
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2020, VOL. 66, NO. 2, PP. 281-286

Manuscript received November 14, 2019; revised April, 2020 DOI: 10.24425/ijet.2020.131875

 © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—In this paper the new synthesis method for

reversible networks is proposed. The method is suitable to

generate optimal circuits. The examples will be shown for three

variables reversible functions but the method is scalable to larger

number of variables. The algorithm could be easily implemented

with high speed execution and without big consuming storage

software. Section 1 contains general concepts about the reversible

functions. In Section 2 there are presented various descriptions of

reversible functions. One of them is the description using

partitions. In Section 3 there are introduced the cascade of the

reversible gates as the target of the synthesis algorithm. In order

to achieve this target the definitions of the rest and remain

functions will be helpful. Section 4 contains the proposed

algorithm. There is introduced a classification of minterms

distribution for a given function. To select the successive gates in

the cascade the condition of the improvement the minterms

distribution must be fulfilled. Section 4 describes the algorithm

how to improve the minterms distributions in order to find the

optimal cascade. Section 5 shows the one example of this

algorithm.

Keywords—reversible logic, reversible circuits, reversible gate,

CNT set of the gates

I. INTRODUCTION

ogic synthesis of the reversible circuits is the initial step

towards synthesis of quantum circuits [1]. Any

irreversible logic computation dissipates a certain amount of

energy [2]. This amount of heat dissipation will be

problematic in the near future since the number of transistors

on an integrated circuits is growing exponentially. Reversible

logic constitutes a potential solution to this problem. The

reversible circuits are able not to dissipate power because

there is no information loss [3].

The classic synthesis problem is transformation any

description of any function into some circuit implementation.

These implementations are the cascades of the reversible

gates.

X2

X1

X0

Y2

Y1

Y0

Fig. 1. Example of the reversible gates

 The one possible reversible gate is shown on the Fig. 1. The

gate has the same input number (on the Fig. 1 three) as output

number. On the one of the three lines is XOR gate. One of the

input of this gate is connected to input of the gate. The second

and third input of the gate could be connect to the another

Authors are with Institute of Computer Science, Warsaw University of

Technology, Poland (e-mail: ask@ii.pw.edu.pl, kgr@ii.pw.edu.pl).

input of the gate or not. These connection methods allow for

four variants of the reversible gates with XOR gate on this

line.

There are many other types of the reversible gates. In this

paper there will be used the NCT set of gates. The problem of

the synthesis is to find the cascades which transform the given

reversible function F into the identical function I.

Furthermore, these cascades could be optimal ea. must contain

a minimal number of gates. There are many methods leading

to the solution of this problem [4,5]. In this paper will be

presented a new algorithm able to execute manually as well as

using appropriate software.

II. REVERSIBLE FUNCTIONS DESCRIPTIONS

The reversible function can be presented using many type of

descriptions. They could be: true table, minterm permutation

or hex notation of each Boolean function being components of

reversible functions [6]. To ensure reversibility the number of

inputs is the same as the outputs number (the number of

variables is the same as the number of Boolean functions).

 Let be given the reversible function F with three variables.

This function could be described using truth table shown in

Table I.

TABLE I

TRUTH TABLE OF EXAMPLE OF REVERSIBLE FUNCTION

No. X2X1X0 Y2Y1Y0

0 000 100

1 001 000
2 010 011

3 011 010

4 100 111
5 101 110

6 110 101

7 111 001

 For the three variables X2, X1 and X0 there are defined the

three balanced (the same number of zeros and ones) Boolean

functions Y2, Y1 and Y0. The set of the output vectors Y2Y1Y0

contain all eight input minterms. None of the output vectors

repeats. The output vectors are one of the possible minterms

permutation.

The second description of this function is the minterm

permutation: <4, 0, 3, 2, 7, 6, 5, 1>. It is the sequence of the

decimal form of the output vectors Y2Y1Y0 as an answer to

increasing sequence of input vectors. The permutation <0, 1,

2, 3, 4, 5, 6, 7> will be called the identical function I.

The third description of this function is hex notation of the

three functions Y2, Y1 and Y0. For our given function it will be

8E3C2B (8E corresponds with Y2, 3C with Y1 and 2B with

Y0) [7].

The Algorithm for Reversible Circuits Synthesis
Andrzej Skorupski, Krzysztof Gracki

L

282 A.SKORUPSKI, K.GRACKI

In this paper there will be introduced the fourth description

of the reversible function using minterms partitions. For

reversible functions with three variables the three partitions

will be introduced. Each partition contains four two-elements

blocks. Depending on the function the minterms occupy

well-defined positions. The three partitions for the identical

function I are:

Y2:{0,4;1,5;2,6;3,7} Y1:{0,2;1,3;4,6;5,7} Y0:{0,1;2,3;4,5;6,7}

Left elements in each blocks contain minterms with 0 for

function Yi and right elements contain minterms with 1 for

this function. These partitions designate the minterms

positions in partitions for any reversible function.

The three partitions for the given function presented in

Table I are:

Y2:{4,7;0,6;3,5;2,1} Y1:{4,3;0,2;7,5;6,1} Y0:{4,0;3,2;7,6;5,1}

On the minterms 0 position (the minterm 0 place in partitions

of the identical function) is minterm 4. On the minterms 1

position is minterm 0, on the minterms 2 position is minterm

3, on the minterms 3 position is minterm 2, on the minterms 4

position is minterm 7 and so on.

In order to indicate if the minterm i of the given function

has the opposite bit value as the minterm on the same place in

partition of the identical function the minterm i will be

overlined.

 For example, the minterm 4 takes the place of the minterm

0 in the partitions of the identical function. These two

minterms differ only on the most significant position so in the

corresponding partition Y2 it will be denoted by over-lining

minterm 4. For our example function from Fig. 1 this

partitions of the function F will be indicated as below:

Y2:{4̅,7;0,6;3,5;2,1̅} Y1:{4,3;0,2;7̅,5̅;6̅,1̅} Y0:{4,0̅;3̅,2̅;7̅,6̅;5̅,1}

TABLE II

 SWAPPED MINTERMS FOR REVERSIBLE GATES

Gate Swapped positions

T0 6,7

C0-1 2,3 & 6,7

C0-2 4,5 & 6,7

N0 0,1 & 2,3 & 4,5 & 6,7

T1 5,7

C1-0 1,3 & 5,7

C1-2 4,6 & 5,7

N1 0,2 & 1,3 & 4,6 & 5,7

T2 3,7

C2-0 1,5 & 3,7

C2-1 2,6 & 3,7

N2 0,4 & 1,5 & 2,6 & 3,7

Each reversible gate transforms the input function into another

reversible function. On the outputs of this gate there will be

the function with different partitions. The target of the

synthesis algorithm is to find the gate sequence which

converts the partitions of the given function into partitions of

the identical function. In this paper we will present the new

method of the reversible functions synthesis using the NCT set

of reversible gates. This NCT set for three variable functions

contains 12 gates. The one of this gates swaps proper

minterms in the partitions of the input function and these new

partitions defined the output function of this gate. The names

of the gates and appropriate swapped minterms are presented

in Table II.

 In Table III are showed the diagrams of all gates from the

NCT set. The gate C0-1 has the XOR gate on the line X0 and

with the second input connected to X1. The gate C0-2 has the

XOR gate on the line X0 and with the second input connected

to X2. The gate N0 has the XOR gate on the line X0 and with

the second input connected to X1 and X2 (logical AND of the

two inputs X1 and X2).

TABLE III

THE NCT SET OF THE REVERSIBLE GATES

Gate Swapped positions

T0

X2

X1

X0

Y2

Y1

Y2

C0-1

X2

X1

X0

Y2

Y1

Y2

C0-2

X2

X1

X0

Y2

Y1

Y2

N0

X2

X1

X0

Y2

Y1

Y2

T1

X2

X1

X0

Y2

Y1

Y2

C1-0

X2

X1

X0

Y2

Y1

Y2

C1-2

X2

X1

X0

Y2

Y1

Y2

X2

X1

X0

Y2

Y1

Y2

N1

X2

X1

X0

Y2

Y1

Y2

T2

X2

X1

X0

Y2

Y1

Y2

C2-0

X2

X1

X0

Y2

Y1

Y2

C2-1

X2

X1

X0

Y2

Y1

Y2

N2

X2

X1

X0

Y2

Y1

Y2

 The right column in Table II presents the gates operations.

Each gate swaps appropriate positions indicated by the

minterms positions of the identical function. For example the

gate T0 swaps positions occupied by minterms 6 and 7 of the

identical function. For our example function the gate T0 swaps

THE ALGORITHM FOR REVERSIBLE CIRCUITS SYNTHESIS 283

minterms 5 and 1 because these minterms occupy the 6 and 7

positions of the identical function. These minterms 5 and 1

will be swapped in all partitions. The output function of the

gate T0 will be the function F(T0) with partitions as below:

Y2:{4̅,7;0,6;3,1̅;2,5} Y1:{4,3;0,2;7̅,1̅;6̅,5̅} Y0:{4,0̅;3̅,2̅;7̅,6̅;1̅,5}

The partition corresponding to Y1 could be ordered by the gate

C1-2 (both minterms in two last blocks with over-lining

minterms will be swapped by this gate).

III. REVERSIBLE FUNCTIONS IMPLEMENTATION

The implementations of the reversible functions are the

cascades of the reversible gates presented in . Fig. 2. There are

two types of the cascades.

Gate
 6

Gate
 1

Gate
 5

Gate
 2

Gate
 4

Gate
 3

Gate
 3

Gate
 4

Gate
 2

Gate
 5

Gate
 1

Gate
 6F I

I F

Fig. 2. Examples of the cascades with 6 reversible gates

The cascade in Fig. 2a (first type cascade) transforms

function F into identical function I. The cascade in Fig. 2b

(second type cascade) transforms function I into the given

function F. Both the cascades contain the same gates but the

order of the gates in both cascades is reversed. In the

presented algorithm there will be used concepts of the rest

function and the remain function.

Definition 1: The output function Fr(Gi) of the gate Gi will be

called the rest function of the input function F.

The gate Gi which swaps the corresponding minterms (as in

Table II) gives the new function denoted Fr(Gi). For the first

type cascade the rest function Fr(G1) is realized by the gates

G2 to G6. The rest function Fr(G6) is the identical function. The

gate G6 in the first type cascade swapps the appropriate

positions to receive on the output the identical function. The

identical function determines these positions by their own

minterm values.

How to determine the function realized by the gates G1 to

G5? It will be calculated by swapping the same minterms of

the function F as the minterms swapped by the gate G6.

Definition 2: The input function Fv(Gi) of the gate Gi will be

called the remain function if on the output of the gate Gi is the

function F.

To determine the function Fv(Gi) the minterms values

corresponding to the given gate Gi. should be swapped.

Example 1: The remainder function Fv(G6) of the function

from Table I if the gate G6 is T0 is:

Y2:{4̅,6;0,7;3,5;2,1̅} Y1:{4,3;0,2;6̅,5̅; 7̅,1̅} Y0:{4,0̅; 3̅,2̅;6,7;5̅,1}

In all partitions the minterms 6 and 7 are swapped (see

Table II).

Definition 3: The Boolean function Yi is ordered when

corresponding partition has in all blocks minterm “0” on the

left side of the block and “1” on the right side of the block.

 From definition 3 the partition corresponding to Boolean

function Yi has all blocks without over-lined elements. The

Boolean function Y1 of the given reversible function F is

ordered when the front gate of the first type of cascade G1 will

be the gate C1-2. The gate C1-2 swaps positions of the

identical function 4 with 6 and 5 with 7. On the positions 4

and 6 in partition Y1 there are minterms 7 and 5 and on the

positions 5 and 7 there are minterms 6 and 1. They will be

swapped by the gate C1-2. The rest function Fr(G1) will be:

Y2:{4̅,5;0,1̅;3,7;2,6} Y1:{4,3;0,2;5,7;1,6} Y0:{4,0̅; 3̅,2̅; 5̅,1;7̅,6̅}

The Boolean function Y1 is ordered.

 There are 576 (4!×4!=24x24) ordered partitions for each

Boolean functions Yi. One of them is the identical function:

Y2::{0,4;1,5;2,6;3,7} Y1:{0,2;1,3;4,6;5,7} Y0:{0,1;2,3;4,5;6,7}

because every function Yi is ordered.

All Boolean functions Y2, Y1, Y0 used in the reversible

function are the balanced functions. Hence there exist (8
4

) = 70

various combinations of the minterms distributions with and

without over-lining. One of these combinations corresponds

to the ordered partition (all blocks are without over-lines).

 There is another combination where all blocks contain both

over-lined elements. For ordering this partition one gate Ni is

needed.

 There are 14 other combinations with blocks containing

both elements over-lined or without over-line: 4 combinations

with one block containing both elements over-lined,

6 combinations with two blocks containing both elements

over-lined and 4 combinations with three blocks containing

both elements over-lined.

Lemma 1. The partitions containing one from 15 above

combinations could be ordered by the string of the gates with

XOR on this line. This string could be one-, two-, three- or

four-goal string gates.

Proof.

Four combinations: {x,x;�̅�,�̅�;x,x;�̅�,�̅�}, {x,x;x,x;�̅�,�̅�;�̅�,�̅�},

{x,x;x,x;x,x;�̅�,�̅�}, {�̅�,�̅�; �̅�,�̅�; �̅�,�̅�;�̅�,�̅�} could be ordering by one

gate. Six combinations {x,x;x,x;�̅�,�̅�;x,x}, {x,x;�̅�,�̅�;x,x;x,x},

{x,x;�̅�,�̅�;�̅�,�̅�;x,x}, {�̅�,�̅�;x,x;�̅�,�̅�;x,x}, {�̅�,�̅�;�̅�,�̅�;x,x;x,x},

{�̅�,�̅�; �̅�,�̅�; �̅�,�̅�;x,x} could be ordering by two gates. Four

combinations {�̅�,�̅�;x,x;x,x;�̅�,�̅�}, {x,x;�̅�,�̅�;�̅�,�̅�;�̅�,�̅�},

{�̅�,�̅�;x,x;�̅�,�̅�;�̅�,�̅�}, {�̅�,�̅�;�̅�,�̅�;x,x;�̅�,�̅�} could be ordering by

three gates. One combination {�̅�,�̅�;x,x;x,x;x,x} could be

ordered by four gates.

 In Table III there are introduced the binary partitions

corresponding to all gates. These partitions indicate the

positions swapped by corresponding gate. The given gate

swaps the minterms on the positions indicated by the same

numbers in the partition but different from zero.

284 A.SKORUPSKI, K.GRACKI

TABLE III

SWAPPED MINTERMS POSITIONS FOR REVERSIBLE GATES

Gate Swapped positions

T0 X2:{0,0;0,0;0,1;0,1} X1:{0,0;0,0;0,1;0,1} X0:{0,0;0,0;0,0;1,1}

C0-1 X2:{0,0;0,0;2,1;2,1} X1:{0,2;0,2;0,1;0,1} X0:{0,0;2,2;0,0;1,1}
C0-2 X2:{0,2;0,2;0,1;0,1} X1:{0,0;0,0;2,1;2,1} X0:{0,0;2,2;0,0;1,1}

N0 X2:{4,2;4,2;3,1;3,1} X1:{4,3;4,3;2,1;2,1} X0:{4,4;3,3;2,2;1,1}

T1 X2:{0,0;0,1;0,0;0,1} X1:{0,0;0,0;0,0;1,1} X0:{0,0;0,0;0,1;0,1}
C1-0 X2:{0,0;2,1;0,0;2,1} X1:{0,0;2,2;0,0;1,1} X0:{0,2;0,2;0,1;0,1}

C1-2 X2:{0,2;0,1;0,2;0,1} X1:{0,0;0,0;2,2;1,1} X0:{0,0;0,0;2,1;2,1}

N1 X2:{4,4;3,1;2,2;3,1} X1:{4,4;3,3;2,2;1,1} X0:{4,3;4,3;2,1;2,1}
T2 X2:{0,0;0,0;0,0;1,1} X1:{0,0;0,1;0,0;0,1} X0:{0,0;0,1;0,0;0,1}

C2-0 X2:{0,0;2,2;0,0;1,1} X1:{0,0;2,1;0,0;2,1} X0:{0,2;0,1;0,2;0,1}

C2-1 X2:{0,0;0,0;2,2;1,1} X1:{0,2;0,0;0,2;1,1} X0:{0,0;2,1;0,0;2,1}

N2 X2:{4,4;3,3;2,2;1,1} X1:{4,2;1,1;4,2;3,3} X0:{4,3;2,1;4,3;2,1}

Let consider the function F:

Y2:{4̅,7;0,6;3,5;2,1̅} Y1:{4,3;0,2;7̅,5̅;6̅,1̅} Y0:{4,0̅;3̅,2̅;7̅,6̅;5̅,1}

To calculate the partitions of the rest function we use the

operation indicated by symbol • facilitating this operation. For

example the partitions of the rest function Fr(T0) of the given

function F are:

Y2:{4̅,7;0,6;3,5;2,1̅}•{0,0;0,0;0,1;0,1}={4̅,7;0,6;3,1̅;2,5 }

Y1:{4,3;0,2;7̅,5̅; 6̅,1̅}•{0,0;0,0;0,1;0,1}={4,3;0,2;7̅,1̅;6̅,5̅}

Y0:{4,0̅;3̅,2̅; 7̅,6̅;5̅,1}•{0,0;0,0;0,0;1,1}={4,0̅; 3̅,2̅;7̅,6̅;1̅,5}

 The gates with XOR on line Yi swap minterms in the same

block in the partition Yi. Then these minterms in this block

change the over-line situation: if the minterm was with over-

line then it would be without over-line and if it was without

over-line then it would be with over-line. A different situation

is on the remaining lines. The minterms in different blocks are

swapped between these blocks without any changes in the

over-line situation.

IV. ALGORITHM

The proposed algorithm based on the partitions analysis to

evaluate the minterms distributions. The algorithm indicates

the gates set containing the best gates leading to ordering any

function Yi. This set will be called the front best gates FBG

(front gate is the first gate in cascade). Is possible to appoint

the closing best gates CBG (the closing gate is the last gate in

the cascade).

 The target of the analysis is to find the shortest way

(minimal gates number) to sequentially ordering all the

partitions. The algorithm starts for the given function and

verifies the partitions if there exist one gate ordering any line.

If it exist it will be the first member of FBG set. The next step

of the algorithm is the calculations of the rest functions for

every gate from NCT set. For each the rest functions must be

verified if there exist the partition ordered by the string of the

gates (one-, two-, three- or four-gates). If it exist will be the

member of FBG set.

Lemma 2

The last gate Gi in the first type of the cascade ordering one of

the lines Yi is the gate with XOR on line Yi.

Proof:

The gates with XOR on line Y i swap the minterms in one

block (see Table III). If on the output of the gate the minterms

distribution is ordered then on the input of this gate the

minterm distribution on this line contains over-lining block

corresponding with this gate.

In each step of the algorithm the target of the analysis can be

the series of the gates ordering the individual lines. In order to

do it the minterms distribution should be transformed so as to

receive the partitions only with blocks where both minterms

are over-lined.

Lemma 3

The sequence of the gates with XOR on the same line Yi can

be put in the cascade in freely order.

Proof:

Each of the gates with XOR on line Y i swaps the minterms

only inside the given blocks. Swapping minterms inside the

blocks in the same partition could be done in any order.

TABLE IV

THE DISTRIBUTIONS

Gates

numaber
Minterm distributions

1 {0,0;0,0;0,0;1,1}

{0,0;0,0;2,2;1,1}

{0,0;2,2;0,0;1,1}
{4,4;3,3;2,2;1,1}

2 {0,0;0,0;1,1;0,0}

{0,0;1,1;0,0;0,0}

{0,0;2,2;1,1;0,0}
{2,2;0,0;1,1;0,0}

{2,2;1,1;0,0;0,0}

{1,1;2,2;3,3;0,0}

3 {2,2;0,0;0,0;1,1}
{0,0;1,1;2,2;3,3}

{1,1;0,0;2,2;3,3}

{1,1;2,2;0,0;3,3}

4 {1,1;0,0;0,0;0,0}

The synthesis problem can be reduced to a problem of

transforming the given minterms distribution to one of the

presented by Lemma 1. To solve the problem of ordering the

partitions two criterions will be introduced:

1. If one (or more) partition of the given function could be

ordered by the string one-, two-, three- or four-gates the first

gate of this string will be the member of FBG set.

2. If one (or more) partition of the rest function Fr(Gi) could

be ordered by the string one-, two-, three- or four-gates the

first gate of this string will be the member of FBG set.

 The minterms distribution is better if it requires less gates to

order some partition.

 The above algorithm was presented under assumption non

empty FBG set. If his set is empty the designer could change

the given function F by determination the last gate in the

cascade. This is possible by using the remain function. For

given function F should be calculated the remain functions

Fv(Gi) for all reversible gates Gi and create the CBG set

(closing best gates set). If the gate Gi is a member of CBG set

than for the function Fv(Gi) should be finding the FBG set.

This method will be illustrated in next section.

THE ALGORITHM FOR REVERSIBLE CIRCUITS SYNTHESIS 285

V. EXAMPLE

Let consider the example function F=<4, 0, 3, 2, 7, 6, 5, 1>.

The partitions of the given function are:

Y2:{4̅,7;0,6;3,5;2,1̅} Y1:{4,3;0,2;7̅,5̅;6̅,1̅} Y0:{4,0̅;3̅,2̅;7̅,6̅;5̅,1}

Criterion 1: The partition Y1 could be ordered by the gate

C1-2. This gate will be the member of the FBG.

Criterion 2. Below 12 rest functions will be calculated:

Fr(T0) =

Y2{4̅,7;0,6;3,1̅;2,5} Y1{4,3;0,2;7̅,1̅;6̅,5̅} Y0{4,0̅;3̅,2̅;7̅,6̅;1̅,5}

partition Y1 could be ordered by one gate, the gate T0 will be

the member of the FBG.

Fr(C0-1) =

Y2{4̅,7;0,6;2,1̅;3,5} Y1{4,2;0,3;7̅,1̅;6̅,5̅} Y0{4,0̅;2,3;7̅,6̅;1̅,5}

partition Y1 could be ordered by one gate, the gate C0-1 will

be the member of the FBG.

Fr(C0-2) =

Y2{4̅,6;0,7;3,1̅;2,5} Y1{4,3;0,2;6̅,1̅;7̅,5̅} Y0{4,0̅;3̅,2̅;6,7;1̅,5}

partition Y1 could be ordered by one gate, the gate C0-2 will

be the member of the FBG.

Fr(N0) =

Y2{0,6; 4̅,7;2,1̅;3,5} Y1{0,2;4,3;6̅,1̅;7̅,5̅} Y0{0,4̅;2,3;6,7;1̅,5}

partition Y1 could be ordered by one gate, the gate N0 will be

the member of the FBG.

Fr(T1) =

Y2{4̅,7;0,1̅;3,5;2,6} Y1{4,3;0,2;7̅,5̅;1,6} Y0{4,0̅;3̅,2̅;7̅,1;5̅,6̅}

partition Y1 could be ordered by two gates, the gate T1 will be

the member of the FBG.

Fr(C1-2) =

Y2{4̅,5;0,1̅;3,7;2,6} Y1{4,3;0,2;5,7;1,6} Y0{4,0̅;3̅,2̅;5̅,1;7̅,6̅}

partition Y1 is ordered, the gate C1-2 will be the member of

the FBG.

Fr(C1-0) =

Y2{4̅,7;2,1̅;3,5;0,6} Y1{4,3;2̅,0̅;7̅,5̅;1,6} Y0{4,2̅;3̅,0̅;7̅,1;5̅,6̅}

partition Y1 could be ordered, by two gates, C1-0 will be the

member of the FBG.

Fr(N1) =

Y2{3,5;2,1̅;4̅,7;0,6} Y1{3̅,4̅;2̅,0̅;5,7;1,6} Y0{3̅,2̅;4,0̅;5̅,1;7̅,6̅}

partition Y1 could be ordered, by two gates, N1 will be the

member of the FBG.

Fr(T2) =

Y2{4̅,7;0,6;3,5;1,2̅} Y1{4,3;0,1̅;7̅,5̅;6̅,2} Y0{4,0̅;3̅,1;7̅,6̅;5̅,2̅}

the gate T2 does not be the member of the FBG.

Fr(C2-0) =

Y2{4̅,7;6̅,0̅;3,5;1,2̅} Y1{4,3;6̅,1̅;7̅,5̅;0,2} Y0{4,6̅;3̅,1;7̅,0̅;5̅,2̅}

partition Y1 could be ordered, by two gates, C2-0 will be the

member of the FBG.

Fr(C2-1) =

Y2{4̅,7;0,6;5̅,3̅;1,2̅} Y1{4,5̅;0,1̅;7̅,3;6̅,2} Y0{4,0̅;5̅,1;7̅,6̅;3̅,2̅}

the gate C2-1 does not be the member of the FBG.

Fr(N2) =

Y2{7̅,4;6̅,0̅;5̅,3̅;1,2̅} Y1{7̅,5̅;6̅,1̅;4,3;0,2} Y0{7̅,6̅;5̅,1;4,0̅;3̅,2̅}

partition Y1 could be ordered, by two gates, N2 will be the

member of the FBG.

The FBG set contains 10 gates. Only the gates T2 and C2-1

are not the members of the FBG set. The algorithm divide out

into 10 branches. The sequence of branches analysis depends

on the number of the gates that order the partition.

In this example there are:

1. C1-2 gate because this gate order partition.

2. The rest functions of the gates T0, C0-1, C0-2 and N0 could

be ordered by one gate.

3. The rest functions of the gates T1,C1-0, N1, C2-0 and N2

could be ordered by two gates.

The first branch no. 1 of the algorithm starts with the rest

function Fr(C1-2) ea. the first gate in cascade is the gate C1-2.

In this branch the algorithm is repeated ea. the FBG set for the

rest function Fr(C1-2) should be appointed.

The partitions for this function are:

Y2:{4̅,5;0,1̅;3,7;2,6} Y1:{4,3;0,2;5,7;1,6} Y0:{4,0̅;3̅,2̅;5̅,1;7̅,6̅}

The calculation of the rest functions gives the FBG set

containing only two gates: C2-0 and C0-2.

Fr(C2-0) =

Y2{4̅,5;1,0̅;3,7;6̅,2̅}Y1{4,3;1,6;5,7;0,2} Y0{4,1;3̅,6̅;5̅,0̅;7̅,2̅}

The rest function Fr(C2-0) could be ordered by three gates and

the gate C2-0 is the member of the FBG set.

Fr(C0-2) =

Y2{4̅,1̅;0,5;3,6;2,7}Y1{4,3;0,2;1,6;5,7} Y0{4,0̅;3̅,2̅;1̅,5;6,7}

The rest function Fr(C0-2) could be ordered by four gates and

the gate C0-2 is the member of the FBG set. This branch is

divided out for next two subbranches.

During the next step the functions F(C1-2,C2-0) (branch 1.1)

and F(C1-2,C0-2) (branch 1.2) will be analysed.

Branch 1.1

The function F(C1-2,C2-0) has partition Y2 requiring three

gates for ordering. The gates C0-2, C0-1 and T0 are the

members of the FBG set.

 The FBG set of the rest functions Fr(C1-2,C2-0) contains

five gates: C2-1, T2, C0-2, C0-1 and T0.

 Hence the result of the functions F(C1-2,C2-0,C0-2),

F(C1-2,C2-0,C0-1) and F(C1-2,C2-0,T0) could be ordered by

the two gates. But the algorithm found the rest function

Fr(C1-2,C2-0,C0-2,N2) could be ordered by one gate T0.

 The function F(C1-2,C2-0,C0-2,N2,T0) could be ordered by

the gate C2-0. The function F(C1-2,C2-0,C0-2,N2,T0,C2-0) is

the identical function and the six gates cascade was found.

The remaining subbranches gives longer cascades.

Branch 1.2

The function F(C1-2,C0-2) has partition Y2 requiring four

gates to ordering. The gates N2, C2-0, C2-1 and T2 are the

members of the FBG set. The rest function Fr(C1-2,C0-2)

gives also the gate N0 as the member of FBG set because the

partitions Y2 of the function F(C1-2,C0-2,N0) could be

ordered by two gates C2-0 and T2. The functions

F(C1-2,C0-2,N0,C2-0,T2) and F(C1-2,C0-2,N0,T2,C2-0)

have only one member of FBG set and it is the gate C0-2. The

functions F(C1-2,C0-2,N0,C2-0,T2,C0-2) and

F(C1-2,C0-2,N0,T2,C2-0,C0-2) are the identical functions and

two cascades with six gates were found.

From Lemma 2 we can add the next two cascades:

C1-2,N0,C0-2,T2,C2-0,C0-2

C1-2,N0,C0-2,C2-0,T2,C0-2.

In this branch of the algorithm when it starts from the gate

C1-2 we found five optimal cascades with six gates each. But

286 A.SKORUPSKI, K.GRACKI

the set of cascades with the gate C1-2 as the first gate in the

cascade contains two cascades more. We can find these two

solutions during the second type of cascade analysis.

The remain function

Let we try to find the remain functions for all gates although

the LBG set for the given function is not empty.

The partitions of given function are:

Y2:{4̅,7;0,6;3,5;2,1̅} Y1:{4,3;0,2;7̅,5̅;6̅,1̅} Y0:{4,0̅;3̅,2̅;7̅,6̅;5̅,1}

As was shown from the definition 2 the partitions of the

remain functions Fv(C2-0) are:

Y2:{4̅,3̅;0,6;7̅,1̅;2,5} Y1:{4,7;0,2;3̅,1̅;6̅,5̅} Y0:{4,0̅;7̅,2̅;3̅,6̅;1̅,5}

Two gates C2-0 and N2 can ordered the Y2 partition.

The partitions of the remain function Fv(C0-2) are:

Y2:{5̅,6;0,7;3,4;2,5̅} Y1:{5,3;0,1;6̅,4̅;7̅,1̅} Y0:{5̅,0̅;3̅,2̅;6,7;4,1}

Two gates C0-2 and N0 can ordered the Y0 partition.

These two gates C2-0 and C0-2 are the members of the CBG

set.

Let consider the gate C2-0 as the last gate in the cascade. Now

the function Fv(C2-0)=Fn should be design. The members of

the FBG set are the gates C2-0, N0 and C1-2. The algorithm

divide out into 3 branches. In first branch we will take the gate

C2-0 as the first gate in this cascade. This cascade is presented

on Fig. 3.

C2-0
Gate
 3

C2-0F IGate
 2

Fig. 3 The cascade with the gate C2-0 as the last gate

We consider the cascade with the gate C2-0 in the first and

last positions. The FBG set for the function Fn(C2-0) should

be appointed. This set contain three gates:

• the gate N2 could ordered the line Y2,

• the gates C1-2 and C0-2 (these gates together with

the gate C1-0 could ordered the line Y2.

If we take the gates N2 or C1-2 we obtain the 7 gates cascade.

Only the branch with the gates C0-2 leads to the cascades with

6 gates. Finally we obtain two optimal cascades:

C2-0,C0-2,N2,C1-0,T0,C2-0

C2-0,C0-2,C1-0, N2,T0,C2-0

In this example was shown a few branches of the algorithm

and was found 7 optimal cascades. The remaining branches of

the algorithm give us the rest 17 cascades. Our given function

has 23 optimal cascades contain 6 gates each.

VI. CONCLUSION

The main aim of this paper was presentation of the design of

optimal reversible cascades for the three variables reversible

functions. The target of this work was developing such

method of the reversible function design which allows the

“manually” design. The software implementation of this

algorithm gives the speed program execution and low storage

consuming. This algorithm was presented for the synthesis of

the reversible functions of the three variables. But this

algorithm is scalable for more variables.

REFERENCES

[1] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes. Reversible
logic circuit synthesis. In IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pages 353–360, 2002. November
10–14, San Jose, CA, USA, ACM.

[2] C.H. Bennett, Logical Reversibility of Computation, IBM Journal
Reaserch and Developmet, Nov. 1973

[3] R. Landauer. Irreversibility and heat generation in the computing
process. IBM Journal of Research and Development, 5:183–191, 1961

[4] A. De Vos, B. Raa, L. Storme, Generating the group of reversible logic
gates, J. Phys. A: Math. Gen. 35 (2002), 7063–7078

[5] O. Golubitsky and D. Maslov, “A study of optimal 4-bit reversible
Toffoli circuits and their synthesis,” IEEE Transactions on Computers,
vol. 61, no. 9, 2012,. pp. 1341-1353.

[6] D. M. Miller, D. Maslov, G. W. Dueck, A transformation based
algorithm for reversible logic synthesis, in: Design Automation Conf.,
2003, pp. 318–323.

[7] P. Kerntopf, A new heuristic algorithm for reversible logic synthesis,
Design Automation Conf., 2004, pp. 834–837.

[8] C. Bandyopadhyay, H. Rahaman, R. Drechsler, “A Cube Pairing
Approach for Synthesis of ESOP-Based Reversible Circuit,”
Proceedings of the IEEE International Symposium on Multiple-Valued
Logic, pp. 109-114, May 19-21, 2014

[9] C. S. Cheng, A. K. Singh, “Heuristic Synthesis of Reversible Logic - A
Comparative Study”, Advances in Electrical and Electronic
Engineering, vol. 12, no. 3, pp. 210-225, September 2014

[10] M. Krishna, An. Chattopadhyay, “Efficient Reversible Logic Synthesis
via Isomorphic Subgraph Matching”, Proceedings of the IEEE
International Symposium on Multiple-Valued Logic, pp. 103-108, May
19-21, 2014

[11] C.-C. Lin, N. K. Jha, “RMDDS: Reed-Muller Decision Diagram
Synthesis of Reversible Logic Circuits”, ACM Journal on Emerging
Technologies in Computing Systems, vol. 10, no. 2, pp. 14:1–14:25,
February 2014

[12] S. J. Roy, K. Datta, C. Bandyopadhyay, H. Rahaman,
“A Transformation Based Heuristic Synthesis Approach for Reversible
Circuits”, Proceedings of the International Conference on Advances in
Electrical Engineering, pp. 1-5, January 2014.

[13] E. Schönborn, K. Datta, R. Wille, I. Sengupta, H. Rahaman, R.
Drechsler: “BDD-based Synthesis for All-optical Mach-Zehnder
Interferometer Circuits”, International Conference on VLSI Design,
2015

[14] A. Skorupski, Graphical Method of Reversible Circuits Synthesis, IJET,
Vol 63, No 3, 2017.

[15] E. F. Fredkin, T. Toffoli, Conservative logic, International Journal of
Theoretical Physics 21 (1982), pp. 219–253.

[16] P. Gupta, A. Agrawal, N. Jha, An algorithm for synthesis of reversible
logic circuits, IEEE Trans. on CAD 25 (2006), pp. 2317–2330

[17] D. M. Miller, D. Maslov, G. W. Dueck, A transformation based
algorithm for reversible logic synthesis, in: Design Automation Conf.,
2003, pp. 318–323.

