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Abstract—Single Image Super-Resolution (SISR) through 

sparse representation has received much attention in the past 

decade due to significant development in sparse coding algorithms. 

However, recovering high-frequency textures is a major bottleneck 

of existing SISR algorithms.  Considering this, dictionary learning 

approaches are to be utilized to extract high-frequency textures 

which improve SISR performance significantly. In this paper, we 

have proposed the SISR algorithm through sparse representation 

which involves learning of Low Resolution (LR) and High 

Resolution (HR) dictionaries simultaneously from the training set. 

The idea of training coupled dictionaries preserves correlation 

between HR and LR patches to enhance the Super-resolved image. 

To demonstrate the effectiveness of the proposed algorithm, a 

visual comparison is made with popular SISR algorithms and also 

quantified through quality metrics. The proposed algorithm 

outperforms compared to existing SISR algorithms qualitatively 

and quantitatively as shown in experimental results. Furthermore, 

the performance of our algorithm is remarkable for a smaller 

training set which involves lesser computational complexity. 

Therefore, the proposed approach is proven to be superior based 

upon visual comparisons and quality metrics and have noticeable 

results at reduced computational complexity.  

 

Keywords—Single Image Super-Resolution, Dictionary 

Learning, Sparse representation 

I. INTRODUCTION 

MAGE Super-Resolution (SR) is an image reconstruction 

problem which obtains High Resolution (HR) image from 

given single or multiple Low Resolution (LR) images. 

However, in a practical scenario, multiple LR images may not 

be available and even if those are available, those multiple 

images need to be registered which is a complex process. 

Therefore, researchers are much focused to obtain HR image 

from given single LR image. Considering this, Single Image 

Super-Resolution (SISR) is an ill-posed problem which does not 

possess a unique solution due to the underdetermined system. 
1In another way, there would be many HR images which satisfy 

reconstruction constraint for given LR image. However, prior 

information about the ill-posed SR problem may mitigate the 

feasible solution. In a practical scenario, SR algorithms would 

be extremely useful to extract significant information from low-

cost imaging sensors. 

The SISR algorithms are primarily classified into 

reconstruction and learning based where reconstruction based 
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algorithms try to interpolate the LR image in order to obtain HR 

image whereas learning based approach trains the dictionary 

and use it to obtain HR image for input test LR image. 

Considering learning based SISR, the coupled over-complete 

dictionaries (High and Low Resolution) are jointly trained from 

the given High and Low-Resolution training patches dataset 

which in turn used to reconstruct HR image. Moreover, the 

coupled over-complete dictionary shares the same sparse 

representation for the given HR-LR patch pairs. 

A dictionary learning is an optimization problem involves 

sparse approximation and dictionary update processes which are 

iterated until convergence criterion satisfied. Since a decade, 

many algorithms for sparse approximation became popular 

which are Basis Pursuit (BP) [1], Matching Pursuit (MP) [2], 

Orthogonal Matching Pursuit (OMP) [3], Least Absolute 

Shrinkage and Selection Operator (LASSO) [4], Subspace 

Pursuit (SP) [5] and Gradient Pursuit (GP) [6]. The objective for 

each sparse approximation algorithm is to obtain sparse 

representation for a given signal through an over-complete 

dictionary.  

An initial sparse representation is performed using an initial 

dictionary chosen either randomly or by simply fetching random 

columns of the training dataset. Through an initial dictionary, 

the given signal is decomposed through a linear combination of 

dictionary atoms i.e. dictionary columns where the weight of a 

dictionary atom is assigned by a sparse vector. Now in the 

dictionary update stage, fixing the sparse vector, the dictionary 

atoms are updated such that representation error is minimized. 

This whole process is iterated until the learned dictionary 

represents the training data at a satisfactory level. Previous to 

the dictionary learning algorithms, fixed dictionaries which has 

predefined mathematical transform, like Discrete Cosine 

Transform (DCT), Discrete Fourier Transform (DFT), Discrete 

Wavelet Transform (DWT) and many such were used. 

However, due to evolving learning based approached various 

dictionary learning method proposed. Initially, Olshausen and 

Field [7] proposed a Maximum Likelihood (ML) algorithm for 

dictionary learning for sparse coding of natural images. 

However, this approach ML is further replaced by Maximum a 

Posteriori (MAP), proposed by Kreutz-delgado et. al. [8] which 

reduces computational complexity in sparse approximation 

stage with respect to ML [7]. Considering the same ML [7] 

objective function, Engan et. al. proposed a more efficient 
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algorithm named Method of Optimized Directions (MOD) [9] 

which has close-form expression for dictionary update stage. 

Moreover, variants of MOD are also proposed such as Iterative 

Least Squares (ILS) [10] and Recursive Least Squares (RLS) 

[11]. By generalizing K-means algorithm, Aharon, Elad, and 

Bruckstein come up with K-means Singular Value 

Decomposition (K-SVD) [12] which updates single dictionary 

atom at a time without computing matrix inversion as required 

in MOD [9]. However, these approaches have a major 

bottleneck when the solutions are converging towards singular 

points rather than local minima where the objective function is 

not differentiable. In order to overcome this issue, Simultaneous 

Codeword Optimization (SIMCO) based dictionary learning 

algorithm is proposed by [13]. SIMCO avoids it by introducing 

additional regularization term in the objective function to make 

it differentiable. The prime objective of the SIMCO algorithm 

is to update sparse codes and dictionary simultaneously which 

enhances the learning rate. 

The SIMCO based learned over-complete dictionary 

outperforms implementation of SISR with respect to other 

existing SISR algorithms [14-16] in terms of perceptual quality 

and quantitative metrics. Moreover, the results show that 

SIMCO achieves quick learning rate compared to other 

dictionary learning approaches. The key reason for 

improvement SISR results using SIMCO is that SIMCO has an 

additional regularization coefficient which avoids convergence 

of objective function at singular points. 

The major contribution of this proposed algorithm as follows:   

    • SIMCO dictionary learning algorithm was proposed for 

single dictionary learning through given training set which 

is further applied in the image denoising problem. 

However, the SIMCO framework is modified into a SISR 

context to enable joint learning of dictionaries for given HR 

and LR pairs.  

    • Most SISR algorithms are compared with respect to 

quantitative metrics like PSNR and SSIM. However, the 

perceptual quality of an image cannot be exactly quantified 

through these metrics. Therefore, a quantitative metric 

named Weighted Signal to Noise Ratio (WSNR) [17] is 

used for comparison which measures the image quality 

based upon human visual perception. 

II. DICTIONARY LEARNING 

It is observed that most of the natural signals are sparsely 

represented exactly or approximately in any of the transform 

domain. The chosen dictionary to obtain transform domain 

representation is fixed and would not guarantee about 

representation error for the given set of signals. Hence, it is 

feasible to utilize a learning based approach where dictionary 

would be updated until convergence to the lowest possible 

representation error for a given training set of signals. To 

summarize, dictionary learning approach first aimed to obtain 

sparse representation and later on update its atoms which tries 

to minimize the representation error. 

Consider from the training images dataset, some L patches are 

extracted and concatenated horizontally after converting each 

patch into a column vector of length N which results in training 

set Y ∈ RN×L. The objective is to obtain learned overcomplete 

dictionary D ∈ RN×K which gives a sparse representation of each 

patch in Y with minimum possible representation error through 

sparse vector X ∈ RK×L. The illustration of the dictionary 

learning observation model is shown in Fig. 1. 

 
Fig. 1 Dictionary Learning: Observation Model 

 

As illustrated in Fig.1, the dictionary D provides an approximate 

representation of each of the L  patch in training set Y via 

corresponding sparse vector X. The key objective is to obtain 

Optimized dictionary Dopt such that each of the L  training 

vectors is sparsely represented as linear combination of 

dictionary atoms while minimizing representation error. Since 

each patch exhibits sparse representation, the objective function 

must incorporate the prior information about sparsity. 

Therefore, the objective function for dictionary learning can be 

written as, 

𝑫𝒐𝒑𝒕 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝑫
‖𝒀 − 𝑫𝑿‖2

2 + 𝜆‖𝑿‖1                  (1) 

The regularization coefficient λ in (1) assigns weights to a 

tradeoff between sparsity and representation error. The above-

mentioned dictionary learning formulation (1) can be further 

extended for Single Image Super-Resolution problem by jointly 

learned HR and LR dictionary via common sparse 

representation which is described next.  

The dictionary learning based SISR algorithm consists 

of training phase where one seeks for sparse representation in 

order to learn dictionaries (HR and LR) and later during testing 

phase the query LR image is super-resolved via those learned 

dictionaries. However, for each concatenated HR and LR patch 

pair there must be a common sparse vector for corresponding 

concatenated HR and LR dictionaries. The approach for testing 

hereby used is an ScSR algorithm [16] as mentioned in 

Algorithm 1. The ScSR algorithm is first proposed SISR 

algorithm which seeks for sparse representation via dictionary 

learning. However, due to evolving dictionary learning 

algorithms, the SISR results can be improved through efficiently 

learned dictionaries. Therefore, the SIMCO [13] based 

dictionary learning algorithm is imbibed into the SISR 

framework via jointly learned HR and LR dictionaries 

simultaneously.  

SIMCO based dictionary learning algorithm is 

modified and imbibed into SISR framework to satisfy the 

objective of jointly learn HR and LR dictionaries. Consider a 

test database Yl and Yh created by randomly sampled LR and HR 

patch pairs from test images database and concatenated 

horizontally for each. The initial dictionary is chosen by 

arbitrarily choosing columns of Yl and Yh to obtain Dl and Dh 

respectively. Now, the coupled dictionary learning based on 

SIMCO [13] can be formulated as shown in (2) below: 

𝑚𝑖𝑛
{𝑫𝒉, 𝑫𝒍, 𝒁}  
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Where, N and M are dimensions of HR and LR patch 

respectively in vector form, and μ is an additional regularized 

term to avoid singularity problem which occurs in dictionary 

update. Now, in order to make the expression simplified, 

equation (2) can be rewritten as, 

𝑚𝑖𝑛
{𝑫𝒉, 𝑫𝒍, 𝒁}  

1

𝑁
‖𝒀𝒄 − 𝑫𝒄𝒁‖2
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                              + 𝜇 (
1

𝑁
+

1

𝑀
) ‖𝒁‖2

2         (3) 
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As a result of (3), we would have learned HR and LR 

dictionaries which is used to implement SISR as mentioned in 

Algorithm 1. 

III. PROPOSED ALGORITHM 

Consider an LR image X which can be modeled as blurred 

and downsampled version of HR image Y 

 X =SHY                                    (4) 

where S represents downsampling operator and H represents 

blurring operator. 

SISR problem aims to reconstruct HR image Y from given LR 

image X which leads to infinite many solutions which satisfy 

reconstruction constraint as illustrated in (4). Therefore, sparsity 

prior is considered for choosing the optimum solution. In order 

to incorporate sparsity prior, the SISR algorithm similar to [16] 

based on the local and global model is used. In the local model, 

for each extracted LR patch, corresponding HR patch is 

reconstructed via sparse representation which is repeated for the 

entire image. Whereas, in the global model, the reconstructed 

LR image in the local model is updated using gradient descent 

algorithm to satisfy reconstruction constraint in (4). The 

objective of the local model is to extract high-frequency 

information to reconstruct the HR patch while the global model 

aims to reduce visual artifacts and make the image more 

consistent. More insight about the local and global model is 

described next.  

A. Local model 

For each extracted HR patch y of Y, we can represent it as 

a sparse linear combination of learned HR dictionary Dh atoms 

as (5),  

 y ≈ Dhw for w ∈ RK  with ∥w∥0 ≪ K           (5) 

The sparse vector w will be extracted by the sparse 

representation of LR patch x of X through learned LR dictionary 

Dl by solving (6), 

 min‖𝒘‖1  𝑠. 𝑡. ‖𝐹𝑫𝒍𝒘 − 𝐹𝒙‖2
2 < 𝜀                  (6) 

The equivalent representation of (6) can be given as, 

 
𝑚𝑖𝑛
𝑤

‖𝐹𝑫𝒍𝒘 − 𝐹𝒙‖2
2 + 𝜆‖𝒘‖1                     (7) 

The regularization coefficient λ in (7) assigns weights to a 

tradeoff between sparsity and representation error. Also, linear 

feature extraction operator F provides perceptually meaningful 

constraint on sparse representation to be closest for the 

approximation of x. As mentioned in [16], first and second order 

derivatives of LR patch are used as feature which are four 1D 

filters given as, 

                         f1 = [-1, 0, 1],               f2 = f1
T 

                f3 = [1, 0, -2, 0, 1],       f4 = f3
T                              (8) 

These filters are applied to training images which extract edge 

information and encodes neighboring information.  

While solving (6) for each patch, the correlation between 

adjacent patches is not maintained. Therefore, a one-pass 

algorithm as mentioned in [16] is used which is formulated as, 

min‖𝒘‖1  𝑠. 𝑡. ‖𝐹𝑫𝒍𝒘 − 𝐹𝒙‖2
2 < 𝜀1  

 𝑎𝑛𝑑 ‖𝑃𝑫𝒉𝒘 − 𝜶‖2
2 < 𝜀2                       (9) 

Here, P extracts overlapping region between the previously 

reconstructed HR image and current target patch, and α has 

values of previously reconstructed HR image with overlap. 

The simplified expression of (9) is given by, 

 
𝑚𝑖𝑛
𝒘

‖�̃�𝒘 − 𝒙‖
2

2
+ 𝜆‖𝒘‖1                    (10) 

Where, �̃� = [
𝐹𝑫𝒍

𝑃𝑫𝒉
]  & 𝒙 = [

𝐹𝒙
𝜶

] 

The solution of (10) results in optimized sparse vector wopt 

which in turn used to reconstruct HR patch for given LR patch 

by y = Dhwopt. It is important that dictionaries are learned to 

extract high-frequency textures rather than intensity levels. 

Hence, while acquiring a sparse representation of  LR patch, 

mean is subtracted and added back to HR reconstructed patch. 

The process is iterated for each LR patch extracted in Raster-

scan order and corresponding HR patch filled into HR image 

which in turn results into reconstructed HR image Y0. 

B. Global model 

The reconstructed HR image Y0 from the local model need 

not satisfy reconstruction constraint exactly due to local patch-

based process. Hence, Y0 is modified to meet with 

reconstruction constraint (4) by projecting Y0  onto the solution 

space SHY = X as, 

 𝒀𝒐𝒑𝒕 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝒀
‖𝑆𝐻𝒀 − 𝑿‖2

2 + 𝑐‖𝑿 − 𝑿𝟎‖2
2       (11) 

Using gradient descent algorithm, equation (11) can be solved 

by an iterative method with following update equation, 

 Yt+1 = Yt + v[HTST(X-SHYt) + c(X-X0)]          (12) 

Here v represents the step size of gradient descent algorithm. 

The whole algorithm to implement SISR is described in 

Algorithm 1. 

Algorithm 1 Coupled-dictionary learning based Single Image 

Super-Resolution 

Input: Learned dictionaries Dh, Dl and LR image X. 
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For each extracted 5×5 patch x of X starting from the upper left 

corner with stride 1 scanning as raster-scan order, 

• Convert the extracted patch x to be zero mean by 

subtracting mean 𝒙 from each pixel of the patch x 

• Compute sparse vector which shares same sparse 

representation for HR and LR patch through, 

𝑎𝑟𝑔𝑚𝑖𝑛
𝒘

‖�̃�𝒘 − 𝒙‖
2

2
+ 𝜆‖𝒘‖1 

• Obtain HR patch y = Dhw 

• Add mean 𝒙 into HR patch y and put in Y0 

end 

Through global reconstruction constraint, obtain the closest 

image to Y0 which satisfies, 

𝒀𝒐𝒑𝒕 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝒀
‖𝑆𝐻𝒀 − 𝑿‖2

2 + 𝑐‖𝒀 − 𝒀𝟎‖2
2 

Output: SR image Yopt 

IV. EXPERIMENTAL RESULTS 

In order to demonstrate effectiveness for the proposed 

algorithm, the PSNR and SSIM for standard Set14 images are 

computed for various SISR algorithms [14–16] (for upscale 

factor 2) and same is shown in TABLE I and TABLE II 

respectively. However, higher PSNR and SSIM values would 

not be always guaranteed that the reconstructed image has better 

perceptual quality. It is proven in the literature that a human 

vision system perceives certain frequency dominantly than other 

frequencies. Therefore, a more appropriate quantitative measure 

referred  as Weighted Signal to Noise Ratio (WSNR) for 

comparison which is proposed by [18] and further modified by 

[17]  is used for comparison. The proposed model as in [17] to 

compute WSNR assigns larger weights to those frequencies for 

which the human vision system is sensitive and lower to other 

frequencies. Therefore, the quality of the image is assessed 

based on human perceptual vision system which is justified to 

prove the effectiveness of the proposed algorithm. The results 

based on WSNR to compare various SISR algorithms for Set14 

dataset are shown in TABLE III. The results show that instead 

of PSNR and SSIM, WSNR clearly distinguish the effectiveness 

of proposed SISR algorithm and it outperforms over other SISR 

algorithms. For training purpose, dictionary size is chosen to be 

1024 which has been proven to be superior for our experiments.  

For all experiments, size of the dictionary was chosen to be 

1024 or 2048 to achieve a higher quality of Super-resolved 

image. In order to determine the most appropriate dictionary 

size, an experiment is performed on the set14 dataset to compute 

PSNR for various dictionary size as shown in Fig. 2. 

Additionally, the time required for learning the dictionary is also 

computed on a machine with Intel® Core™ i3-5005U having a 

2GHz clock and 4.00GB of RAM. Considering computation 

time, PSNR is almost linearly increasing with respect to the size 

of the dictionary. The analysis shows that lower dictionary size 

results in poor PSNR due to corresponding sparse vector has 

been assigned lower dimension. Conversely, for larger 

dictionary size, the redundancy in the sparse vector in 

introduced which need to be considered while choosing the size 

of the dictionary. The single most striking in the result is to 

choose the size of the dictionary to be 1024 for best PSNR 

results among other dictionary sizes for the patch size of LR 

image to be 5 and an upscale factor of 2. Moreover, for training 

LR and HR dictionary, we have used a set of 91 natural images 

as used in [16] by randomly sampling around 25000 patches.  

For overall comparision, the SISR algorithms are 

performed for upscale factor x2, x3 and x4 on widely used Set5 

and Set14 database and quantitative parameter like PSNR, 

SSIM and WSNR are evaluated and their average values are 

mentioned in TABLE IV and TABLE V. With a few exceptions, 

like higher upscale factor, the proposed algorithm outperforms 

with respect to WNSR hence there is a scope of improvement 

for higher upscale factors. The key aspect for emphasizing 

WSNR is its direct impact on human perceptual vision and 

therefore the visual comparison for various set5 and set14 

images are shown in Fig. 3 to Fig. 7.Observing these figures will 

clearly justify the use of WSNR for quantifying the 

effectiveness of a SISR algorithm. To produce all these 

experimental results, dictionary atoms are chosen to be 1024 for 

upscale factor 2 and 3. Since the size of overcomplete dictionary 

atoms is correlated with the patch size and upscale factor. 

Hence, in order to make dictionary overcomplete, dictionary 

atoms are chosen to be 2048 for upscale factor 4. In addition to 

that, for sparse representation, the regularization coefficient λ is 

selected to be 0.20 for all experiments via cross-validation and 

for dictionary update, the regularization parameter μ is chosen 

to be 0.05 as specified in [13]. 

 

Fig. 2 Choice of dictionary size 

 

  



SINGLE IMAGE SUPER-RESOLUTION THROUGH SPARSE REPRESENTATION VIA COUPLED DICTIONARY LEARNING 351 

 

TABLE I  

PSNR results of various SISR algorithms for Set14 database (x2) 

Sr No Image nearest Bicubic Glasner [14] SRCNN [15] ScSR [16] 
Proposed 

algorithm 

1 baboon 24.2037 24.6606 25.1119 25.3626 25.239 25.31963 

2 barbara 27.1754 27.9346 28.5427 28.5021 28.527 28.62694 

3 bridge 25.4702 26.4965 27.1901 25.8107 25.529 27.49929 

4 coastguard 28.1945 29.1379 29.8068 30.457 30.2921 30.5689 

5 comic 24.6056 26.0551 26.658 28.3004 27.6679 27.75496 

6 face 33.5983 34.8348 35.2177 35.5806 35.5411 35.61523 

7 flowers 28.4049 30.4185 31.4789 33.0583 32.3753 32.28662 

8 foreman 30.3528 32.6673 34.1581 33.7996 34.4633 34.1797 

9 lenna 32.3361 34.7126 35.7744 36.4613 36.2026 36.19169 

10 man 28.0053 29.26 30.3145 30.808 30.4663 30.45593 

11 monarch 30.1776 32.9571 36.2158 37.1023 35.9167 35.6 

12 pepper 31.0754 33.0587 35.0775 33.9433 34.1208 34.16257 

13 ppt3 25.0601 26.8521 29.6587 30.2398 28.9818 29.19893 

14 zebra 27.3722 30.6785 31.1288 33.2304 32.9928 33.30461 

Avg. PSNR 28.2880 29.9803 31.1667 31.6183 31.3082 31.4832 

 
TABLE II  

SSIM results of various SISR algorithms for Set14 database (x2) 

Sr No Image nearest Bicubic Glasner [14] SRCNN [15] ScSR [16] 
Proposed 

 algorithm 

1 baboon 0.6320 0.6368 0.6687 0.6931 0.6773 0.6894 

2 barbara 0.8060 0.8221 0.8414 0.8553 0.8467 0.8530 

3 bridge 0.7644 0.7922 0.8245 0.8458 0.8336 0.8459 

4 coastguard 0.7662 0.7757 0.8087 0.8357 0.8227 0.8388 

5 comic 0.8065 0.8436 0.8637 0.8988 0.8880 0.8892 

6 face 0.7861 0.8011 0.8105 0.8214 0.8182 0.8232 

7 flowers 0.8514 0.8830 0.8893 0.8987 0.9004 0.8966 

8 foreman 0.9233 0.9427 0.9559 0.9581 0.9589 0.9568 

9 lenna 0.8337 0.8520 0.8576 0.8646 0.8622 0.8636 

10 man 0.8067 0.8321 0.8572 0.8721 0.8641 0.8678 

11 monarch 0.9253 0.9509 0.9606 0.9628 0.9612 0.9588 

12 pepper 0.8190 0.8361 0.8397 0.8402 0.8416 0.8402 

13 ppt3 0.9172 0.9379 0.9640 0.9605 0.9611 0.9539 

14 zebra 0.8580 0.9031 0.9114 0.9339 0.9296 0.9351 

Avg. SSIM 0.8211 0.8435 0.8610 0.8744 0.8690 0.8723 
 

TABLE III  

WSNR results of various SISR algorithms for Set14 database (x2) 

Sr No Image nearest Bicubic Glasner [14] SRCNN [15] ScSR [16] 
Proposed 

algorithm 

1 baboon 35.2001 35.0623 38.5720 38.0012 38.1807 38.9902 

2 barbara 41.0867 41.6197 46.3818 44.9790 45.9852 47.0357 

3 bridge 37.2896 37.3544 42.1315 42.4780 41.8371 43.4151 

4 coastguard 37.3791 37.0285 40.2932 40.9303 40.3147 41.2498 

5 comic 32.6707 32.7308 34.7162 37.9724 36.7538 37.6944 

6 face 43.2360 43.7043 47.2435 47.4660 47.7321 48.6852 

7 flowers 38.8596 39.5870 42.8573 45.3757 44.8940 45.9974 

8 foreman 43.6807 44.1277 42.7750 46.1130 47.7095 47.8486 

9 lenna 43.1062 43.8036 48.6112 49.3219 48.9729 50.4749 

10 man 37.3833 37.5939 42.3941 43.1214 42.3822 43.1214 

11 monarch 41.6187 42.8559 49.7955 49.0368 49.0810 51.0009 

12 pepper 40.4480 40.6223 45.9294 43.9358 44.5011 44.7652 

13 ppt3 34.1143 33.6527 38.3161 38.5834 37.2881 37.8051 

14 zebra 39.1540 39.7838 41.5993 46.7843 45.4892 46.7754 

Avg. WSNR 38.9448 39.2519 42.9726 43.8642 43.6515 44.6328 
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TABLE IV  

Comparative analysis for various upscale (x2, x3 and x4) of Set5 dataset 

Upscale 
Quality 

metric 
nearest Bicubic 

Glasner 

[14] 

SRCNN 

[15] 

ScSR 

[16] 

Proposed 

algorithm 

x2 

PSNR 30.8700 33.6405 35.4073 36.2194 35.7201 35.6197 

SSIM 0.8797 0.9099 0.9243 0.9303 0.9280 0.9271 

WSNR 40.0456 40.8116 45.9146 46.4727 46.2331 47.5869 

x3 

PSNR 27.9493 30.3836 31.0747 32.3108 31.3072 31.7475 

SSIM 0.7837 0.8399 0.8512 0.8727 0.8575 0.8643 

WSNR 31.5464 32.4295 34.7974 36.7536 35.4485 36.6636 

x4 

PSNR 26.3034 28.4203 28.8167 30.0148 29.0575 29.4764 

SSIM 0.7034 0.7753 0.7832 0.8153 0.7895 0.7990 

WSNR 26.5781 27.5324 29.3800 30.9443 29.5205 30.4507 
 

TABLE V  

Comparative analysis for various upscale (x2, x3 and x4) of Set14 dataset 

Upscale 
Quality 

metric 
nearest Bicubic 

Glasner 

[14] 

SRCNN 

[15] 

ScSR 

[16] 

Proposed 

algorithm 

x2 

PSNR 28.2880 29.9803 31.1667 31.6183 31.3083 31.4832 

SSIM 0.8212 0.8436 0.8610 0.8744 0.8690 0.8724 

WSNR 38.9448 39.2519 42.9726 43.8642 43.6515 44.6328 

x3 

PSNR 25.8221 27.3102 27.9846 28.5456 27.9236 28.3063 

SSIM 0.7014 0.7421 0.7573 0.7777 0.7656 0.7738 

WSNR 31.1317 31.5984 34.081 35.097 34.1142 35.0657 

x4 

PSNR 24.4637 25.7707 26.1969 26.7702 26.153 26.4851 

SSIM 0.6176 0.6662 0.6765 0.7001 0.6850 0.6945 

WSNR 26.5312 27.0776 28.717 29.624 28.6844 29.3024 

 
Fig. 3 SISR for upscale (x2) and quantitative measures PSNR,SSIM and WSNR. Left to Right: Original , Bicubic (37.05, 0.942, 46.86), Glasner (37.72, 0.946, 

51.24), SRCNN (38.24, 0.952, 51.48), SCSR (38.21, 0.950, 51.74), Proposed (38.34, 0.952, 52.91). 

 
Fig. 4 SISR for upscale (x2) and quantitative measures PSNR,SSIM and WSNR. Left to Right: Original , Bicubic (36.68, 0.964, 39.98), Glasner (38.85, 0.967, 

45.61 ), SRCNN (40.28, 0.970, 46.53), SCSR (39.70, 0.971, 46.09), Proposed (39.55, 0.970, 47.74). 

 
Fig. 5 SISR for upscale (x2) and quantitative measures PSNR,SSIM and WSNR. Left to Right: Original , Bicubic (34.86, 0.801, 43.76), Glasner (35.25, 0.811, 

47.15), SRCNN (35.60, 0.821, 47.49), SCSR (35.56, 0.818, 47.77), Proposed (35.63, 0.823, 48.72). 

 
Fig. 6 SISR for upscale (x2) and quantitative measures PSNR,SSIM and WSNR. Left to Right: Original , Bicubic (34.71, 0.852, 43.80), Glasner (35.77, 0.857, 

48.61), SRCNN (36.46, 0.864, 49.32), SCSR (36.30, 0.862, 48.97), Proposed (36.19, 0.864, 50.47).  
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V. CONCLUSION 

The proposed algorithm outperforms in terms of WSNR for 

upscale factor 2 on standard set5 and set14 databases compared 

to existing SISR algorithms. Considering PSNR and SSIM, the 

proposed algorithm produces better results compared to existing 

algorithms and comparable in the case of SRCNN. Moreover, 

qualitative comparison for various set5 and set14 images 

justifies the quality metric WSNR which is best in case of a 

proposed algorithm for upscale factor 2. While considering 

higher upscale factor like 3 and 4, the SRCNN outperforms over 

other algorithms and proposed algorithms are producing 

competitive results with respect to SRCNN. Comparing 

SRCNN and proposed algorithm, the SRCNN algorithm has 

utilized 395,909 images for training the deep neural network 

and hence computation cost and learning rate are significantly 

higher and lower respectively. Whereas, the proposed algorithm 

utilizes only 91 images from which merely 25,000 patches are 

sufficient to learn the dictionary to achieve competitive results.  

In summary, we have presented coupled dictionary learning 

based SISR algorithm which outperforms qualitatively and 

quantitatively for an upscale factor of 2, while producing 

comparable results for higher upscale factors.  We have devised 

SIMCO dictionary learning algorithm into SISR framework for 

coupled dictionary learning which outperforms with respect to 

SRCNN in terms of computational cost and learning rate with 

comparable WSNR, PSNR, and SSIM for higher upscale 

factors.  

Results so far have been encouraging and despite this, we 

believe that our approach could be improved for higher upscale 

factors as a part of future work. In addition to this, one may 

explore wavelet decomposition based dictionary learning 

approach may yield further improvement in PSNR. 
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