a look
at the Mini-AES round structure. One round has 16 inputs and
16 outputs - so in blackbox case (when structure needs to be
hidden) the obfuscation of a round should consist of 16 pairs of
matrices and 16 multiplication must be performed to execute
obfuscated version of a round. But the structure of Mini-AES
cipher is very symmetrical, we can decompose it to much
smaller blocks. It can be noticed (Fig. 10) that it is possible



BLOCK CIPHER BASED PUBLIC KEY ENCRYPTION VIA INDISTINGUISHABILITY OBFUSCATION 177

to separate blocks of the same structure varying only by input
bits. This repeatedly occurring parts has only 8 input bits. Of
course we give extra information for potential attacker - which
bits influence which blocks. But if the structure of a cipher
is public that is not a problem. What we gain is performing
less multiplications - now only 8 multiplications need to be
performed in one round.

Fig. 10. Whitebox version of a cipher uses symmetry of its structure.

4) Matrix storage dilemma: One more decision needs to
be made: how to store encrypted matrices. We can store all
encrypted matrices that forms obfuscated program but it is not
optimal solution. Better idea is to group matrices in pairs and
pre-multiply these pairs (proposed by Sahai). Now we need
to choose one of four matrices depend on four possible inputs
(00, 01, 10, 11) instead of choosing two times one of the pair.
It is better because we have the same number of matrices but
we perform one less multiplication. But why group matrices in
pairs? Maybe it would be better to group it in fours or eights.
The bigger are matrices groups the more matrices need to be
stored, but less multiplications need to be performed (because
we pre-multiply whole parts of our obfuscated program). Fig.
11 shows the numbers.

Fig. 11. Different ways to store matrix branching programs.

In our implementation of Mini-AES obfuscation we
decided to store whole round pre-multiplied. For example in
the whitebox case the output of a round depends on 8 input
variables. If we pre-multiply a round we need to choose the
output matrix depend on 8 variables, so one of 28 = 256
matrices which all need to be stored in memory. Thanks to
that we do not need to perform any matrix multiplication
during a round (but we still need to perform conditional
multiplication to choose matrices depend on ciphertexts). We
have chosen this case because time of computation is crucial
for us.

For Mini-AES cipher we compared multiplicative complexity

for cases discussed in this sections. Results can be seen in
the Table I.

TABLE I
COMPARISON OF MULTIPLICATIVE COMPLEXITY IN OBFUSCATION

METHODS FOR MINI-AES CIPHER

Obfuscation
method

whitebox
internal key

whitebox
external key

blackbox
external key

one round 0 9 17

two rounds 9 81 289

three rounds 73 657 4641

Multiplicative complexity grows rapidly with the number of
rounds. It is because we need to choose every bit of a round
conditionally depend on output bits from previous rounds.

IV. EXPERIMENT

All experiments where performed on Microsoft Azure cloud
server machine with 32 cores and 448 GM RAM memory.
We have obfuscated two rounds of Mini-AES cipher with pre-
compiled rounds on the level of security 26. We compared
three obfuscation variants: whitebox version with internal key,
whitebox version with external key and blackbox version with
external key. Results can be seen on Table II.

TABLE II
RESULTS OF OBFUSCATION OF MINI-AES CIPHER.

2 rounds of
Mini-AES cipher

whitebox
internal key

whitebox
external key

blackbox
external key

size of obfuscated
program [kB]

11 000 557 000 ≈ 35.7 · 216

evaluation
time [s]

11 3557 ≈ 13466 · 216

multiplicative
complexity

9 81 289

Computation were performed on low security level (26) to
check correctness of reasoning and implementation. We also
examined how security parameter influences sizes of ciphertext
(and in consequence obfuscated program). We decide to carry
out tests for multiplicative complexity 8. It is shown in Table
III.

TABLE III
SIZE OF CIPHERTEXTS DEPEND ON THE SECURITY PARAMETER

FOR 8 MULTIPLICATIONS PERFORMED

security level 28 216 224 232

size of single
ciphertext [kB]

12.6 58.9 145.1 275.0

speed of growth – 4.67 2.44 1.88

We have also tested influence of multiplicative complexity
on the program size. To carry out test we set security parameter
to 216. We present results in Table IV.



178 D. WASZKIEWICZ, A. HORUBAŁA, M. ANDRZEJCZAK, P. SAPIECHA

TABLE IV
SIZE OF CIPHERTEXTS DEPEND ON MULTIPLICATIVE COMPLEXITY

FOR SECURITY PARAMETER 216

number of
multiplications

4 8 16 32

size of single
ciphertext [kB]

58.9 189.3 393.6 672.0

speed of growth – 3.21 2.07 1.7

V. CONCLUSION

We performed obfuscation on many-round block cipher
Mini-AES and proven that it is possible. High complexity of
obfuscation scheme and long time of computation is caused
by homomorhic encryption scheme. Future work will focus on
changing homomorphic scheme to more efficient one (testing
new solutions based on lattices and LWE scheme). If more
efficient homomorphic scheme will be adopted to obfuscation
techniques methods proposed in this article will allow to
obfuscate practically used block ciphers like AES cipher.

ACKNOWLEDGMENT

The authors would like to thank Microsoft Corporation for
the possibility to use Azure cloud machine with 32 cores and
448 GB RAM.

REFERENCES

[1] D. Apon, Y. Huang, J.Katz and A. Malozemoff, ”Implementing crypto-
graphic program obfusctaion”, Cryptology ePrint Archive, 2014.

[2] B. Barak, O. Goldreich, R.Impagliazzo, S.Rudich, A.Sahai, S. Vadhan
and K.Yang, ”On the (im)possibility of obfuscating programs”, Ad-
vences in Cryptology - EUROCRYPT 2011, 2011.

[3] G. Boole, ”An investigation of the laws of thought: On which are
founded the mathematical theories of logic and probabilities”, 1854.

[4] J-S. Coron, T. Lepoint and M. Tibouchu, ”Practical multilinear maps
over the integers”, Advances in Cryptology - CRYPTO 2013, vol. 1,
8042, pp. 476-493, 2013.

[5] J-S. Coron, T. Lepoint and M. Tibouchu, ”New multilinear maps over
the integers”, Cryptology ePrint Archive, Report 2015/162, 2015.

[6] C. Gentry, ”A fully homomorphic encryption scheme”, PhD thesis,
Stanford University, 2009,

[7] S. Garg, C. Gentry and S. Halevi, ”Candidate multilinear maps from
ideal lattices”, Advences in Cryptology - EUROCRYPT 2013, 2013,
7881 of Lecture Notes in Computer Science pp. 1-17],

[8] C. Gentry, S. Gorbunov, and S. Halevi, ”Graph-induced multilinear maps
from lattices”, TCC 2015, Part II, volume 9015 of LNCS, pp. 498–527.
Springer, 2015,

[9] A. Malozemoff, Implementation of program obfuscation published on
github: https://github.com/amaloz/obfuscation. Accesed: 2017-09-20.

[10] A. Sahai and M. Zhandry, ”Obfuscating low-rank matrix branching
programs”, Cryptology ePrint Archive, Report 2014/772, 2014.

[11] Stunnix - a tool designed for obfuscation of C/C++ programs.
http://stunnix.com/prod/cxxo. Accesed: 2018-01-20.

[12] Zelix KlassMaster - a tool designed for obfuscation of JAVA programs.
http://stunnix.com/prod/cxxo. Accesed: 2018-01-20.

[13] Opy - a tool designed for obfuscation of PYTHON programs.
https://github.com/QQuick/Opy. Accesed: 2018-01-20.


