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Optimization of the Spectrum of Digital Diagnostic
Signals to Improve the Analysis of Harmonic

Parameters Using Resampling Algorithms
Marcin Jarmołowicz, and Eugeniusz Kornatowski

Abstract—Analysis of harmonic parameters and detection of
foreign frequencies in diagnostic signals, which are most often
interpreted as fault results, may be problematic because of
the spectral leakage effect. When the signal contains only the
fundamental frequency and harmonics, it is possible to adjust
its spectral resolution to eliminate any distortions for regular
frequencies. The paper discusses the influence of resampling
distortions on the quality of spectral resolution optimization in
diagnostic signals, recorded digitally for objects in a steady state.
The method effectiveness is measured with the use of a synthetic
signal generated from an analog prototype whose parameters
are known. In order to achieve low values of harmonic ampli-
tude errors in the diagnostic signal, a high quality resampling
algorithm should be used, therefore the analysis of distortions
generated by four popular reasampling methods is performed.
Errors are measured for test signals containing different spectral
structures. Finally, the results of the test of the analyzed method
in practical applications are presented.

Keywords—digital diagnostic signals, signal resampling; spec-
tral resampling

I. INTRODUCTION

THE problem with the correct analysis of harmonic pa-
rameters and detection of foreign frequencies in the

signal can be illustrated by a digital signal generated from
an analog prototype, containing the fundamental frequency
and harmonics, some foreign frequencies and noise. Its ideal
spectrum is shown in Fig. 1.
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Fig. 1. The ideal spectrum of the test signal
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Excluding noise, the signal contains the main frequencies:
300Hz, 400Hz. . . 1.1kHz and foreign frequencies (marked with
a bold line): 50Hz, 110Hz, 330Hz, 370Hz, 640Hz. Fig. 2
shows the spectrum for the same signal computed with FFT
(fast Fourier transform) for 2048 samples (sampling frequency:
44.1kHz), where a widely known effect of spectral leakage can
be observed.
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Fig. 2. Spectrum of the test signal without any optimization

As a consequence of spectral distortion:
• it is difficult to distinguish between harmonics and for-

eign frequencies located close to harmonics
• harmonics amplitudes are distorted
• the noise level is too low to be visible in the FFT vector
The most popular technique for reducing the spectrum

leakage is to use the window functions [1]. There are a lot
of windows used for this purpose, but for such signals the
results are similar: the spectral leakage is significantly lower,
but the harmonics are blurred and have distorted amplitudes
both in absolute terms and in relation to each other (tested
for Hann, Gauss, classic Blackman and Blackman-Harris win-
dows). Therefore, the detection of foreign frequencies is still
difficult. An example for the Hann window applying for the
test signal is presented in Fig. 3.

Spectral resolution correctly adjusted to harmonics requires
setting its value to any multiple of 100Hz. The spectrum ob-
tained in this way almost perfectly reflects the actual harmon-
ics structure. The foreign frequencies present in FFT vector
contain the same errors as in the unoptimised FFT, which,
however, does not affect the ability to detect irregularities in a
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Fig. 3. The spectrum of the test signal optimized by the Hann window

negative way. For the test purpose, the spectral resolution is set
to 25Hz, so for 2048 samples, upsampling will be performed
with the output sampling frequency equal to 51.2kHz. The
spectrum of the optimized signal is presented in Fig. 4.
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Fig. 4. The test signal spectrum optimized by adjusting spectral resolution

In practical applications, it is important to set the spectral
resolution to a several times lower value than the difference
between individual harmonics. This allows easy and unam-
biguous detection of the spectrum disorder.

II. ALGORITHMS OF RESAMPLING

A. Resampling Methods

1) Linear Interpolation: For this method, new samples are
searched on the line between the input samples [2]. This
approach is easy to implement, fast and allowing real time
signal processing, but works with low quality, especially, if
the signal contains high frequencies.

2) Cascade Of DA And AD Converters: The method is
based on the cascade connection of analog-to-digital and
digital-to-analog converters, working with the target sampling
frequency. It is easy in hardware implementation, but generates
large errors in the output signal.

3) Resampling By Interpolation And Decimation: This ap-
proach is based on signal decimation by an integer factor M
and interpolation by an integer factor N , using a low-pass filter
[3]. The ratio of N to M must be equal to resampling factor.
This very popular method provides good quality of processing,
but also high computational complexity, which depends on the
resampling factor [4].

4) Spectral Resampling With Spectral Resolution Adjust-
ment: It is a high quality algorithm that [5] can be defined in
the following steps:

• adding some zero-samples at the end of the input signal to
obtain the same spectral resolution for the natural number
of samples for both the input and the output signal. The
number of new samples is given by the formula:

Min =
fsin(Nout +Mout)

fsout
−Nin (1)

where fsin, fsout are original and target sampling fre-
quency, Nin,Min are original and additional natural
number of samples for input signal, Nout,Mout are orig-
inal and additional number of samples for output signal.
Mout is any rational number for which Nout +Mout is
natural, where Nout is given by formula:

Nout =
fsout
fsin

(Nin + 1) + 1 (2)

• computing DFT for the input signal vector.
• resizing DFT vector to obtain Nout +Mout length.
• computing iDFT for resized DFT vector.
• removing the complex part of values from iDFT (time

domain) vector.
• changing length of output signal to Nout samples

(rounded down).

To obtain real numbers in the time domain output signal,
the imaginary part was just removed as in the case of the
iDFT computed for native spectrum. If the digital signal yn is
presented as a result of iDFT computed for it’s spectrum:

yn =

N−1∑
k=0

[(
1

N

N−1∑
m=0

ym · e
−i·2π·k·m

N ) · e
−i·2π·k·n

N ] (3)

where N is number of samples of yn, then defining:

A(n,m) =

N−1∑
k=0

cos
2π · k(n−m)

N
(4)

and

B(n,m) =

N−1∑
k=0

sin
2π · k(n−m)

N
(5)

after transformation of formula (3):

yn =
1

N
·
N−1∑
m=0

[ym · (A(n,m) + i ·B(n,m))] (6)

Assuming that the vector yn is real, the equation (6) is true,
when the imaginary part inside the sum is equal to zero.
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B. Resampling Errors

In order to compare the value of errors generated by
algorithms specified in section IIA, four test signals with 1024
samples length have been defined:

• signal “A” containing frequencies from 0Hz to 1
3fband

where fband = 1
2 min(fsin, fsout) and fsin, fsout are

input and output sampling frequency.
• signal “B” containing frequencies from 1

3fband to 2
3fband

• signal “C” containing frequencies from 2
3fband to fband

• signal “D” containing frequencies from 0Hz to fband.
Frequency values, amplitudes and phases are random gener-
ated. Test signals A, B and C are generated as a superposition
of 1000 sine waves and D contains 3000 sinusoids.

For the method of resampling by cascade of DA and
AD, ideal converters are used. Interpolation and decimation
resampling is performed with matlab “resample” function,
which applies an antialiasing FIR lowpass filter.

Spectrum relative error of resampled signal is defined by
formula (7):

δY =

∑N−1
n=0 ||Yn| − |Xn||∑N−1

n=0 |Xn|
· 100% (7)

where Xn, Yn are DFT vectors of input and output signal used
in resampling. The relative error of resampled signal in the
time domain is defined by formula (8):

δy =

∑N−1
n=0 |yn − xn|∑N−1

n=0 |xn|
· 100% (8)

where xn, yn are output signals vectors, respectively for ideal
resampling and tested algorithm.

Upsampling (fsin = 44.1 kHz, fsout = 51.2 kHz) spec-
trum errors for all tested algorithms are shown in table I.

TABLE I
THE ERRORS OF UPSAMPLING OUTPUT SIGNALS SPECTRUM FOR ALL

TESTED ALGORITHMS

signals
algorithm A B C D

linear interpolation 4.2% 26.4% 61.1% 30.4%
cascade of DA and AD 25.1% 61.8% 98.6% 40.5%

interpolation and decimation 0.14% 0.76% 15.6% 6.0%
spectral resampling 0.11% 0.82% 2.9% 0.91%

In the context of harmonic analysis, the spectrum errors
indicate which algorithm is most appropriate for signal opti-
mization, but in general, in order to compare the resampling
processing quality, deviations in the time domain are analysed.
The values of time domain errors for upsampling are presented
in table II.

The first two algorithms, optimized for high processing
speed, generate significantly more distortions in comparison
to the others, optimized for high quality. In addition, the
higher signal frequencies, the lower processing quality can be
observed for all algorithms.

The best results can be seen for spectral resampling which
processes with the lowest errors for all frequencies (excluding
medium). In this case, the influence of high frequencies

TABLE II
THE ERRORS OF UPSAMPLING OUTPUT SIGNALS FOR ALL TESTED

ALGORITHMS

signals
algorithm A B C D

linear interpolation 4.1% 20.6% 51.1% 34.9%
cascade of DA and AD 30.1% 73.8% 112% 85.5%

interpolation and decimation 0.05% 0.11% 23.7% 14.2%
spectral resampling 0.01% 0.19% 3.7% 5.2%

is particularly low in comparison to the interpolation and
decimation algorithm.

The quality tests was performed also for donwsampling
(fsin = 44.1 kHz, fsout = 32.1 kHz). The errors of output
signals spectrum are presented in table III.

TABLE III
THE ERRORS OF DOWNSAMPLING OUTPUT SIGNALS SPECTRUM FOR ALL

TESTED ALGORITHMS

signals
algorithm A B C D

linear interpolation 2.15% 13.6% 42.3% 15.5%
cascade of DA and AD 14.4% 39.8% 83.1% 23.1%

interpolation and decimation 1.03% 1.89% 9.62% 3.19%
spectral resampling 0.98% 2.23% 2.12% 0.90%

The values of time domain errors for downsampling are
shown in table IV.

TABLE IV
THE ERRORS OF DOWNSAMPLING OUTPUT SIGNALS FOR ALL TESTED

ALGORITHMS

signals
algorithm A B C D

linear interpolation 2.28% 11.9% 28.9% 17.6%
cascade of DA and AD 21.9% 55.5% 89.6% 62.2%

interpolation and decimation 0.10% 0.24% 15.1% 9.1%
spectral resampling 0.11% 0.83% 2.58% 1.8%

The deviation distribution in frequency domain in case of
signal “D” for both the most precise algorithms are presented
in Fig. 5.

As it can be observed for the full bandwidth signal, the
error values increase for high frequencies. The distribution of
the absolute error values of signal “D” in a time domain for
downsampling is shown in Fig. 6.

III. USING THE SPECTRAL RESOLUTION OPTIMIZATION
METHOD FOR REAL DIAGNOSTIC SIGNALS

Taking into consideration the quality of signal processing
by algorithms presented in section II, to reduce the impact
of resampling errors on the results of spectrum optimization,
for all diagnostic signals, the spectral resolution adjustment is
performed using a spectral resampling algorithm.

A. Diagnostic Voice Acoustic Signal

To evaluate the progress of tongue rehabilitation, for ex-
ample, after partial amputation, several recordings during the
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Fig. 5. The deviations distribution in frequency domain for signal “D” in
case of downsampling. ∆X1, ∆X2 are deviations from ideal resampling of
interpolation and decimation algorithm and spectral resampling
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Fig. 6. The distribution of downsampling deviations in time domain for
signal “D”, ∆x1, ∆x2 are deviations from ideal resampling of output signals
generated by interpolation and decimation algorithm and spectral resampling

process of rehabilitation are made for the patient pronouncing
the same word [6]. Changes in the spectrum of the signals
are analysed, in particular, the emergence of new harmon-
ics [7]. The test diagnostic signal with the length of 2048
samples is a part of the first sound \2\ of the recorded word
\2d2\ pronounced by patient. In Fig. 7 the spectrum for the
signal with native sampling frequency 44.1kHz is presented.

After changing sampling frequency to 60575Hz the spectral
resolution is equal to 29.5Hz. The optimized signal spectrum
is shown in Fig. 8.

B. EEG signals

Frequency analysis of EEG signals is a very popular method
of distinguishing between healthy and pathological cases [8].
In this approach, the leakage of the spectrum around harmon-
ics can lead to incorrect conclusions. EEG signals contain
only very low frequencies, so they are usually sampled with
frequency around 200Hz. Fig. 9 shows Grass Technologies
Comet with the AS40 amplifier, handling 19 channels, used for
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Fig. 7. Diagnostic signal spectrum of sound \2\ pronunciation without any
optimization
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Fig. 8. Diagnostic signal spectrum of sound \2\ pronunciation optimized by
the adjustment of spectral resolution

the registration of the EEG test signal. During the recording,
the patient is lying down.

The spectrum of the EEG signal from the Fp1-F4 channel,
sampled at 200 Hz is shown in Fig. 10. The signal length is
1024 samples.

Fig. 11. shows the spectrum of the EEG signal after adjust-
ing the spectral resolution to 0.2028Hz.

C. Vibroacoustic Signals In The Diagnostics Of Transformers

To evaluate the mechanical state of the active part of the
high power transformer, spectrum of the vibration signal of
the transformer tank can be analysed. In the steady state,
foreign frequencies around harmonics, which are multiples
of 50Hz indicate some faults [9]. There are two transformers
tested, whose tank vibration are analysed: TONa 800/15 0.8
MVA presented in Fig. 12 and TDRbz-25000/110 25MVA.
For both transformers, the vibrations are recorded digitally
using SVAN958 with a sampling rate of 48 kHz, without load.
The length of both test signals is 4096 samples. The main
difference between signals is the fundamental frequency. For
a 25MVA transformer, it is 200Hz, for 0.8MVA 100Hz

The native spectrum of 0.8 MVA transformer is presented
in Fig. 13 and for 25MVA in Fig. 14. The spectrum after
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Fig. 9. Grass Technologies Comet with AS40 amplifier used to record the
EEG signal

0 5 10 15
0

500

1000

1500

2000

2500

f[Hz]

|X
|

Fig. 10. The spectrum of the EEG signal without any optimization
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Fig. 11. The spectrum of the EEG signal optimized by the adjustment of
spectral resolution

optimization by resampling to 102.4kHz is shown in Fig. 15
for 0.8 MVA transformer and in Fig. 16 for 25MVA.

Fig. 12. Transformer TONa 800/15 0.8 MVA during recording of the tank
vibration signal
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Fig. 13. The spectrum of the vibroacustic signal of the transformer tank
without any optimization for TONa 800/15
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Fig. 14. The spectrum of the vibroacustic signal of the transformer tank
without any optimization for TDRbz-25000/110
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Fig. 15. The spectrum of the vibroacustic signal of the transformer tank
optimized by the adjustments of spectral resolution for TONa 800/15
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Fig. 16. The spectrum of the vibroacustic signal of the transformer tank
optimized by the adjustments of spectral resolution for TDRbz-25000/110

D. Acoustic Signal Of The Car Engine Operation

The spectrum of sound produced by the car engine can
be used for diagnostic purposes, but its structure is more
complicated than in the case of transformers [10]. It is due to
the noise caused by valves, camshafts, oil pumps, etc. The test
signal was registered by the microphone as shown in Fig. 17.

Fig. 17. Microphone recording an acoustic signal of the car engine operation

The number of cylinders of the tested engine is 4, the
displacement 1.6 liters, the number of valves is 16.

The signal can only be optimized for the main harmonics
related to the engine’s ignition period. The low part of the
spectrum with harmonics and noise without optimization is
presented in Fig. 18. The signal length is 8192 samples and a
native sampling rate is 48kHz. The spectrum after optimization
by resampling to 48575Hz is shown in Figure 19.
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Fig. 18. The spectrum of the car engine’s acoustic signal without any
optimization
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Fig. 19. The spectrum of the car engine’s acoustic signal optimized by the
adjustments of spectral resolution

E. Acoustic Signal Of The Car Engine Exhaust Gas

The acoustic signal of the car engine exhaust gas can be
used for the diagnostics of an ignition process and combustion
of the fuel mixture [11]. The noise level is significantly lower
than in the case of the car engine sound recorded directly
by the microphone, so the spectrum optimization effects are
better. Test signal is recorded for the engine running at idle
and its unoptimized spectrum is shown in Fig. 20.

The digital recording is performed with 44.1kHz sampling
frequency, and the spectrum is computed for 2048 samples. For
the optimization purposes, the signal is resampled to 69632Hz
and after this operation the spectral resolution is 340Hz. The
spectrum of the test signal after adjustments of the spectral
resolution is presented in Fig. 21.
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Fig. 20. The spectrum of the acoustic signal of the car engine exhaust gas
without any optimization
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Fig. 21. The spectrum of the acoustic signal of the car engine exhaust gas
optimized by the adjustments of spectral resolution

IV. CONCLUSION

The use of resampling to improve harmonic analysis intro-
duces additional distortions to the signal that can be observed
in the spectrum. For this reason, only high-quality resampling
algorithms should be used for this purpose. As a result of
comparing the four algorithms, spectral resampling has been
chosen. This algorithm, in both time and frequency domain,

generates the lowest error values excluding signals containing
only medium frequencies. However, in this case the errors are
only insignificantly higher than in the case of the interpolation
and decimation algorithm.

Tests performed for the real diagnostic signals prove the
effectiveness of the method. For a simple spectral structure
(voice acoustic signal, vibroacoustic signals of transformers,
acoustic signal of car exhausts), as a result of optimiza-
tion, a clear spectrum is obtained (harmonics and low level
noise). Then, discovering the foreign frequencies is simple
and unambiguous. The EEG signal and the sound of the car
engine operation have a more complex spectral structure, so
discovering foreign frequencies is generally problematic. For
this reason, the main goal for such signals is to obtain the
proper values of harmonic parameters. Then, it is possible to
analyse correctly the relations between harmonics or discover
low amplitude harmonics.
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