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Abstract—Confidential algorithm for the approximate graph
vertex covering problem is presented in this article. It can
preserve privacy of data at every stage of the computation, which
is very important in context of cloud computing. Security of our
solution is based on fully homomorphic encryption scheme. The
time complexity and the security aspects of considered algorithm
are described.
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I. INTRODUCTION

There are some scenarios where outsourcing computation
to a cloud service makes sense from a practical and rational
economic point of view. Namely, when data is collected
or uploaded from many diverse sources or parties, an online
service can host the collection, storage, and computation of
and on this data without requiring interaction with the data
owner. Security is a major barrier to the widespread use of
cloud computing architectures. One of solutions is application
of property preserving encryption which include deterministic
encryption and order preserving encryption to ensure confi-
dentiality of data [1][2]. The problem of modeling leakage
of information in those schemes led to some practical attacks
on cloud stored data bases [3]. Another popular approach of
securing data is usage of multi-party computations protocols,
which efficiency increased in lasts years [4]. The difficulty of
application of MPC is preserving majority of honest or semi-
honest parties in highly distributed system.

Fig. 1. Paradigms of cloud computations: (left) offline server storage and
computation, (middle) cloud servers storage and offline server computation,
(right) cloud server storage and computation.

In 2009, Craig Gentry in his doctoral dissertation proposed
first fully homomorphic encryption scheme [5]. This system
allows to execute, in a confidential manner, addition and mul-
tiplication operations on the ciphertexts. After development
of lattice-based cryptography and introducing RLWE (Ring
Learning With Errors) problem a lot of new, more efficient,

D. Waszkiewicz, A. Horubala and P. Sapiecha are with Warsaw Univer-
sity of Technology, Poland (e-mail: d.waszkiewicz@tele.pw.edu.pl, aleksan-
dra.horubala@gmail.com, p.sapiecha@krypton-polska.com).

M. Andrzejczak is with Military University of Technology in Warsaw,
Poland (e-mail: michal.andrzejczak@wat.edu.pl).

fully homomorphic encryption schemes have been proposed
[6][7][8].

In literature exists application of homomorphic encryption
in privacy preserving graph algorithm. The GRECS protocol
solves approximate shortest path problem in efficient and
secure way [9]. The disadvantage of this solution appears
in necessary re-encryption of whole data base in case of any
modification of data.

Our representation of graph allows for dynamic modification
of data without need of re-encryption and computation of
confidential approximate graph vertex cover algorithm.

A. Approximate vertex cover problem

The decision version of vertex cover problem was one of
Karp’s 21 NP-complete problems and is therefore a classical
NP-complete problem in computational complexity theory
[10]. The optimization version (NP-hard) can be defined as
follows:

Input: Graph G,
Output: k = min{|C| : C− vertex cover of a graph G},

where |C| is cardinality of set C.
In 70’s F. Gavril and M. Yannakakis independently in-

vented approximate algorithm solving vertex cover problem
with constant approximate factor equals to 2. Computational
complexity of the Algorithm 1 is Θ(n2), where n is number
of vertices.

Input: Graph G = (V,E);
Result: Vertex cover C of graph G;
C ← ∅;
while E 6= ∅ do

(u, v) ← random edge in E;
C ← C ∪ {u, v};
delete all edges incident with u, v in E;

end
Algorithm 1: Approximate vertex cover algorithm.

B. Fully homomorphic encryption

The security of protocol is mainly based on correctness of
fully homomorphic scheme (FHE). The biggest advantage of
those cryptosystems is ability to evaluate three of four basic
arithmetic operations: addition, multiplication and subtraction:

Enck(m1)⊕ Enck(m2) ' Enck(m1 +m2),

Enck(m1)� Enck(m2) ' Enck(m1 ·m2),

Enck(m1)⊕ (Enck(−1)� Enck(m2)) ' Enck(m1 −m2).

The very crucial fact, which has to be remembered during
using fully homomorphic schemes is lack of operation of
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Fig. 2. Execution of Algorithm 1. Green edges are chosen to vertex cover.
Red edges are deleted from graph.

division on ciphertexts. There are no known methods that can
be used to solve this problem.

II. CONFIDENTIAL GRAPH ALGORITHM

Security definition (at high level):
No efficient adversary can learn any partial information about
the graph, beyond what is explicitly allowed by the leakage
function (bounds on maximum size of graph). This holds even
for allowed modifications that are adversely influenced.

In our setting, we establish the security notion of confiden-
tial graph algorithms as follows:

Definition 1: The graph algorithm (L) taking as input
encrypted graph Enck(G = (V,E)) is (n,m)-Confidential
if any adversary (A), who has access to encrypted graph
Enck(G = (V,E)), encryption oracle Enck and evaluations
functions ⊕,� can not learn any information about graph G
other than maximum bounds on number of vertices and edges,
which stand for n and m respectively.

PrEnck(G)[A(f) = 1] = negl(1k)

Fig. 3. Confidential graph algorithm.

The definition above captures the fact that, given the en-
crypted oracle and its view of the query protocol, an adversar-
ial server cannot learn any information about the oracle beyond
the leakage. The L(Ω) = (n,m) where it is maximum bounds
on number of vertices and edges respectively.

III. DATA STRUCTURE - GRAPH ENCODING

Our solution follows Algorithm 1 for approximate vertex
cover. The graph G = (V,E) is encoded as matrix M2n+1

m .
Values n and m are bounds on the size of sets V and E
respectively. Because m is only bound on |E|, there is m−|E|
rows in matrix M , which do not describe edges in graph G.
If first value in row Mi is equal to 1 then this row describes
edge. Next 2n values are encodings of two vertices.

Fig. 4. Data structure - graph encoding.

After encoding graph G, all elements of matrix M are
encrypted by fully homomorphic scheme (Enc(M)).

IV. AN ALGORITHM

All the time during computation of the confidential algo-
rithm matrix M has m rows and 2n + 1 columns and only
operations on the matrix are additions and multiplications.
In description of algorithm we will use symbols of ⊕,� as
addition and multiplication of ciphertext in fully homomorphic
schemes respectively.

Input: M = Enc(M), n, m;
Result: C = Enc(C), where C is vertex cover;
C ← ∅;
for i = 1, . . . , bn2 c do

M ← SamplingD1(M,n,m, 0,m) ;
e←M1;
C ← C ∪ e;
M ← RemoveIncidentEdges(M,n,m);

end
return C

Algorithm 2: Confidential approximate vertex cover algo-
rithm.

In Algorithm 2 functions SamplingD1 and
RemoveIncidentEdges are modifying representation
of graph (matrix M ) using fully homomorphic operations:
addition and multiplication. First row (M1) is added to set of
encrypted edges C.
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A. Emptiness of encrypted set
We can not check if all the values of first column are

encryption of 1 without decryption. The solution is changing
line 2 of Algorithm 1 to loop FOR from 1 to bn2 c, which is
the number of iterations in the worst case scenario.

B. Blind sampling
To ensure correctness of algorithm in case of introducing

new loop FOR, we have to provide sampling procedure D
over encrypted matrix M = Enck(δ(G = (V,E))), which
outputs rows describing edge G if graph is not empty.

Pr[D(M) ∈ E|E 6= ∅] = 1

Problem can be reformulated as sampling over encrypted
vector v ∈ {0, 1}k, which can be represented as:

Pr[D(Enc(v1, . . . , vk)) = i ∧ vi = Enc(1) | v 6= 0k] = 1

If Enc scheme is fully homomorphic encryption scheme,
then we can compute tournament method for finding maximum
in array in logarithmic time. Finally rows in matrix M gets
new value Mi,1 = 0, 1 which describe if i row is defining the
edge in graph G.

Fig. 5. SamplingD1 method.

Procedure SamplingD1 works by inserting row which
describes edge (if graph is not empty) in first row of matrix
M .

Input: M = Enc(M), n, m, i, j;
Result: M ;
for k = 1, . . . , (2n+ 1) do

x←Mi,k;
y ←Mj,k;
yBx←Mi,1 � y;
xBx←Mi,1 � x;
Mi,k = xBx⊕ y ⊕ (yBx� Enc(−1));
Mj,k = yBx⊕ x⊕ (xBx� Enc(−1));

end
return M

Algorithm 3: Swap.

In Algorithm 3 operations ⊕,� are fully homomorphic
addition and multiplication of ciphertext. Complexity of Swap
is O(n)∗.

Input: M = Enc(M), n, m, k, l;
Result: M ;
if k + 1 = l then

M ← Swap(M,n,m, k, l);
return M

end
M ← SamplingD1(M,n,m, k, bk+l

2 c) ;
M ← SamplingD1(M,n,m, bk+l

2 c+ 1, l) ;
M ← Swap(M,n,m, k, bk+l

2 c+ 1);
return M

Algorithm 4: SamplingD1.

Complexity of Algorithm 4 is O(nm).

C. Neighbourhood of encrypted vertex

After sampling random edge e in graph G we have to
remove all edges incident with e. Procedure is computed by
checking if any row in M represents edge with the same vertex
as edge e. Due to probabilistic nature of fully homomorphic
encryption scheme there is no answer if two ciphertexts c1 and
c2 are encryptions of the same plaintext m without decryption.
We update all rows of matrix M , but only for rows with
incident edges values plaintext will change.

Solution is to encode vertices in orthonormal way with
function f : Enc(δ(V ))× Enc(δ(V ))→ {Enc(0), Enc(1)}.
Encoding δ works by mapping vertices to the vector of length
n, which is 0 on all values except i− th with value 1, where
i is predetermined number of vertex. The scalar function on
two encrypted and encoded vertices is defined as:

f(Enc(δ(u)), Enc(δ(v))) =

n⊕
i=1

(Enc(δ(u))i�Enc(δ(v))i).

Now we can define algorithm, which will remove all incident
edges in encrypted graph.

Input: M = Enc(M), n, m;
Result: M ;
M1,1 ← Enc(0);
for i = 2, . . . ,m do

x1 ← f(M1,2:n+1, Mj,2:n+1);
x2 ← f(M1,n+2:2n+1, Mj,2:n+1);
x3 ← f(M1,2:n+1, Mj,n+2:2n+1);
x4 ← f(M1,n+2:2n+1, Mj,n+2:2n+1);
Mj,1 ←
Mj,1�(Enc(1)⊕(Enc(−1)�(x1⊕x2⊕x3⊕x4)));

end
return M

Algorithm 5: RemoveIncidentEdges.

Complexity of Algorithm 5 is O(nm).
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Fig. 6. Orthonormal vertex encoding.

V. UPDATES

Due to our data structure and fully homomorhic encryption
scheme we can do updates of encrypted graph G without need
of decryption.

A. Removing edges
We can remove edge e = (u, v) from encrypted graph G

given encryption of e = (Enc(δ(u)), Enc(δ(v))).

Input: M = Enc(M), n, m, Enc(e = (u, v));
Result: M ;
for i = 1, . . . ,m do

x1 ← f(Enc(δ(u)), Mi,2:n+1);
x2 ← f(Enc(δ(v)), Mi,n+2:2n+1);
for i = 1, . . . , 2n+ 1 do

Mi,j ←Mi,j�(Enc(1)⊕(Enc(−1)�x1�x2))
end

end
return M

Algorithm 6: Remove.

Complexity of Algorithm 6 is O(nm).

B. Inserting edges
If |E| < m then in matrix M exists row with value 0 in

first column. We can put this row in the beginning of matrix
M by modifying SamplingD1 method (changing calling of
function Swap).

Input: M = Enc(M), n, m, k, l;
Result: M ;
if k + 1 = l then

M ← Swap(M,n,m, l, k);
return M

end
M ← SamplingD0(M,n,m, k, bk+l

2 c) ;
M ← SamplingD0(M,n,m, bk+l

2 c+ 1, l) ;
M ← Swap(M,n,m, bk+l

2 c+ 1, k);
return M

Algorithm 7: SamplingD0.

Input: M = Enc(M), n, m, Enc(e = (u, v));
Result: M ;
M ← SamplingD0(M,n,m, 0,m);
M1 ← (Enc(1), Enc(δ(u)), Enc(δ(v)));
return M

Algorithm 8: Insert.

Complexity of Algoirhtm 8 is O(nm).

VI. COMPLEXITY

While approximate vertex cover Algorithm 1 has complexity
O(n2), we achieved good complexity for confidential Algo-
rithm 2 equals to O(n2m)∗. The star in our result means
that butterfly operation is multiplication of two ciphertexts.
This leads to question how complex is multiplications of two
ciphertexts? It depends on used fully homomorphic scheme
and its parameters. We consider Fan and Vercauteren’s fully
homomorphic scheme from 2012 [6], which is implemented in
libraries NFLlib and SEAL [11][12]. Authors of FV showed
how to adjusted parameters of their cryptosytem to correctly
evaluate circuits with arbitrary multiplicity depth. For confi-
dential algorithm depth is equal to:

L(n,m) = bn
2
c · (dlog2(m)e+ 2).

In the FV cryptosytem single ciphertext is a pair of two
polynomials and the computation depends on 4 parameters
d, q, t, σ. To assure correctness of computation of arbitrary
circuits of depth L following condition has to be met:

4 · 2(d−1)·L · (2d−1 + 1.25)L+1 · tL−1 < bq/σc,

where 2d is a degree of polynomials of ciphertext, q is the
size of ciphertext polynomials’ coefficients, t is the size of
plaintext coefficients polynomials and σ is the variance of
distribution. Value λ in table I is the security parameter of
FV cryptosystem.

TABLE I
LOGARITHMS OF PARAMETERS OF FV CRYPTOSYSTEM FOR

(n,m)-CONFIDENTIAL APPROXIMATE VERTEX COVER ALGORITHM.

(n,m) L λ = 8 λ = 32 λ = 64

(6, 9) 18 (5, 4371, 3, 3) (5, 4456, 3, 3) (5, 4484, 3, 3)
(10, 15) 30 (6, 8064, 3, 3) (6, 8219, 3, 3) (6, 8272, 3, 3)
(20, 50) 80 (6, 36633, 3, 3) (6, 37337, 3, 3) (6, 37578, 3, 3)
(50, 100) 250 (7, 225978, 3, 3) (7, 230324, 3, 3) (7, 231809, 3, 3)

A. Experimental results

We have run series of experiments of confidential approxi-
mate vertex cover algorithm. Algorithm 2 and FV cryptosys-
tem were implemented in Sage and tested on PC with Intel(R)
Xeon(R) CPU E5-2640 v3 @ 2.60GHz and 32 GiB 2133 MHz
RAM [13]. Results are shown in table II.

TABLE II
RUN TIMES OF CONFIDENTIAL APPROXIMATE VERTEX COVER

ALGORITHM.

(n,m) L λ = 8 λ = 32 λ = 64

(6, 9) 18 22.6079 s. 24.4759 s. 23.7941 s.
(10, 15) 30 490.6876 s. 529.9789 s. 565.2177 s.
(20, 50) 80 ≈ 12.34 h. ≈ 12.36 h. ≈ 12.37 h.
(50, 100) 250 > 36 h. > 36 h. > 36 h.
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Fig. 7. Degree of polynomials and logarithm of coefficients to number of
vertices.

VII. CONCLUSIONS

We proposed new confidential algorithm for evaluating
vertex cover without leaking information about graph. Main
advantage of this algorithm and data structure is possibility
of updating encrypted graph without decryption. The area of
further optimizations could be encoding of vertices to decrease
size of data. Latest implementations of fully homomorphic
schemes allow SIMD operations on ciphertexts [14]. While
we do not see adjustment of SIMD operations to our solution,
this modification could accelerate computation. Another field
of optimizations could be FPGA implementetions of fully
homomorphic schemes [15].
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