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Abstract—In this paper, it has been shown that any measuring 

process can be modeled as a process of sampling of signals.  Also, 

a notion of a special kind of functions, called here functions with 

attributes, has been introduced. The starting point here, in the 

first of the above themes, is an observation that in fact we are not 

able to measure and record truly continuously in time any 

physical quantity. The measuring process can be viewed as going 

stepwise that is in steps from one instant to another, similarly as 

a sampling of signals proceeds. Therefore, it can be modeled as 

the latter one. We discuss this in more detail here. And, the 

notion of functions with attributes, we introduced here, follows in 

a natural way from the interpretation of both the measuring 

process as well as the sampling of signals that we present in this 

paper. It turns out to be useful. 
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I. INTRODUCTION 

HE author of this paper came up with an idea of a special 

kind of functions when analyzing some “hidden” 

topological properties of the reconstruction formula and the 

sampling theorem [1]-[6]. Here, these functions are called 

functions with attributes. They turn out to be useful in many 

problems and interpretations we are faced with in the area of 

signal processing. We will illustrate this using some examples. 

Let us start with some general remarks and observations, 

which will lead to the notion of functions with attributes. To 

this end, imagine that we perform some measurements 

continuously, achieving as a result a signal of a continuous 

time. At least we think it is so. That is that we receive a 

continuous signal. 

In what follows now, we will however argue that this is not 

exactly true. Why? Because of properties of a physical 

equipment we utilize for carrying out measurements. It is not 

able to react immediately. And this obviously regards all kinds 

and types of the measuring equipment, independently whether 

it will be optical, mechanical, electronic, or a combined one. 

For example, when measuring a voltage that changes with 

time, we see that our voltmeter, connected to a curve plotter or 

to a data archiving system, needs a finite time to register each 

of the successively incoming values of a voltage. Obviously, 

this finite time will be mostly so short that invisible to eyes or 

“not seen” on a plotted curve. In other words, when we 

perform any measurements, we move in fact from one point 

on the timeline (time axis) to another. That is in a not strictly 

continuous way. And, note that this way resembles sampling of 
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continuous-time signals. Furthermore, the sampling can be 

performed uniformly or non-uniformly. 

The observation described above is illustrated in Fig. 1. In 

this figure, ( )v t , ( )mv t , and  mv kT  mean, respectively, a 

“true” voltage signal that is a continuous function of time, its 

measured form, and a picture of the latter shown in a form as 

it would be a sampled signal. 

Comparison of the curves presented in Figures 1(b) and 1(c) 

shows that the process of measuring any physical quantity, 

which aims in receiving its time course, can be formally 

identified with the process of sampling a signal of a 

continuous time.  

Now, before introducing functions with attributes, let us, 

once again, draw attention to the model of measuring process 

that we propose here. It is not a continuous one in the sense 

that it delivers continuously values of a measured quantity. In 

our model, we assume that the values are delivered from 

instant to instant, and the time between these instants can be 

very, very small (for example, say, 1 fs), but it always remains 

finite. We denote it here by T. Note further that this time can 

be deduced, for example, from the sensitivity parameter of a 

concrete measuring device. Moreover, observe that it can 

depend upon the signal shape and possibly change then its 

value from instant to instant. However, we think that in most 

cases it will be quite reasonable to assume its value to be 

constant. In the latter case, this will mean an equivalent 

uniform signal sampling as illustrated in Fig. 1(c). In contrast 

to this, an equivalent signal sampling will be non-uniform in 

the first case. Finally, let support our model by an illustration 

shown in Fig. 2. 

Consider first Fig. 2(a) showing a period of a continuous 

time from 
1t  to 

2t , in which some measurements should be 

carried out. Topologically, this period represents a bounded 

subset of the set of real numbers R . However, it contains an 

infinite number of elements (instants) and its cardinality is c  

(continuum).  

In this paper, we take the view that there is no physical 

possibility to perform a measurement at each of these infinite 

number of instants, including a simultaneous delivering the 

corresponding data to a user (or archiving these data). This so 

because any measurement, in the sense as stated above, needs 

some finite time, say a “processing time”. And it causes that 

an infinite number of measurements cannot be carried out in a 

finite time period. So, therefore, the only reasonable 

description of measurements in a finite period, which we are 

able to imagine, is the one presented in Fig. 2(b). In this 

figure, T denotes the “processing time” mentioned above. 

Moreover, measurements are performed on a finite number of 

instants, denoted by kT in Figure 2(b), where k means an 

integer that assumes the values: -3, -2, -1, 0, 1, 2, 3, 4, and 5. 
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That is, in our example, a finite number of nine measurements  

 

vm[kT] 

kT  0  -T  T 2T  3T  -2T  -3T  4T  5T  

(c)  
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(a)  
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Fig. 1. (a) A true picture (but not measured) of a signal being a continuous function of time. (b) A picture of the signal from point (a) obtained in measurements. It 

consists of an infinite series of very closely spaced points (spaced uniformly or non-uniformly), which were obtained in measurements, and which approximate the 

function presented in point (a) above. (c) A fragment of a highly magnified picture of the one presented in point (b) with the marked discrete-time points kT, 
where k = ..., 1,0,1,...−  and T means a distance on the time axis between the measured points. 
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Fig. 2. (a) A period of a continuous time from 

1t  to 
2t , in which some measurements should be performed. (b) The same time period on the discrete-time axis 

(denoted by kT) that is “immersed” in the continuous timeline (denote by t). 

 

are carried out in a finite time period lasting from 1t  to 2t . 

Now, concluding all the above observations and remarks 

supported by Figures 1 and 2, we can really say with 

conviction that any measuring process can be treated 

equivalently as a sampling of a continuous-time signal. That is 

it can be treated similarly as a signal discretization. And 

because of this reason, the reconstruction formula and the 

sampling theorem [1]-[6] apply here; that is when analyzing 

measuring processes. 

In fact, these two mathematical tools mentioned can really 

prove to be very powerful in interpreting and correctly 

manipulating measured data. For example, see that the signal 

values which were not measured in the case of Fig. 2(b) can 

be easily obtained through the use of the reconstruction 

formula. That is without carrying out any measurements. Their 

number is obviously infinite, as for the case of Fig. 2(a). So, in 
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other words, we see clearly that the reconstruction formula 

and the accompanying sampling theorem play a role of a 

connecting element between the “images” presented in 

Figures 2(a) and 2(b). In fact, they probably lead to the 

simplest type of something we want to introduce in this paper 

and what we will call here functions with attributes. More 

details on them will be given in what follows. 

II.  DESCRIPTION OF CONTINUOUS TIME SIGNALS VIA 

ASSOCIATED FUNCTIONS WITH ATTRIBUTES 

Let us begin this section with defining the purpose of 

introducing special objects we want to call functions with 

attributes, as mentioned above. Generally saying, they should 

connect to each other two or more images of a physical object 

we get in form of measured signals on it, and provide us all-

in-one information about this object. For example, in the case 

considered in Introduction of exactly continuous-time signal 

(which is, as seen, an idealized one) and the related ones 

having discrete form (due to the nature of measurements), 

when all of them represent the same physical object, this will 

mean what we can express by saying “putting all these signals 

into a one box”. Note that this is possible, as we argued in 

Introduction, because any measurement that provides signals 

can be viewed as (or be equivalent to) a sampling of a 

continuous-time signal. And the latter operation, when 

performed with sampling frequencies obeying the sampling 

theorem [1]-[6], allows just to relate to one another all the 

signals mentioned above. Then, via the reconstruction formula 

[1]-[6], they will mean the same. That is, in other words, they 

will constitute a signal object (let us call it in this way here) 

that will consist of an infinite number of equivalent signals; it 

is visualized in Fig. 3. Moreover, note that this figure provides 

also a graphical definition of the notion of a signal object. 

First of all, see in Fig. 3(a) that the signal object presented 

there is a set consisting of an infinite number of elements 

which are signals. A primary one among these signals is the 

one presented on the top of the figure, being the signal of a 

continuous time, ( )x t . All the other ones are its sampled 

versions achieved with the use of different sampling periods 

and/or different starting points of sampling (in the sense of 

location of the zeroth index k). For example,  x k  and  x k  

in Fig. 3(a), where the sampling period T in square brackets is 

dropped, are sampled using the same sampling period, but 

possess two different locations of the zeroth sampling index k. 

Further,  x k  and  x k , are sampled with the use of two 

different sampling periods T and T/2, respectively. The result 

of a non-uniform sampling is not illustrated in Fig. 3(a). 

Finally, it is assumed that all the sampled members of the set 

illustrated in Fig. 3(a) fulfil the sampling theorem [1]-[6] (as 

appropriate, its version for uniform or non-uniform sampling). 

 Fig. 3(b) stands for a useful abbreviated form of the signal 

object that was defined graphically in Fig. 3(a). Basic features 

of this object can be easily recognized on the figure. That is 

the time course of a continuous time function considered and 

points of its sampling. We will say here that possibility of 

sampling is its attribute, and any of its appropriately sampled 

versions is a result of “an attribute interaction on this 

function”. And, as we know, the number of these interactions 

is infinite. 

Now, we will discuss two important properties of signal 

objects defined in a descriptive way above as well as 

graphically in Fig. 3. Namely, we will consider their 

boundedness (relating to sets of an infinite number of related 

signals – in the sense defined below) and their cardinality.  

And, let us consider the boundedness property first. This 

boundedness we consider here refers to the set of possible 

values of the sampling period of a given function. (It is a 

closed bounded one.) And appropriately, we call those 

elements of a signal object, which correspond to the bound 

values of its sampling period, the bounding signal elements. 

Now, in more detail, see that really a continuous time function 

like that one which is visualized on the top of Fig. 3(a) is a 

bounding element (related with the corresponding bound value 

of the sampling period) of the set of elements of a given signal 

object. On the other side, its bounding elements are: 1. a 

version uniformly sampled with the so-called Nyquist rate [1]-

[6] (that is with the minimal sampling frequency allowed by 

the sampling theorem) and, 2. a version non-uniformly 

sampled on the edge of satisfying an equivalent condition for 

this kind of sampling [7]-[12]. In other words, the first 

bounding element corresponds with choosing the sampling 

rate equal to infinity (meaning no sampling) and the second 

ones are connected with choosing the Nyquist rate or a related 

one. Moreover, note that then all the remaining sampled 

functions of a given continuous time function represent other 

signal objects, not this one described above. That is they 

belong to some other sets. 

Consider now the size of a set constituting a signal object. 

Obviously, as already mentioned, it consist of an infinite 

number of elements. And, at first glance, it would seem that 

the set containing these elements is countable. That is its 

cardinality would be equal to the cardinality [13] 0א, where the 

so-called aleph-zero symbol  0א means the cardinality of the set 

of natural numbers N . In what follows, we will however 

show that this is not true. Namely, we will demonstrate that 

the cardinality of the above set is of c  or greater, where the 

symbol c  stands for the cardinality of the set of real numbers 

R . 

To show that the above claim is true, let us take into 

account a continuous time signal and sample it with a certain 

sampling period T that satisfies the sampling theorem. Next, 

observe that for this choice of T there exists an infinite number 

of possibilities of choosing a starting point of sampling on the 

closed line segment 0,T  . And, the cardinality of the latter 

line segment equals c . So, in consequence, this leads to 

obtaining a set of sampled signals that are visually different 

(because time-delayed). Further, consequently, the cardinality 

of that set we arrive at here is equal to c . 

In the next step, see that in fact there exists an infinite 

number of possible correct (satisfying the sampling theorem) 

choices for choosing the value of T. Only condition is that 

they must lie in the closed line segment 
max0,T  , where the 

zero value stands for performing no sampling and 
maxT  for the 

maximal sampling period allowable by the sampling theorem. 

But, note that the cardinality of the latter line segment 

(interval) equals c . Furthermore, see also that for each of the 

values of period T lying in the interval 
max0,T   we can 

choose an infinite number of the starting points of sampling as 
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described above. (Except of course of the case of 0T = , when 

no sampling is performed.)  

Now, see that connecting these two procedures described 

above leads to a set which is an infinite union of sets of the 

cardinality  c ; with  this  number  of  set  union  operations 

 And finally at this point, note that by using appropriate 

variants  of   the   two   procedures   discussed   above  that  is: 

 

signal object 

made up of 

an infinite 

number of  

related 

signals 

x(t) 

t  0  -T  T 2T  3T  -2T  -3T  4T  5T  

x[k] 

k  0  -1  1 2  3  -2  -3  4  5  

x[k’] 

k’  -1  0 1  2  -2  -3  3  4  

x[k’’] 

k’’  0  -3  3 6  9  -6  -9  12  15  

(a) 

x(t) 

t  
(b) 

 
Fig. 3. (a) A signal object defined as an object that consists of an continuous-time signal and of an infinite number of its sampled versions. The signal sampled 
versions are assumed to be obtained with the use of different sampling periods and/or different starting points of sampling (in the sense of location of the zeroth 

index k). Further, all of them fulfil the sampling theorem. Moreover, the starting point of sampling can be chosen arbitrarily on the timeline, and the sampling 

operation itself can be uniform or non-uniform. (b) A pictorial representation of a signal object with sampling-type attribute or, in other words, of a signal 
possessing sampling-type attribute. 
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mentioned constituting a set of the cardinality c . Obviously, 

the resulting set is of the cardinality c  or greater. 

1. choosing, now, admissible combinations of sampling 

periods and, 2. changing starting points of sampling in the 

case of non-uniform sampling we obtain next sets of elements 

belonging to a signal object considered. Obviously, these sets 

should be added to those discussed previously for a uniform 

sampling of a given signal. So, after that, the resulting set of 

elements of a signal object considered will be complete. And, 

the cardinality of it will be c  or greater. That is maybe the 

size of the resulting set is exactly equal to c  or it is another 

cardinal number. We do not consider however this question 

here. 

Let us now choose and formalize notation for functions 

(signals) with attributes. We propose here to denote them with 

the use of the following symbol:  ( ),, t xx t , where t stands 

for a continuous time variable and 
,t x

 means an attribute 

interacting on the function ( )x t . Note that in this notation the 

attribute 
,t x

 extends the function (signal) ( )x t  to the 

function (signal) object ( ),, t xx t . 

In other words, the subscript  t  by 
,t x

 indicates here the 

attribute interaction on the time variable, and the second one 

by 
,t x

, x, indicates that the time variable affected is an 

argument of the function ( )x t . Moreover, note that in this 

paper we use the same symbol 
,t x

 for denoting a given 

attribute itself as well as for the result of its interaction on the 

time variable t, being the argument of the function ( )x t . Its 

current meaning will follow from the context.  

In this section, we consider, as already mentioned, the 

sampling-type attribute (or simply sampling on the time axis). 

And, note that its definition can be narrower or broader. For 

example, the sampling attribute can be restricted only to the 

uniform sampling or only to the non-uniform one. 

Furthermore, it can mean only the stochastic sampling. Or, it 

can stand, as discussed at the beginning of this section, for the 

uniform and non-uniform types of sampling taken together. 

Moreover, the sampling-type attribute definition can admit all 

the possible starting points of sampling (in the sense of 

location of the zeroth index k) or be restricted to only one or 

more fixed ones. And so on. 

As already mentioned and shown before, all the elements of 

a given signal object (that is all the signals it contains) are 

equivalent to each other although they differ from each other 

visually. However, there exist two unique operations 

(operators, transformations) which allow to obtain from any of 

them, uniquely, an arbitrary element of a given signal object 

we wish. These two transformations are: 1. the sampling of a 

continuous time signal carried out in accordance with the 

Nyquist sampling theorem or a related one, and, 2. the 

mapping indicated by the so-called reconstruction formula. As 

well known, in the case of the uniform sampling, we can 

express them as follows below. 

To this end, let us use the notation that is applied on the two 

top curves of Fig. 3(a). There, the values of bar heights 

   ,  ..., 1,0,1,...,x k x kT k= = −  are equal to the values 

( )x kT  of the first function (continuous one) at the points 

kT . Next assume that the following:  

 

 1 2s mT f f=   (1) 

 

holds, where T  means a sampling period, 
sf  the 

corresponding sampling frequency, and 
mf  stands for the 

maximal frequency present in the spectrum of the signal 

( )x t . Then, by virtue of the sampling theorem [1]-[6], the 

signals ( )x t  and    ,  ..., 1,0,1,...,x k x kT k= = −  are 

equivalent to each other in the sense that they can be obtained 

from each other via the so-called reconstruction formula [1]-

[6] 

 

 

( ) ( ) ( )

  ( )

 sinc

   sinc

k

k

x t x kT t T k

x k t T k



=−



=−

= − =

= −





   .         (2) 

 

In (2), the function ( )sinc t  is defined as 

 

 ( )
( )sin

  for 0   
sinc .

1   for 0    

t
t

t t

t








= 
 =

 (3) 

 

Using the newly introduced notation for functions with 

attributes and the formulas (1)-(3), we can define, 

respectively, the sampling ( )sH   and reconstruction ( )rH   

transformations (operators) in the following way: 

 

 
( )( ) ( ) ( )   , 0, ,

          ..., 1,0,1,...,

s t xH x t T k x kT x k

k

= = =

= −
. (4) 

 

and 
 

 

( ) ( )   ( )

  ( ) ( )

, 0,

  sinc  ,

r t x

k

H T k x kT x k

x k t T k x t


=−

= = =

= − =
 (5) 

 

where ( )   x kT x k= , ..., 1,0,1,...,k = −  means a set of 

samples of a given signal ( )x t  for a given sampling period  T  

and an assumed location of the zeroth index 
0k  of  k  (not 

indicated in this notation). Convention assumed here is also 

that when the parameters T and 
0k  are not given, for example, 

in ( ), 0,t x T k , this corresponds to the case of taking all the 

possible and admissible values of them. Always, the context 

will determine an actual usage. And finally at this point, we 
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remark that after introducing the symbol ( ),, t xx t  a precise 

notation for the signal illustrated in Fig. 3(b) should be the one 

that uses the latter symbol (instead of ( )x t ). 

III.  THE DIRICHLET FUNCTION AS AN INSTRUCTIVE EXAMPLE 

OF FUNCTIONS WITH ATTRIBUTES 

At the first glance, it can seem that the functions with 

attributes - so named by us here - are simply a kind of 

functions with parameters. Of course, this is partly true. 

However, the former ones mean much more and we will try to 

show this on an example of the so-called Dirichlet function 

[14], [15]. This example is very instructive. 

The Dirichlet function is defined as 

 

 ( )
1  for  

0  for  

t
D t

t


= 



Q

Q
  , (6) 

 

where Q  means the set of the rational numbers. This function 

is called the characteristic function of the rational numbers 

and can be also expressed analytically as [14] 

 

 ( ) ( )2lim lim cos !n

m n
D t m t

→ →
=  . (7) 

 

Consider now the function ( )x t t=  and a function 

( ) ( )Dx t t D t=   that is derived from the former one. In what 

follows, we will show that these two functions build up a 

signal object in the sense defined in Section 2. Or, in other 

words, they form a function that we called a function with 

attributes in the previous sections. Let us denote it by 

( ),, t xx t , similarly as before, where now this symbol refers 

to as only one function, ( )x t t= . Its attribute will be defined 

as a condition following from the function ( )D t , determining 

whether to multiply the time variable t by 1 or by 0. Or, more 

illustratively, as switching between the values of  t  when they 

are rational numbers, and zeros in case they are irrational 

ones. What, equivalently on the time axis, will correspond to 

stamping the successive rational and irrational numbers on this 

axis. (On this occasion, remember that in the case of signal 

sampling we have dealt with something similar: moving 

successively from one point to another on the time axis t, 

where the locations of these points followed from the relation t 

= kT, with k = ..., 1,0,1,...−  .) 

Concluding the above considerations, note that the 

following transformations (operators):   

 

 ( )( ) ( ) ( ),sD t x DH x t t x t t D t= = = =   . (8) 

 

and 
 

 ( ) ( )
,

,

,

if 

 if

   0
 

   0

t x

rD t x

t x

t
H t x t

t

=
= = =



, (9) 

can be formulated, where ( )sDH   and ( )rDH   play the roles, 

respectively, of a sampling operator and of a signal recovery 

operator. And, because of this reason, we call them here, 

respectively, the Dirichlet-sampling and the Dirichlet-

reconstruction operations. 

So, finally, we can say that the function with the Dirichlet-

type attribute ( ),, t xx t , defined by (8) and (9), builds up a 

unique signal (function) object. It consists of a pair of two 

functions, ( )x t t=  and ( ) ( )Dx t t D t=  . Moreover, observe 

that the sets of arguments of these functions related with their 

non-zero values possess different cardinalities. For the first of 

them, this is c , but for the second 0א (note that something 

similar happened in the case of signal (function) objects 

discussed in Section II). 

IV. REMARK 

The basic ideas behind an interpretation of the measuring 
process as a sampling of signals and behind a notion of 
functions with attributes have been developed here. Now, 
however, they will need more studies to prove their 
usefulness. The results of these investigations will be 
presented in the forthcoming  papers. 
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