
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2020, VOL. 66,  NO. 2, PP. 301-307 

Manuscript received October 18, 2019; revised April , 2020                                 DOI: 10.24425/ijet.2020.131878 

 

 © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0, 

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited. 

Abstract—We present here a few thoughts regarding 

topological aspects of transferring a signal of a continuous time 

into its discrete counterpart and recovering an analog signal from 

its discrete-time equivalent. In our view, the observations 

presented here highlight the essence of the above transformations. 

Moreover, they enable deeper understanding of the 

reconstruction formula and of the sampling theorem. We also 

interpret here these two borderline cases that are associated with 

a time quantization step going to zero, on the one hand, and 

approaching its greatest value provided by the sampling theorem, 

on the other 

 

Keywords—topological issues related with reconstruction for-

mula and sampling theorem 
  

I. INTRODUCTION 

HE set of continuous time signals, on one side, and the set 

of discrete-time ones, on another one, are perceived as two 

different worlds. There are, however, two connecting elements 

that link them with each other. Those are the reconstruction 

formula and the sampling theorem [1]-[6]. But, it seems that we 

do not oft realize the fact that they constitute a basis for 

consideration of these separate “worlds” mentioned above as 

only two different perspectives from which one consistent 

world of signals can be viewed. For some people, this kind of 

interpretation may be of minor importance. This paper aims in 

showing just the contrary. 

So, let us take a closer look at this issue. And to this end, 

consider signals shown in Figures 1(a) and 1(b). 

Looking at Fig. 1, we see two quite different images. Fig. 

1(a) shows an infinite sequence of bars of different heights 

while Fig. 1(b) depicts a continuous function. So, it is really 

hard to imagine that they represent the same object. This is, 

however, true as we know from the reconstruction formula and 

the sampling theorem [1]-[6]. In more detail, observe that the 

values of bar heights  ,  ..., 1,0,1,...,x k k = − in Fig. 1(a) are 

equal to the values ( )x kT  of the continuous function of Fig. 

1(a) at the points kT . And, if we assume that the following:  

 

 1 2s mT f f=   (1) 
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holds, where T  means a sampling period, 
sf  the 

corresponding sampling frequency, and 
mf  stands for the 

maximal frequency present in the spectrum of the signal ( )x t , 

then, by virtue of the sampling theorem, the signals in Figures 

1(a) and 1(b) are equivalent to each other in the sense that they 

can be obtained from each other via the reconstruction formula 
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In (2), the function ( )sinc t  is defined as 
 

 ( ) ( )sinc sin  for 0  and  1 for 0t t t t t =  =  . (3) 

Let us also express the above in some other words. To this 

end, observe that signals describe in some way objects of a real 

world. These objects are “visible” for us through 

measurements of which outcomes are available as just 

measured signals. So, it is fully justified to speak about signals 

as representations of real world objects. On the other hand, it is 

also customary to identify signals with objects which they 

represent. Here, we follow this convention. And we consider 

such a scenario in which any real world object can be 

represented by one signal being a function of a continuous 

time variable t and, equivalently, by an infinite family of 

appropriate sequences of discrete elements (values). As all 

these representations represent the same real word object, it is 

natural to require that they are in some way equivalent to each 

other. And this is really achieved, as we know, via fulfilment 

of (2) when inequality (1) is satisfied. We argue here that this 

can lead to a more consistent viewing of the world of signals. 

In viewing of signals proposed here they constitute one 

coherent world. Moreover, see that the elements of this world 

can be viewed from infinitely many perspectives. One of them 

is a representation in form of a function of a continuous time 

variable t. All the others are discrete maps of values of the 

discrete-time variable into discrete signal amplitudes. In these 

maps, a set of values of the discrete-time variable can be 

chosen to be less or more dense (the meaning of this term will 

be explained in more detail later in this paper). Schematically. 

a notion of distance between two numbers does not apply 

Admittedly, ordering of elements of this set of integers can be 

this point of view is illustrated in Fig. 2. 
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Fig. 1. (a) Example discrete-time signal, where the integers ..., 1,0,1,...−  mean successive values of a discrete time variable k. (b) Equivalent signal in the 

continuous time domain, where t stands for a continuous time variable 

x[k] 

k  0  -1  1 2  3  -2  -3  4  5  

(a)  

x(t) 

t  0  -T  T 2T  3T  -2T  -3T  4T  5T  

(b)  

 

The most significant difference - between the values, which 

the continuous time variable t in the signal ( )x t  shown on the 

top of Fig. 2 assumes, and the discrete-time values k, k′, k″ 

(and so on) in the corresponding discrete-time signals   x k , 

 x k ,  x k , respectively (and in all the remaining ones that 

are not explicitly shown in Fig. 2) - is the following: the first 

ones belong to the set R  of real numbers, but all the others to 

the set Z  of integers. The first set is of cardinality c , but the 

second of cardinality 0א. And obviously, this fact is relevant 

from the point of view of topology. In this paper, we will 

study some of its implications. 

The rest of this paper is organized as follows. Section 2 

contains thorough explanations regarding notion and 

description of unscaled versus scaled discrete timelines, and 

also some related material. In Section 3, an informative 

uniqueness of signals independent of their images in the time 

domain is discussed. Behavior of the reconstruction formula 

for sampling periods going to zero is considered in the next 

section. The paper ends with Section 5 that contains 

conclusions.  

II. UNSCALED VERSUS SCALED DISCRETE TIMELINES 

AND RELATED MATERIAL 

Let us begin this section with the observation that in the set 

of integers considered in isolation from the set of real numbers 

carried out, but the determination of distances between them 

cannot. Obviously, they remain then separate objects, as it 

should be, but we are not able to say anything more about 

them. 

 

 

Note now that such a situation as described above occurs 

when we write signal samples in the following form: 

  ,  ..., 1,0,1,...,kx k x k=  = −R  without saying anything 

about the sampling period T . Then, only the order of the 

samples occurrences is “visible”, but nothing can be said 

about distances between the times of these occurrences. 

Obviously, the latter follows from the lack of any 

accompanying timeline. 
Let us consider now the axis of real numbers as a one-

dimensional space. And note that using this convention we can 

view the set     ,  ..., 1,0,1,...k kx x k x k= =  = −R  as a set 

“immersed” in this space. Further, observe, as indicated 

above, that this space refers exclusively to the samples of the 

signal amplitudes. And because of this fact, we will call it a 

one-dimensional “amplitude-only” space. Moreover, see that 

distances between elements of the set  kx  will be then 

naturally determined as 
k i kx x k i kd x x

+ += −  (that is a natural 

metric of this space).  

The amplitude-only space defined above and the set  kx  

immersed in it are illustrated in Fig. 3(a). 

Note now that in fact Fig. 3(a) shows not only one but an 

infinite bunch of hidden signals  ,  ..., 1,0,x k k = − 1,...,  

represented by the set  kx . This clearly follows from (2). To 

thereby “expand” the one-dimensional object  kx  of Fig. 3(a) 

into a two-dimensional one in space-time (more precisely,
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by a bunch 
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x(t) 

t  0  -T  T 2T  3T  -2T  -3T  4T  5T  

x[k] 

k  0  -1  1 2  3  -2  -3  4  5  

x[k’] 

k’  0  -2  2 4  6  -4  -6  8  10  

x[k’’] 

k’’  0  -3  3 2  6  -6  -9  9  12  

 
Fig. 2. An object represented by a signal that can viewed from an infinite number of perspectives 

 
 

this end, see that assuming two different values of T, say 
1T  

and 
2T , in (2), we get two different functions 

( ) ( )1 1 sinck

k

x t x t T k


=−

= −  and ( ) ( )2 2 sinck

k

x t x t T k


=−

= − , 

respectively. Hence, really, the above observation is valid 

because the sampling period T is not known for Fig. 3(a); it 

can assume an infinite number of values. 

Let us now return to the set of integers considered in 

isolation such as those hidden in indices of the elements of the 

set  kx  in Fig. 3(a). If we “immerse” them in the set R  of 

real numbers treated  as  a  one-dimensional  space, we will in 

an amplitude-time space) as illustrated in Fig. 3(b). The 

distances between the times of occurrences of elements of the 

set  kx  will be well defined in this space, as 

( ) ( )k i k
d k i k i

+
= + − = . However, in this form, they will 

not be associated with any sampling period T. So, we will call 

the timeline associated with these times of occurrences a 

discrete unscaled timeline. In this context, note that choosing a 

concrete value of the sampling period T corresponds to 

picking a one unique function from the infinite bunch of 

hidden signals mentioned above. In other words, see that this 

corresponds to scaling the discrete unscaled timeline defined 

above with a factor T. And this leads to getting a discrete 

scaled timeline. Further, note that we have to do with such a 

scaled timeline in Fig. 1(a) because the successive points 

...., 2, 1,0,1,2,3,....− −  on it stand in fact for ...., 2 , ,0, ,T T T− −  

2 ,3 ,....T T , respectively. (For this, compare the timelines of 

with signal values. In contrast to this, all the other signal 

images in Fig. 2  represent functions that possess “free spaces” 
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x[k]=xk 

k  0  -1  1 2  3  -2  -3  4  5  

(a)  
(b)  

range of 

values of 

signal 

amplitudes 

x0 

x-3 

 
Fig. 3. (a) Illustration of the amplitude-only space and of the set  kx  immersed in it. (b) Expansion of the set  kx  in the space-time after assuming some 

scaling factor T (sampling period) for the discrete timeline 

 

Figures 1(a) and 1(b).) However, for convenience, the capital 

letter T was dropped in Fig. 1(a). 

In   view   of   the   above   interpretation,   observe   also  

that  the  distances   between   the   times   of   occurrences  of  

signal samples in Fig. 1(a) are in fact equal to 

( )( )( ) ( ) .
k i T kT

d k i T kT i T
+

= + − =   

Further, see that it follows from the material presented 

hitherto that a perfect recovery of an original signal from its 

discrete counterpart rolled up as in Fig. 3(a) is possible if, and 

only if: 

1. information about the sampling period T accompanies the 

set  kx , 

2. the sampling period T satisfies inequality (1). 

Moreover, the material presented above shows also that it is 

advisable in some considerations to consider signals viewed as 

one-dimensional ones (so called, in such a way, in the 

literature) a little bit differently, as two-dimensional objects in 

the space-time. 

III. INFORMATIVE UNIQUENESS OF SIGNALS 

INDEPENDENT OF THEIR IMAGES IN THE TIME DOMAIN 

Let us start considerations of this section with an 

observation that the notion of signal spectrum, as expressed by 

the Fourier transform of a signal, can be assumed to play a 

role of a measure of information contained in the signal. In 

what sense? In the sense that it provides us with information 

about the contents of harmonics occurring in it. More 

precisely, about their amplitudes and relative phases between 

them. 

Having this in mind that the spectrum of all the members of 

the bunch of signal “images” in Fig. 2 is the same, except 

periodic repetitions in case of the “sampled images”, we can 

treat them as equivalent to each other with respect to the 

information measure defined above. Note that this is a very 

important finding because all these signal images are evidently 

different pictures of a signal in the time domain. The signal 

image on the top of Fig. 2 represents a curve that is fully filled 

between “pillars” (representing signal samples). These free 

spaces have larger or shorter lengths referred to the time axis. 

For example, they are equal to T , 2T , and 3T , 

respectively, in the case of successive “sampled images” in 

Fig. 2, where T  is defined on the curve representing the 

“continuous signal image” in this figure. Further, observe that 

signal amplitudes in the “free spaces” are equal to zero. 

Concluding the above finding, we can say shortly that 

irrespective of “the extent to which a signal image in the time 

domain is filled with pillars” it is viewed as a unique object 

from the point of view of the aforementioned information 

measure. This conclusion is however only true when the 

sampling period chosen (the length between “pillars”) satisfies 

inequality (1). See that all the choices of values of T larger 

than ( )1 2 mf  will interfere in the information contents of the 

signal considered, leading to the effect that all its “sampling 

images” for these values will be distorted. At the other 

extreme, by choosing smaller and smaller values of T , we 

will shorten the lengths between “pillars” in the signal 

“sampling images”, making thereby points of pillar 

occurrences denser and denser. This effect will be viewed in 

the time domain as the signal “sampling images” approaching 

the “continuous signal image”. While in the frequency domain 

the latter effect can be seen as shifting all the mirrored spectra 

outside the range of frequencies of interest. This is illustrated 

in Fig. 4(c); for the sake of completeness, the undistorted and 

distorted periodically changing spectra of the example signal 

are also shown - in Figures 4(a) and (b), respectively. ( )sX f  

in Fig. 4 is used to denote the magnitude of the sampled 

signal. 
Observe that there occurs in Figure 4(c) only one “spectrum 

nonzero pattern” in the range of frequencies in which we are 

interested (or which is simply “visible” to us). This range is 

denoted there by 
obf . 

Let us illustrate implications of the above fact and its 

possible interpretations. To this end, consider the set of radio 

frequencies (RF). It is assumed that these are the frequencies 

whose scope extends from 3 kHz to 3 THz. Therefore, the 

maximum range of frequencies covered by a “RF spectrum 

nonzero pattern” will equal approximately 2 obf = 6 THz. 

Further, by identifying  
obf  with  

mf  and 
vsT  with T  

consisting of these “pillars” from its continuous-time 

counterpart. 

In the next step, consider what happens when a value of the 

period 
vsT  goes to zero and in the limit is equal to zero. Let us
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1 vsT   

( )sX f  

f  0  1 T  

(a)  

2 T  1 T−  

( )sX f  

f  0  1 alT  

(b)  

2 alT  1 alT−  3 alT   2 alT−   

( )sX f  

f  0  

(c)  obf  

 
Fig 4. (a) Magnitude of the spectrum of a sampled signal, which does not show aliasing effects. (b) Magnitude of the spectrum of the same signal as in point (a), 

but sampled here in an appropriately longer sampling period 
alT . There occur aliasing effects in it. (c) Magnitude of the spectrum of the identical signal as in 

points (a) and (b), but sampled here with a very short period 
vsT . In this case, only one “nonzero pattern” occurs in it in the frequency range of interest (observable 

range of frequencies) 
obf . 

 

occurring in (1), we get ( )1 2vs obT f  after performing 

substitutions.   Finally,   substituting   the   value   of  
obf  

given above into the latter inequality, we obtain 

0,16 ps 160 fsvsT  = . 

Let us now interpret the above result first in the frequency 

domain. If we sampled any RF signal with the sampling 

periods smaller or equal to 160 fs, we would not experience 

any periodicity of the sampled signal spectrum. Simply, this 

periodicity would not be “visible” in the observed range of 

frequencies (RFs). Second, in the time domain, if the lengths 

between the successive signal “pillars” were smaller or equal 

to 160 fs, they would so densely occur that it would not be 

practically possible to distinguish between the “signal image”  

start from the latter. To this end, assume that all the distances 

between the “pillars” in a signal “sampling image” are exactly 

equal to zero. This means that all of them are hidden in a one-

dimensional space possessing only one dimension 

“amplitude”. So, this case resembles exactly the case already 

discussed and illustrated in Fig. 3(a).  

Now, assume that in the case discussed just above with very 

short periods 
vsT  the values of these periods go to zero. In 

other words, we assume then that they are infinitesimal, 

however remain all the time greater than zero. So, in this case, 

the image sketched above saying that it is not practically 

possible to distinguish between the “signal image” consisting 

of very densely located signal samples from its continuous-

time counterpart is valid. Also, we stress here that this picture 

of a signal is a two-dimensional one, in contrast to the case of 

0vsT =  considered just before. Furthermore, observe that this 

picture corresponds to the one shown in Fig. 3(b), but here 

with the signal samples as close to each other as possible. 

Moreover, the relation existing between the sets illustrated in 

Figures 3(a) and (b) extends also to the relation between the 

signal image for 0vsT =  and its images for the infinitesimally 

small values of 
vsT . That is the latter ones can be viewed as 

discrete-time expansions of a one-dimensional space 

connected with 0vsT = . 

Let us interpret the two results we arrived at above (one for 

0vsT = , and second for infinitesimally small values of 
vsT , 

but greater than zero). To this end, see that we would expect 

receiving in the limit (that is when going with 
vsT  to zero) 
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a continuous-time signal rather than a set illustrated in Fig. 

3(a). However, note that we could interpret this fact as a lack 

of a “limit image” of an infinite sequence of “sampling 

images” discussed above when values of the period 
vsT  go to 

zero. Such behavior evidently follows from a sudden 

transition from scaled discrete timelines related with the 

“sampling images” for 0vsT   to a point (on the timeline) 

related with that one for 0.vsT =  In other words, this all stems 

from a “sharp shrinking” of a set of cardinality c  (note that 

each of the scaled discrete timelines mentioned above is such 

a set) to a set of zero cardinality (an empty set). As a result, 

we simply “lose timeline” in performing the operation 

described above. In a sense, we can regard this as a paradox. 

Its implications for behavior of the reconstruction formula 

given by (2) when T  in it goes to zero will be discussed in the 

next section. 

However, in the context of the aforementioned paradox, let 

us comment yet on the following statement: “God made the 

integers, all else is the work of man” – attributed to a German 

mathematician Leopold Kronecker [7]. From the discussions 

presented in this section and in the previous one, it follows 

clearly that the timeline construction builds on the real 

numbers, which constitute a set of cardinality c . So, in fact, 

we can express this in the following way: “if God made time, 

he have had to create also the reals”. Obviously, this 

contradicts a little bit that what Leopold Kronecker said. 

Finally, complementing the above, note that even when the 

signal sampling moments are expressed by integers, these 

integers are “immersed” in the set of real numbers (as stressed 

in Section 2). 

IV. SAMPLING BEHAVIOR OF RECONSTRUCTION 

FORMULA FOR SAMPLING PERIOD GOING TO ZERO 

In this section, we will investigate the behavior of the 

reconstruction formula given by (2) when the sampling period 

T  in it goes to zero. We will check whether it provides, in the 

limit, that what we expect to get in this case. That is a function 

( )x t  of a continuous time.  

To this end, let us denote by ( )mx t  the function occurring 

in the middle of (2). That is 

 

 ( ) ( ) ( ) sincm

k

x t x kT t T k


=−

= −  . (4) 

 

Then, let us carry out some rearrangements in the expression 

defining ( )mx t  that lead to the following form: 

  

 ( ) ( )
( )

( )
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  m

k

t kT
T

x t x kT T
t kT





−

− =

 
− 

 
=

−
  . (5) 

 

In the next step, we introduce a new variable z kT=  and a 

differential of this variable, ,z T = in (5). And we try to 

calculate the function ( )mx t  for the  limiting case of 0T = .  

 

That is the following:  

  ( )( ) ( )
( )

( )0
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lim   m
z

k

t z
z

x t x z z
t z





−

 →
− =

 
− 

 
= 

−
 . (6) 

 

Now, before proceeding further with calculations in (6), let 

us invoke two results from [8], namely 
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and 

 
( )

( )

0

0
0

0
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 lim   

y y

y y
y y




→

 −  
  
  − =
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, (7b) 

 

where y  means some variable, 
0y  stands for a value of its 

shifting, and ( )   denotes the so-called delta function (Dirac 

impulse). 

Denoting z  , which occurs in (6), by a symbol  , and 

applying then the formula for ( )0y y −  given in (7) in (6), 

we can rewrite the latter equation for sufficiently small values 

of   as 

 

 ( )( ) ( ) ( )
0 0

lim lim   m
z z

k

x t x z z z t
−

 →  →
− =

 
 −  − 

 
   (8) 

 

In the next step, recognizing in (8) the definition of an 

integral and after some manipulations, we arrive finally at 

 

( )( ) ( ) ( )

( ) ( ) ( )

0
lim

  

m
z

x t x z z t dz

x z z t dz x t





−

 →




−

 − − =

= − =





 . (9) 

 

Note now that (9) shows that when the sampling period T  

in the reconstruction formula (given by (2) goes to zero, it 

provides us with an original continuous-time signal. That is 

we receive then the signal we expected to arrive at. And this 

can be obviously viewed as a paradox when compared with 

the corresponding results obtained in the previous section. 

But, let us try to explain illustratively the difference existing 

between these two cases (which is responsible for the different 

results achieved). To this end, see that we can view the case 

discussed in Section 3 as such a one in which a set consisting 

of the signal sampling moments ,  ..., 1,0,1,...,kT k = −  is “so 

deeply immersed” in the set of reals standing for the 

continuous timeline that disappearance of the first of them 

implies a simultaneous disappearance of the second one. But, 

in the case of calculations in this section, see that the signal 

sampling moments ,  ..., 1,0,1,...,kT k = −  can be seen as 
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“sliding points” on the set of a continuous timeline. And when 

all these points vanish, it does not mean that the latter set 

vanishes, too. It remains. 

Finally in this section, we remark also on the derivations 

presented in (8) and (9). Obviously, they can be treated only as 

a sketch of a proof. A full one is more demanding and needs 

more advanced mathematics; it will be presented elsewhere. 

Here, we only draw attention to the fact that it is because of the 

appearance of a delta function (that is not a simple function but 

a distribution (generalized function)), the need of the use of an 

appropriate definition of the integral (we used the Riemann 

definition, but, it is rather not applicable here), and the 

occurrence of a limiting operation associated simultaneously 

with the integrating operation and with a function under the 

integral symbol that provides us with a distribution.  

V.  CONCLUSIONS 

It seems that nothing can be already said on topics of 

sampling of continuous-time signals, the sampling theorem, 

and the reconstruction formula. That is, of course, largely true. 

However, as shown in this paper, there are still some 

intriguing points in the above topics that were kept silent in 

the hitherto literature, but, in our opinion, need to be 

addressed and explained. Just such a role fulfils this article. 

Here, we have thoroughly explained the relations between 

unscaled and scaled discrete timelines, as well as their relation  

 

to a continuous-time line. We have done this from the point of 

view of topology. Furthermore, we have proposed a unique 

interpretation of the sampled signal images that were sampled 

with different periods. Even more, we have shown an 

informative uniqueness of signals independent of their images 

in the time domain. Attention has been also drawn to 

occurrence of some paradoxes in cases of the values of the 

sampling period going to zero. Behavior of the reconstruction 

formula in such circumstances has been checked, too. We 

have concluded that it behaved then correctly.  
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