
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2018, VOL. 64, NO. 2, PP. 243–248
Manuscript received December 2, 2017; revised April, 2018. DOI: 10.24425/119518

Inertial Navigation Static Calibration
Slawomir Niespodziany

Abstract—Inertial navigation is a device, which estimates
its position, based on sensing external conditions (such as
acceleration or angular velocity). It is widely used in variuos
applications. Its presence in a drone vehicle for example, allows
flight stabilization, by position estimation and feedback-based
regulation algorithm execution. A smartphone makes a use of
inertial navigation by detecting movement and flipping screen
orientation. It is a ubiquitous part of many devices of everyday
use, but before using filters and algorithms allowing to calculate
the position, a calibration must first be applied to the device. This
paper focuses on a separate calibration of each of the sensors
- an accelerometer, gyroscope and magnetometer. The further
step requires a cross–sensor calibration, and the third step is
implementation of data filtration algotithm.
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I. INTRODUCTION

Calibration is an important process for providing a reliable
operation of almost every sensor. Some sensors come pre–
calibrated, others are easy to calibrate. This paper describes a
more complex application - a calibration of a 3D sensor. The
complexity of this process comes from a few factors. Firstly,
the sensor itself consists of three separate one dimensional
units, but combined together they influence each other. Sec-
ondly, calibration process requires a knowledge about both
sensor input and sensor output, and based on comparsion of
these values, a calibration value may be calculated, but in
the case of the sensors discussed in this paper, it is difficult
to know the exact sensor input value. The whole calibration
process may be realized in different ways. The approach of
this research was to ease this task as much as possible. The
key assumption was to eliminate the need for using additional
devices, such as rotating tables or other equipment [1].

II. HARDWARE PLATFORM

A hardware platform, consisting of all three sensors, has
been designed to allow data samples acquisition. The de-
vice consists of MAG31103 [2] - a 3D magnetometer and
LSM6DS3 [3] - a 3D accelerometer and 3D gyroscope com-
bined in one chip. The onboard microcontroller is programmed
to obtain the maximum possible sample rate from each sensor
and tag each sample with a precise timestamp value. The
timestamp is required for each sample, as sensors operate with
different frequencies (80Hz and 1666Hz). The timestamp al-
lows for precise sample to sample alignment between sensors,
which is necessary for the further cross–sensor calibration.
The device communicates with a PC using a USB port for
data transfer. Using bare hardware for data acquisition allows
algorithm generalization, making the developed software im-
plementation as universal as possible - it abstracts from the
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hardware used and works on raw data, which makes it possible
to be used in various applications. Picture of the hardware
platform is shown in the Figure 1.

Fig. 1. Hardware platform for data acquisition.

III. CALIBRATION LEVEL

An inertial navigation is a device consisting of a few sensors
(three in this case). In such application a two level calibration
must be considered. At first, each of the sensors must be
calibrated separately. The second step is a calibration which
applies to the whole device. This paper focuses on the first
stage of this process - a separate calibration for each of the
three sensors:

• 3D Magnetometer
• 3D Accelerometer
• 3D Gyroscope

The second calibration step is a sensor–to–sensor orientation
calibration. It is a misalignment compensation of the sensors,
placed on a surface of printed circuit board. The second stage
also includes a gain calibration for the gyroscope device. Its
calibration in the first stage would require a usage of some ad-
ditional equipment, allowing to apply a rotation of a precisely
known angle. The presented algorithms have been prepared,
so that they may be used without a need for additional tools.
Higher precision algorithms may be developed, but they would
require device leveling or a precise rotation, which is not
discussed in this article.

IV. DEVICE DISORTION MODEL

At first, a device model must be defined. Separate calibra-
tion of each, of the discussed devices, can take an advantage of
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using the same model for each sensor, thus allowing to use a
similar algorithm in each case. The main diffference between
calibration of each sensor is the ammount of data samples
collected and thus the number of parameters calculated for the
model. In the case of accelerometer sensor, it is more difficult
to obtain many samples, so the model must be simplified.
Details are discussed further, but a universal model can be
described as follows.

A 3D sensor produces a 3D vector at its output. This vector
is subjected to two types of disortion. The first one is an
independent constant disortion. The second one is a disortion
dependent on the current device input value. These disortions
combined together are applied by the device and its ambient
and influence the produced samples.

Sp = (W · S) + V0 (1)

Equation 1 shows how each sample is influenced by both
disortions. The vector S represents the real value of the
measured physical quantity. It is firstly influenced by the
matrix W , representing the dependent disortion. This matrix
is a symmetric matrix [4] (this implies that no rotation can be
introduced to the sample vector, as a rotation matrix would
not be symmetric). Its diagonal consists of values close to the
value of 1. They represent a gain coefficient within each of
the device axes. Rest of the matrix parameters represent non–
orthogonalities between the device axes. These valuse are close
to 0. The second, constant disortion is represented by vector
V0. It may be interpreted as an offset vector added to each
output sample Sp.

In a perfect situation, when no disortion is introduced, the
model parameters would have neutral values as presented
in Equation 2. Zero offset vector added to the sample, a
matrix representing a unit gain within each axis and no non–
orthogonalities between axes. However, a perfect situation will
not occur, so these values will be slightly different in a real
situation, but still close to the following:

W 0 =

1 0 0
0 1 0
0 0 1

 ,V 0
0 =

00
0

 (2)

A sensor having such W 0 and V 0
0 values would be an ideal

sensor, introducing no disortions (as shown in Equation 3).

Sp = (W 0 · S) + V 0
0 = S (3)

Knowing the exact values of the disortion model allows to
calculate the inverse of the model presented in Equation 1 and
apply it to the samples collected. The inverse model is shown
in Equation 4.

S = W−1 · (Sp − V0) (4)

At this point it is necessary to obtain the values of W−1

and V0. Having these values allows to calculate the real signal
value S, for a sample Sp, acquired by the sensor.

V. MODEL PARAMETER ESTIMATION

To estimate the disortion model parameters, an observation
may be utilized, that the magnitudes of magnetic field and
gravity vectors have fixed values. Regardless of the device
orientation, these vectors always lie on a sphere of the
radius equal to the vector magnitude and a middle in the
point [0, 0, 0]T . This information is enough to estimate model
parameters. As the model introduces no rotation, there is no
need to consider direction of the device. After applying the
inverse disortion model (Equation 4) vector S has its origin
in the point [0, 0, 0]T and a constant magnitude of S. It must be
considered that each collected sample was subjected to some
noise, thus even after applying the inverse disortion model, it
will not be a perfect representation of the physical field vector.
This noise is represented as the ri part of the Equation 5 and
states for the vector magnitude noise. In fact it is a squared
magnitude error, but it is different for each sample i.

ri = ST
i Si − S2 (5)

Having many data samples collected from the sensor allows
the algorithm to estimate the unknown model parameters by
minimizing P - a sum of squared noise parts of N samples
(Equation 6).

P =

N∑
i=1

r2i =

=

N∑
i=1

(ST
i Si − S2)2 =

=

N∑
i=1

((W−1 · (Spi − V0))
T · (W−1 · (Spi − V0))− S2)2 =

=

N∑
i=1

((Spi − V0)
T ·W−2 · (Spi − V0)− S2)2

(6)

W−1 =

w1 w4 w5

w4 w2 w6

w5 w6 w3

 ,V0 =

x0

y0
z0

 (7)

Equation 6 is true, as the matrix W−1 is symmetric
(Equation 7). The unknown parameters in this model are
[w1, w2, w3, w4, w5, w6, x0, y0, z0, S

2]T . The total of 10 un-
known parameters require at least 10 samples to be collected
to give any results, although the more samples are provided,
the more precise the model estimation is expected to be.

If all the unknown parameters are to be estimated, the
analytical solution of this problem becomes nonlinear. Two
methods have been presented to simplify the calculations. The
first one is an analytical method divided into two steps and
the second one is numerical solution. The process of collecting
the appropriate set of samples, together with results, have been
described in further sections.
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A. Two–step analytical parameter estimation

P =

N∑
i=1

((Bpi − V0)
T ·W−2 · (Bpi − V0)−B)2 (8)

Altough the Equation 8 presents the full analytical definition
of the problem, it is nonlinear, and thus not trivial to solve.
Thus a different approach has been presented. The process of
finding unknown parameters has been divided into two steps.
At first the V0 vector and S parameters are estimated, while
temporarily assuming the W−1 matrix to be a unit matrix. In
the second step, having the first two parameters estimated, the
non–linearity matrix is considered unknown, and calculated.
These two problems are easier to solve separately. A general
method for solving such problems has been described in [2].
Figure 2 presents the algorithm written as a Matlab script.

samples=sample_vector;

% step #1
x=[samples,ones(size(samples,1),1)];
y=sum(samples.ˆ2,2);
beta=(x’*x)ˆ(-1)*x’*y;

% vector V0 and magnitude S estimation
V0=beta(1:3,:)./2;
S=sqrt(beta(4)+V0’*V0);

% hard-iron calibration application
samples=samples-V0’;

% step #2
x=[samples.ˆ2,

samples(:,1).*samples(:,2),
samples(:,1).*samples(:,3),
samples(:,2).*samples(:,3)];

y=ones(size(samples,1),1)*(Sˆ2);
beta=(x’*x)ˆ(-1)*x’*y;

% matrix W_inv estimation
W_inv=[beta(1), beta(4)/2, beta(5)/2;

beta(4)/2, beta(2), beta(6)/2;
beta(5)/2, beta(6)/2, beta(3)]ˆ(0.5);

Fig. 2. Parameters V0 (V0), S (S) and W inv (W−1) analytical estimation.

B. Numerical parameter estimation

The Equation 8 can also be solved numerically. The source
code is presented in the Figure 3 and Figure 4. It assumes a
fixed magnitude S value, calculated by the analytical method
and the starting point for the minimization algorithm is also
taken from the previous results.

VI. MAGNETIC FIELD SENSOR

A 3D magnetometer is a device, which measures the mag-
netic field vector. The purpose of using a magnetometer in an

samples=sample_vector;

% V0 and S initial values taken
% from 2-step analytical method
beta=fminunc(

@(x)performance_function(x, S,
samples),

[V0;1;1;1;0;0;0],
optimoptions(’fminunc’,

’Algorithm’,
’quasi-newton’,
’MaxFunctionEvaluations’,
30000,
’MaxIterations’,
2000));

V0=beta(1:3);
W_inv=[beta(4), beta(7), beta(8);

beta(7), beta(5), beta(9);
beta(8), beta(9), beta(6)];

Fig. 3. Parameters V0 (V0) and W inv (W−1) numerical estimation.

function p=performance_function(x,
magnitude,
data)

v=repmat(x(1:3),1,size(data,1));
W_inv=[x(4),x(7),x(8);

x(7),x(5),x(9);
x(8),x(9),x(6)];

r=sqrt(sum((W_inv*(data’-v)).ˆ2,1))-magnitude;
p=sqrt(r*r’/size(data,1));

Fig. 4. Performance function used in numerical algorithm.

inertial navigation device is to measure the Earths magnetic
field. The measured value is altough not only the Earths
magnetic field vector. Each sample is a result of superposition
of different magnetic fields, caused by various sources. When
considering a magnetic field sensor, two types of disortion
must be considered [2]:

• The first is hard–iron disortion type. It is a constant
disortion, which is caused by the sensor chip die itsself,
by the PCB on which the sensor is mounted and by other
objects placed on the PCB. The hard–iron disortion is
modelled as a constant offset vector V0, added to each
sample produced by the sensor.

• The soft–iron disortion is on the other hand, a non–
constant disotrion, dependent on the current orientation
of the device. It consists of a gain difference within each
of the three axes and a cross–axis non–orthogonality. It
is represented by the matrix W in the general model.

A. Sample acquisition

Calibration algorithm requires a set of samples to be col-
lected from the sensor. These samples must be collected in
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a specific way, allowing an estimation of all the unknown
parameters of the model.

• The first requirement is that each sample must represent
a vector of constant magnitude (the magnitude must be
constant among all the samples).

• The second requirement is that the collected samples
should equally cover all the possible device orientations.
This is obviously not a very critical condition, as all the
samples are to be collected by rotating the device by
hand, but the sample density should be spread among all
the possible directions [5].

In the case of magnetometer both conditions are met when
the samples are to be collected by hand. Regardless of the
device orientation or rotation speed, the Earths magnetic field
vector has always the same magnitude, so the first requirement
is satisfied. To obtain a set of samples covering the whole
device sensing range, it is necessary to rotate the device on
a flat surface. This provides a sample set forming a circle on
some plane within the sensor sensing scope. Repeating this
process in each of the following device orientations provides
a reasonable set of samples: axis facing the flat surface +X,
-X, +Y, -Y, +Z, -Z.

Fig. 5. Magnetometer learning samples set.

Sample acquisition process described, results in the sample
set presented in Figure 5.

B. Calibration results

The calibration has been computed using a learning sample
set and the algorithm described above. A separate - test sample
set has been used for testing purposes. After calculating the
magnetometer model parameters, a test has been held, to
measure if the computed calibration gives resonable results.
The Figure 6 and Figure 7 present the calibration results for
both 2–step analytical calibration and numerical calibration.

Magnitude error has been computed for a test sample set
(Figure 8), giving a magnitude relative mean squared error of:

• 0.0898 for 2–step analytical calibration
• 0.0929 for numerical calibration

S = 438.1713

V0 =

 883.9
−1137.0
−304.9


W−1 =

 0.9631 0.0589 −0.0147
0.0589 0.9965 0.0110
−0.0147 0.0110 1.0417


Fig. 6. Magnetometer 2–step analytical calibration results.

S = 438.1713

V0 =

 884.7
−1135.1
−303.2


W−1 =

 0.9619 0.0568 −0.0142
0.0568 1.0013 0.0113
−0.0142 0.0113 1.0463


Fig. 7. Magnetometer numerical calibration results.

VII. ACCELEROMETER CALIBRATION

Accelerometer is a sensor that measures the accelerations
applied to it. Additionaly to the gravity vector it measures all
the movement it is subjected to. Because of that, it requires
different approach than magnetometer sensor, in terms of
sample acquisition.

A. Sample acquisition

Samples for accelerometer calibration can only be collected
when the device is in stable position (no movement). Ac-
quisition while movement would cause measurement of the
gravity vector together with this movement summed together.
This would affect magnitude of the measured vector, which is
expected to be constant throughout the measurement period.
For this research, samples for accelerometer calibration have
been collected in a few device orientations, while the device
was not moved. The device had been tilted in four ways in a
straight position and in an upside down position, giving the
total of 8 orientations (Figure 9). In each orientation there have
been a few hundreds samples collected. However, because of a
little number of orientations covered, the number of unknown
parameters had been reduced, to make estimation of the
remaining parameters more reliable - the non–orthogonality
parameters (w4, w5, w6) have been nulled [6].

B. Calibration and results

The results of both 2–step analytical and numerical calibra-
tion are the same (Figure 10 and Figure 11). This is a result
of little number of orientations covered. Both algorithms have
easily found parameter values for a precise fit, for the given
set of learning samples.

Magnitude error has been computed for the test sample set
(Figure 12), giving a magnitude relative mean squared error
of:
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Fig. 8. Magnetometer test samples set (X-Y plane) - raw (blue) and after
calibration (orange).

Fig. 9. Accelerometer learn samples set.

• 0.0037 for 2–step analytical calibration
• 0.0037 for numerical calibration

S = 8215.5

V0 =

−15.5427
−17.7801
−45.0145


W−1 =

0.9992 0 0
0 1.0070 0
0 0 0.9939


Fig. 10. Accelerometer analytical calibration results.

S = 8215.5

V0 =

−15.5427
−17.7801
−45.0145


W−1 =

0.9992 0 0
0 1.0070 0
0 0 0.9939


Fig. 11. Accelerometer numerical calibration results.

Fig. 12. Accelerometer test samples set (X-Z plane) - raw (blue) and after
calibration (orange).

C. Comparsion to magnetometer calibration results

The error for accelerometer calibration is significantly lower
than the computed error for magnetometer case. This is a result
of two facors. At first, the number of orientations at which
samples were collected for the accelerometer calibration was
lower. Learning set and test set were both collected within the
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Fig. 15. Gyroscope test samples set - X, Y, Z output at zero rotation -
calibration applied.

same orientations - this caused the non–orthogonality error
to be excluded in this case. The second factor was that the
samples for magnetometer calibration were spread around
the coordinate system with different density. As a result, the
algorithm fit the calibration model more in the areas containing
more samples and less where the sample density was lower.

Both these factors refer to sample acquisition process, which
requires some refinig to be done in further research.

VIII. GYROSCOPE CALIBRATION

As the gyroscope shows angular rotation speed, not the
angular position, obtaining a constant vector at the output of
the sensor would require applying a constant speed rotation
to the device. This would require additional equipment, so
the process of recognizing matrix W−1 has been ommited
for the gyroscope. This parameter can be computed at the
next calibration stage - cross sensor calibration - because it is
required to know the angle of rotation applied to the device.
This angle can be determined by other sensors (magnetometer
in particular). Thus the gyroscope calibration at this stage only
covers the offset calibration.

Samples for gyroscope calibration have been collected at
a few static positions of the device. Learning sample set
is presented in Figure 14. The offset calibrated gyroscope
output is shown in the Figure 15 and the results are shown
in Figure 13.

V0 =

 883.9
−1137.0
−304.9


Fig. 13. Gyroscope calibration results.

Fig. 14. Gyroscope test samples set - X, Y, Z output at zero rotation - no
calibration.

IX. SUMMARY

The presented calibration method is universal and can be
applied to any 3D sensor, where a constant magnitude vector
samples can be obtained. In the case of an IMU, a calibration
of gyroscope gain is necessary to be done separately. This is
a part of a second stage calibration - cross sensor calibration.
Collecting more samples for the accelerometer calibration can
also allow the non–orthogonality parameters to be computed.
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