
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2020, VOL. 66, NO. 3, PP. 431-441
Manuscript received February 18, 2020; revised July, 2020. DOI: 10.24425/ijet.2020.131896

SIDH Hybrid Schemes with Classical Component
Based on the Discrete Logarithm Problem over

Finite Field Extension
Michał Wroński, Elżbieta Burek, and Łukasz Dzierzkowski

Abstract—The concept of a hybrid scheme with connection
of SIDH and ECDH is nowadays very popular. In hardware
implementations it is convenient to use a classical key exchange
algorithm, which is based on the same finite field as SIDH. Most
frequently used hybrid scheme is SIDH-ECDH. On the other
hand, using the same field as in SIDH, one can construct schemes
over Fpn , like Diffie-Hellman or XTR scheme, whose security is
based on the discrete logarithm problem.

In this paper, idea of such schemes will be presented. The
security of schemes, which are based on the discrete logarithm
problem over fields Fp,Fp2 ,Fp4 ,Fp6 and Fp8 , for primes p used in
SIDH, will be analyzed. At the end, the propositions of practical
applications of these schemes will be presented.

Keywords—SIDH, Diffie-Hellman algorithm, Hybrid schemes

I. INTRODUCTION

HYBRID scheme, using post-quantum and classical prim-
itives, is a popular conception in the cryptographic

society nowadays. In hybrid schemes a primitive P , which is a
longstanding classically-secure, is partnered alongside with a
post-quantum primitive Q. It is worth to note, that primitives,
that are believed nowadays to be quantumly secure, have
not been sufficiently studied yet, so it is possible, that some
quantum or even classical attacks on the component Q will be
found. Some protection against such possibility is the use of
hybrid schemes, because if there will be found any attack for
the componentQ using classical computers, the hybrid scheme
P + Q is likely to still remain secure, until proper quantum
computer will be invented. In such case, it will be possible
to change broken primitive Q to the new one, which will be
believed to be secure. On the other hand, if proper quantum
computer will be built, then classically-secure primitive P may
be broken by some quantum attack, but the hybrid scheme, if
any new attack on the post-quantum component Q will not be
found, will be still secure.

M. Wroński is with Institute of Mathematics and Cryptology, Faculty
of Cybernetics, Military University of Technology, Warsaw, Poland (e-mail:
michal.wronski@wat.edu.pl).

E. Burek is with Institute of Mathematics and Cryptology, Faculty
of Cybernetics, Military University of Technology, Warsaw, Poland (e-mail:
elzbieta.burek@wat.edu.pl).

Ł. Dzierzkowski is with Institute of Mathematics and Cryptology,
Faculty of Cybernetics, Military University of Technology, Warsaw, Poland
(e-mail: lukasz.dzierzkowski@student.wat.edu.pl).

Very convenient for hardware implementations of such
hybrid schemes is the Supersingular Isogeny Diffie-Hellman
(SIDH) algorithm, which is based on a supersingular elliptic
curve arithmetic. It is also possible to use the same prime
p as in SIDH, to construct an ordinary elliptic curve over
Fp or Fp2 and use the Elliptic Curve Diffie-Hellman (ECDH)
cryptosystem as a classical component of such hybrid scheme.

In this article, hardware applications of hybrid cryptosys-
tems are considered. Moreover, it is assumed that parallel
Fp2 arithmetic, which is required for SIDH algorithm, is
implemented.

In such context, the possibility of use of ECDH over Fp,
together with SIDH was firstly posted by Costello, Longa and
Naehrig in [1]. Usage of ECDH over Fp2 , where the GLS
method may be used, was proposed by Wroński, Kijko and
Dryło in [2]. However, these solutions should be used for a
high or very high level of security.

In applications where low level of security is sufficient, the
alternative solutions should be considered, because ECDH is
not the most efficient cryptosystem. From this point of view,
using in a hybrid scheme protocols based on the discrete
logarithm problem and defined over extension fields, for
characteristic p the same as used in SIDH algorithm, may be
a reasonable choice, assuming a reasonable level of classical
security.

II. CLASSICAL KEY-EXCHANGE PROTOCOLS MOST

SUITABLE FOR THE HYBRID SIDH SCHEME

In this section, key-exchange protocols will be shortly
described, that are considered for the hybrid SIDH scheme.

A. Diffie-Hellman protocol

Diffie-Hellman (DH) algorithm was the first publicly pre-
sented key agreement protocol. The purpose of this protocol is
to establish a symmetric key for two parties over an insecure
channel. The security of the Diffie-Hellman protocol is based
on the difficulty of computation of discrete logarithm over
finite fields.
For this protocol, there are two public key parameters:
• p - a large prime number,
• g - a primitive root of 1, whose order is equal to r (usually

called a generator).

c© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/

432 M. WROŃSKI, E. BUREK, Ł. DZIERZKOWSKI

The Diffie Hellman key-exchange scheme can be described in
the following steps:

• Step 1: Alice generates a random secret number 1 < a <

p− 1, calculates A = ga and sends A to Bob.
• Step 2: Bob also generates a random secret number 1 <

b < p− 1, calculates B = gb and sends B to Alice.
• Step 3: Alice, after receiving Bob’s public key B, verifies

that the order of B is r, by calculating Br. If the result
is equal to 1, then Bob’s public key B is correct.

• Step 4: Alice calculates S = Ba = gab, where S is
a shared secret key.

• Step 5: Bob, after receiving Alice’s public key A, verifies
that the order of A is r, by calculating Ar. If the result
is equal to 1, then Alice’s public key A is correct.

• Step 6: Bob calculates S = Ab = gab, where S is
a shared secret key.

A step which ensures the security of the protocol is a ver-
ification of received public key. As described above, in the
Diffie-Hellman protocol receiver verifies the order of received
public key, by raising it to a power equal to suitable order. This
verification requires additional computations, that increases the
computational cost of this protocol.

B. ECDH protocol

Elliptic Curve Diffie-Hellman protocol allows two commu-
nicating parties over an insecure channel to agree a symetric
key. ECDH is based on the discrete logarithm problem over
the group of points of an elliptic curve. Let E/Fq be an elliptic
curve over a finite field Fq . The public key parameters, that
are assumed to be publicly known, are following:

• elliptic curve parameters, that define the elliptic curve E,
• G = (xG, yG) ∈ E(Fq), which is a generator of subgroup

of large prime order r.

The Elliptic Curve Diffie-Hellman key-exchange scheme con-
sists of the following steps:

• Step 1: Alice generates a random secret number 1 < a <

r − 1, calculates point A = [a]G and sends A to Bob.
• Step 2: Bob also generates a random secret number 1 <

b < r − 1, calculates point B = [b]G and sends B to
Alice.

• Step 3: Alice, after receiving Bob’s public key B, verifies
that B is correct.

• Step 4: Alice calculates S = [a]B = [ab]G, where S is
a shared secret key.

• Step 5: Bob, after receiving Alice’s public key A, verifies
that A is correct.

• Step 6: Bob calculates S = [b]A = [ab]G, where S is
a shared secret key.

The verification of a received public key depends on the order
#E(Fq) of the elliptic curve and is a protection against small
subgroup attacks.

• If the order of elliptic curve r is a prime number, then it
is enough to verify that the received point P ∈ E(Fq).

• If the order of elliptic curve is equal to rh, where h is
small integer, then it is enough to multiply the received
point by h and next, multiply such result by the secret
key.

• If the order of elliptic curve is equal to rh, where h is
large integer, then the received point is multiplied by r,
where r is a required order of point. If the result is the
point at infinity, then the received point is proper.

C. SIDH protocol

Supersingular Isogeny Diffie-Hellman protocol is based on
an elliptic curve cryptography. This protocol uses supersin-
gular elliptic curves, which are rarely used in the traditional
elliptic curve cryptography. The security of SIDH protocol is
based on the difficulty of finding the isogeny of high order
between two supersingular elliptic curves.
The public parameters of SIDH protocol are:

• lA, lB and p = leAA leBB ∓ 1 - prime numbers,
• E(Fp2) - a supersingular elliptic curve over a finite field

Fp2 , with order equal to (p± 1)2,
• (PA, QA) - a base points in E [leAA], where E [leAA]

denotes the subgroup of leAA torsion points,
• (PB , QB) - a base points in E [leBB], where E [leBB]

denotes the subgroup of leBB torsion points.

The Supersingular Isogeny Diffie-Hellman key-exchange
scheme can be realized in the following way [3]:

• Step 1: Alice generates a random secret elements 0 <

a1, a2 < leAA and computes the point A = [a1]PA +

[a2]QA, secret isogeny α : E → EA = E/〈A〉 and
sends EA, and points α(PB), α(QB) to Bob.

• Step 2: Bob generates a random secret elements 0 <

b1, b2 < leBB and computes the point B = [b1]PB +

[b2]QB , secret isogeny β : E → EB = E/〈B〉 and
sends EB , and points β(PA), β(QA) to Alice.

• Step 3: Alice receives Bob’s public key and verifies that:

– received curve is a supersingular elliptic curve,
– received curve has a proper order,
– the points β(PA), β(QA) are from different torsion

subgroups.

• Step 4: Alice calculates E/〈A,B〉 = EB/〈β(A)〉. The
j - invariant of E/〈A,B〉 is the shared secret key.

• Step 5: Bob receives Alice’s public key and verifies that:

– received curve is a supersingular elliptic curve,
– received curve has proper order,
– the points α(PB), α(QB) are from different torsion

subgroups.

• Step 6: Bob calculates E/〈A,B〉 = EA/〈α(B)〉. The
j - invariant of E/〈A,B〉 is the shared secret key.

III. SECURITY

In this section there will be shortly described security of
hybrid schemes, SIDH, DH and ECDH cryptosystems.

SIDH HYBRID SCHEMES WITH A CLASSICAL COMPONENT BASED ON THE DISCRETE LOGARITHM PROBLEM OVER FINITE FIELD EXTENSION 433

A. Security of components of hybrid scheme

In this article the same methodology is used as was chosen
in NIST PQC:
• it is assumed that algorithmR ensures a classical security
CS at the n-bit level (CS(R) = n) if the fastest known
classical attack on this algorithm is not faster than the
fastest known classical attack on AES-n,

• in the same way, it is assumed, that an algorithm ensures
quantum security QS at the n-qubit level, if the fastest
known quantum attack on this algorithm is not faster than
the fastest known quantum attack on AES-n.

In the case of hybrid algorithms, one will say that hybrid
algorithm has security HS at the level n if HS(Q,P) =

n = min {min {CS(P), CS(Q)}, QS(Q)}. To fully use the
power of post-quantum algorithm, also should hold CS(P) ≥
CS(Q) and CS(P) ≥ QS(Q).
Unfortunately, using the last condition (CS(P) ≥ QS(Q)),
it is easy to see, that usage of classical components based
on discrete logarithm problem over Fpn in the hybrid SIDH
scheme will make sense iff a degree n of the field extension
will be high or the security level of HS(Q,P) will be low.

B. Security of SIDH algorithm

SIDH is based on the problem of searching an isogeny of
given degree between two supersingular elliptic curves over
Fp2 . Firstly, it seemed that the best known algorithms let to
break SIDH in O

(
4
√
p
)

operations on a classical computer.
It was believed that Tani’s claw finding algorithm requires
O
(

6
√
p
)

operations on a quantum computer. However, the
analysis by Jaques and Schanck [4] showed, that Tani’s
algorithm has a real complexity equal to O

(
3
√
p
)
. Moreover,

Jaques and Schanck made a non-asymptotical analysis, by
which it is possible to estimate the cost of quantum and
classical attacks on SIDH as Tani’s quantum claw finding,
direct application of Grover’s algorithm to claw finding attack
and (classical) attack of van Oorschot and Wiener. Using these
ideas and others, presented in chapter 5 of SIKE submission
supporting documentation [5], the security levels of SIDH
algorithm for primes from 120 to 550 bits were estimated by
us, both for classical and quantum attacks.

C. Attacks on the Discrete Logarithm Problem over a finite
field

The integer factorization problem and the discrete logarithm
problem are dominant problems in public-key cryptosystems.
Let Fq be a finite field, g ∈ Fq be a primitive element of Fq
and w ∈ Fq be a non-zero element of the finite field Fq . The
discrete logarithm of w in the base g, defined as logg(w), is
the least non-negative integer n such that w = gn.

1) The Pohlig - Hellman algorithm: Pohlig and Hellman
noted that to solve the discrete logarithm problem for a finite
group G it is enough to solve it for subgroups in G, whose
order is the power of the prime number. The Pohlig - Hellman
algorithm sequence is described below [6]. Let G be a group,

and g ∈ G be an element of this group G. Let’s assume,
that the order of g is equal to r, where r = r1r2, and
gcd(r1, r2) = 1. Then the cyclic groups 〈gr1〉 and 〈gr2〉 of
order r1 and r2, respectively, form a cyclic group 〈g〉. Using
the Chinese Remainder Theorem, it is possible to compute the
logg(w) ≡ b ·x ·r1 +a ·y ·r2 (mod r), where b = loggr1 (wr1)

and a = loggr2 (wr2). The Euclidean GCD algorithm is used
to compute x and y.
Suppose, that the order of g is a prime power, for example
r = pk. Then the determination of logg(w) is reduced to k

calculations of a discrete logarithm, in a cyclic group of p
elements.
The consequence of developing this algorithm is the require-
ment, that the order of the group G must contain a large prime
factor.

2) The Pollard’s-rho algorithm: Pollard developed two
randomized algorithms to calculate a discrete logarithm in any
group: the rho method and the lambda (kangaroo) method.
The rho method is based on a birthday paradox, that assumes
that if one uses a random walk for a graph of r vertices,
with a cycle, it is very likely that the same vertex will be
visited again after about

√
r steps. The algorithm sequence is

presented below [7].
Let 〈g〉 be a cyclic group of order r, which is divided into
three sets, G1, G2, G3, of similar size. To compute logg(h),
it is necessary to define a sequence w0, w1, ..., where w0 = g

and for i > 0 Pollard’s iteration function fP : G → G is
defined as follows:

fP (wi) ≡

g · wi (mod r) if wi ∈ G1,

w2
i (mod r) if wi ∈ G2,

h · wi (mod r) if wi ∈ G3,

where fP (wi) = wi+1.
Each wi = gaihbi , for some integers ai and bi. If the transition
from wi to wi+1 behaves like a random walk, then after O(

√
r)

steps one will find i, for which wi = w2i and then: ai +

bi logg(h) ≡ a2i + b2i logg(h) mod r.
3) The Pollard’s-lambda algorithm: The Pollard’s-lambda

algorithm [8] is a random algorithm, that was developed to
solve a DLP. Like the Pollard’s-rho algorithm, the Pollard’s-
lambda algorithm uses a random walk, but jumps are smaller.
In the primary version of this method, there are two kangaroos.
The first kangaroo (a tame kangaroo) starts at point gN/2,
where N is some interval and N is less than the order of g.
This kangaroo jumps towards the right using the random walk.
The second kangaroo (a wild kangaroo) starts at the point w
and jumps in the same way as the first kangaroo. For the first
kangaroo one stores such h that z = gh, where z is the current
group element and for the second kangaroo one stores such
h that z = wgh. The distinguished elements of the group,
together with the flag indicating which kangaroo it concerns,
are stored in a binary tree, hash table or list. When the same
element of group is visited twice, by the both kangaroos, the
DLP is solved.
The Pollard’s-lambda algorithm requires O(

√
r) group opera-

434 M. WROŃSKI, E. BUREK, Ł. DZIERZKOWSKI

tions. However, Pollard’s-lambda was developed for searching
a discrete logarithm in the given interval, nowadays the fastest
algorithm for this purpose is Gaudry-Schost algorithm with
improvements of Ruprai [9].

D. Security of the ECDH algorithm

ECDH is based on the discrete logarithm problem over
the group of points on an elliptic curve (ECDLP). Security
of ECDH protocol depends on the choice of public key
parameters.
Let E/Fq be an elliptic curve defined over finite field Fq . For
given points P,Q ∈ E(Fq), the ECDLP problem is to find an
integer k, for which Q = [k]P .
The best known generic attack to break the ECDLP is a
Pollard’s-rho algorithm. Additionally, such attacks as Pohlig-
Hellman reduction, MOV attack, anomalous attack, or fault
attack can be used to solve the ECDLP problem for special
elliptic curves.

1) MOV attack: The MOV attack uses the Weil pairing
to reduce the discrete logarithm problem on an elliptic curve
E/Fq to the discrete logarithm problem in a multiplicative
group F∗qm . Then such problem may be solved by the sieve
attack, if m is small.
Let P,Q ∈ E(Fq) and ord(P) = N . If gcd(N, q) = 1, then
we have E [N] ∼= ZN ⊕ZN . One can select the point R such
that {P,R} is a basis of E [N], and then Q = [a]P + [b]R.
The Weil pairing is a map eN : E [N]×E [N]→ µN , defined
as eN (P,R) = ζ, where ζ is a primitive N th root of unity.
In MOV attack one selects such m that E [N] ⊂ E(Fqm)

and then for all primitive roots of unity ζ, one has µN ⊂
E(Fqm). Then it is necessary to choose a random point Si
and compute its order Mi = ord(Si). There also should be
defined di = gcd(Mi, N) and the point Ti = (Mi/di)Si.
For the received point Ti, one computes: ζ1i = eN (P, Ti)

and ζ2i = eN (Q,Ti). Basing on the ζ1i and ζ2i, one can
solve the discrete logarithm problem ζki1i = ζ2i in F∗qm . The
result is ki (mod di). The above calculations are repeated for
subsequent iterations i, until lcm(d1, d2, ..., dk) = N .
It is necessary to use the ki (mod di) values to find
a k (mod N).
If the order of the elliptic curve is equal to #E(Fq) = h · r,
where r is the order of generator, then the MOV attack is
executed for the smallest number of m, for which qm ≡
1 (mod r). For the currently used key sizes, it is sufficient to
verify whether the above equation is not satisfied for m ≤ 30

[10].
2) Anomalous attack: The set of elliptic cures for which

the discrete logarithm problem is very simple are anomalous
elliptic curves. Anomalous curve is the elliptic curve, whose
order is equal to the size of the finite field #E(Fq) = q

(the trace of Frobenius is equal to one). The anomalous attack
sequence is following [11].
Let E/Fq be an anomalous elliptic curve and let P ,Q ∈
E(Fq). The algorithm to find m such that Q = [m]P will be
described. Firstly, one calculates the lifts P,Q ∈ E(Qq) of the

points P ,Q. The field Qq is a set of q-adric numbers, where
nonzero q-adric number n is defined as n = qα(

∑∞
i=0 niq

i),
where α ∈ Z, ni ∈ {0, ..., q−1} and n0 6= 0. In addition, let’s
define ordq(n) = α and |n|q = q−α. Let E/Qq be an elliptic
curve over field of q-adric numbers. One defines:
• E1(Qq) is a set of points in E(Qq) that reduce modulo q

to the point at infinity: E1(Qq) = {P ∈ E(Qq)|P = O}.
• E0(Qq) is a set of points in E(Qq) that are reduced

modulo q to the points in E(Fq).
• E2(Qq) is a set of points in E(Qq) of the form:
E2(Qq) = {P ∈ E(Qq) : ordq(Px) ≤ −4} ∪ {O},
where Px denotes the x-coordinate of P .

Then one has Q − [m]P = R ∈ E1(Qq). Let’s note that
E0(Qq)/E1(Qq) ∼= E(Fq) and also that E1(Qq)/E2(Qq) ∼=
Fq . From this fact and since #E(Fq) = #Fq = q it is
clear that one has [q]Q − [m] ([q]P) = [p]R ∈ E2(Qq). By
computing the q-adric logarithm for both sides, one obtains an
equation ϑq([q]Q)−mϑq([q]P) = ϑq([p]R) ≡ 0(mod q2).
The value m can be determined from the congruence m ≡
ϑq([q]Q)

ϑq([q]P)
(mod q).

E. General security of algorithms based on discrete logarithm
problem over finite fields

Diffie-Hellman scheme is based on the discrete logarithm
problem. There are many different attacks on discrete loga-
rithm in finite fields, but the most powerful are sieve methods,
which are insensitive for the size of subgroup generated by
generator g and depends only on the size of the field. The
second important and powerful attack is the Pollard’s-rho
method, which is sensitive to size of a subgroup generated
by the generator g.

If Ord(g) = r, where r is largest prime, for which
r|Ord(g), then the complexity of Pollard’s-rho method is
equal to O(

√
r). The complexity of sieves methods for discrete

logarithm defined over field Fq , where q = pn, depends on
the form of p and n, but all such attacks have subexponential
complexity equal to Lpn [1/3, c].

In [12] it was presented that:
1) for Fp fields, for primes p of the general form, the fastest

known attack has complexity equal to Lp
[
1/3, 3

√
64/9

]
;

2) for Fpn fields, for primes p of the general form and
extensions n ∈ {2, 3}, the fastest known attack has
complexity equal to Lp

[
1/3, 3

√
64/9

]
;

3) for Fpn fields, for primes p of the general form and
medium characteristic, the fastest known attack has
complexity equal to Lpn

[
1/3, 3

√
48/9

]
;

4) for Fpn fields, for general n and primes p of special
form (vulnerable to variants of the Special Number Field
Sieve attack), the fastest known attack has a complexity
equal to Lpn

[
1/3, 3

√
32/9

]
(it is the case of primes used

in the SIDH algorithm).
The primes used in SIDH has a form p = fambn ± 1,

where am ≈ bn and the most frequently a = 2, b = 3, f = 1.

SIDH HYBRID SCHEMES WITH A CLASSICAL COMPONENT BASED ON THE DISCRETE LOGARITHM PROBLEM OVER FINITE FIELD EXTENSION 435

Such primes are vulnerable to variants of SNFS attack, because
it is easy to present them (or their small multiplicities) as
irreducible polynomial of small degree d ∈ {3, 4, 5, 6}, with
small coefficients.

For example, number p = 2128 · 381 − 1 (or its small
multiplicity), may be presented as:

• p = 23 · 3 · (225316)5− 1 = 24x5− 1, where x = 225316;
• p = 3 · (232320)4 − 1 = 3x4 − 1, where x = 232320;
• 33 ·p = 22 ·(221314)6−27 = 4x6−27, where x = 221314;
• 2 · p = (243327)3 − 2 = x3 − 2, where x = 243327.

In every case the result is an irreducible polynomial of a
small degree and with a small coefficients.

IV. SECURITY OF DISCRETE LOGARITHM PROBLEM OVER

PRIME FIELD Fp AND ITS SMALL EXTENSIONS FOR SIDH
PRIMES

A. Special attacks on discrete logarithms over SIDH primes

Let’s note that the small subgroups attack is possible for
primes of the form p = fambn ± 1 over fields Fpn . The ex-
ample for prime p = fambn−1 and Fp2 field, generated by the
irreducible polynomial f(t) will be shown. Let’s assume that
g ∈ Fp2\Fp and Ord(g) = p2−1. Then, if gk ≡ h(mod f(t))

and k is the secret key, then g′k ≡
(
gp−1

)k ≡ hp−1 ≡
h′(mod f(t)), so Ord(g′) = p+1, Ord(h′)|p+1 and, because
p+ 1 = fambn, Pohlig-Hellman reduction is possible.

To prevent this attack, every element g should be firstly
checked if it has a large prime order r, where r|p − 1, by
exponentiation gr. If gr ≡ 1(mod f(t)), then Ord(g) = r

and element g is proper.

B. Security of DH scheme over Fp and Fp2

In general in SIDH, p = fambn±1. Let’s note, that for DH
over Fp primes of the form p = fambn + 1 are not allowed,
because in this case p − 1 = fambn and p − 1 does not
have large prime factors. However, for DH over Fp2 , such
primes may be used in some situations, because the order of
the multiplicative group F∗p2 is equal to p2 − 1 and then there
exist elements, whose order is a factor of p + 1, which may
be large prime.

Primes of the form of p = fambn − 1 may be used (if
p − 1 has a large prime factor) for DH scheme over Fp, but
should not be used for the DH scheme over Fp2 . However,
elements of an order r, where r|p−1 may be found both over
Fp and Fp2 , but every element g ∈ Fp2 has order h, for which
GCD(h, p+1) > 1 and in this case it is easy to transform the
discrete logarithm problem over Fp2 to the discrete logarithm
problem over Fp. Moreover, because p+1 = fambn, a Pohlig-
Hellman reduction and a small subgroup attack are possible.
The security of DH scheme over Fp and Fp2 for SIDH primes
is presented in the Figure 1 and the Figure 2.

Fig. 1. Security of DH scheme over Fp for SIDH primes

Fig. 2. Security of DH scheme over Fp2 for SIDH primes

C. Problem of factorisation of integers of the form p2 − 1,
where p = f`m1 `

n
2 + 1

To check if given field Fp2 has elements of proper order,
the factorisation of p± 1 must be performed.

Factorisation of integers is computationally hard and no
classical polynomial time algorithm is known (however, there
is of course quantum Shor’s algorithm [13] which has a
polynomial time complexity). The fastest algorithm for fac-
torisation of large integers has subexponential complexity.

In fact, there are several methods which allow to speed-
up the factorisation of the number of a form p ± 1 for p =

f`m1 `
n
2 ± 1.

• If p = 2m3n ± 1, then p ± 1 = 2m3n ± 2 =

2
(
2m−13n ± 1

)
. If GCD(m − 1, n) = d 6= 1, one can

perform factorisation of p ± 1 = 2

((
2

m−1
d 3

n
d

)d
± 1

)
.

If the substitution w = 2
m−1

d 3
n
d is made, then the

factorisation of the number wd±1, with addition of factor
2, will give the full factorisation of p± 1.

• If p = 2ambn ± 1, then p ± 1 = 2ambn ± 2 =

2 (ambn ± 1). If GCD(m,n) = d 6= 1, one can per-
form factorisation of p ± 1 = 2

((
a

m
d b

n
d

)d ± 1
)

. If the

436 M. WROŃSKI, E. BUREK, Ł. DZIERZKOWSKI

substitution w = a
m
d b

n
d is made, then the factorisation of

the number wd ± 1, with addition of factor 2, will give
the full factorisation of p± 1.

D. Factorisation of numbers of the form wn ± 1

In this subsection it will be shortly described how to perform
factorisation of numbers of the form wd ± 1, which may be
applied to the numbers p± 1 for SIDH primes p.

1) Algebraic factors method: The algebraic and Aurifeuil-
lean factorisation is well described in [14].

Let’s consider the polynomial xd−1. Let’s denote by Φe(x)

the e-th cyclotomic polynomial, then for d ≥ 1 one has

xd − 1 =
∏
e|d

Φe(x).

Although the cyclotomic polynomials are irreducible over
the integers,

∏
e|d Φe(x) with x = w, in general does not give

the complete factorisation of wd − 1 since any factor Φd(b)

might be composite.
One may factor wd+1 in a similar fashion using the identity

xd + 1 =
(
x2

d

− 1
)
/
(
xd − 1

)
=

=
∏
e|2d

Φe(x)/
∏
e|d

Φe(x) =
∏
e|m

Φ2te(x),

where 2d = 2tm with m odd.
2) Aurifeuillean factorisation: Numbers of the form wd−1

or Φd(w), where w = s2 · t with square-free t, have Aurifeuil-
lean factorisation if and only if one of the following conditions
holds:

1) t ≡ 1(mod 4) and d ≡ t(mod 2t)

2) t ≡ 2, 3(mod 4) and d ≡ 2t(mod 4t)

Thus, when w = s2 · t with square-free t, and d is congruent
to t mod 2t, then if t is congruent to 1 mod 4, wd − 1 has
Aurifeuillean factorization, otherwise, wd+1 has Aurifeuillean
factorization. When the number is of a particular form (the ex-
act expression varies with the base), Aurifeuillean factorization
may be used, which gives a product of two or three numbers.

E. Security of DH scheme over Fp4 for SIDH primes

Another field, which may be used for DH scheme, is Fp4 .
Because order of multiplicative group of Fp4 field is equal to
p4−1 = (p−1)(p+1)(p2+1), there are elements which belong
to Fp4\Fp2 , whose order divides p2 + 1. If p2 + 1 has a large
prime divisor r, then one can find an element g ∈ Fp4\Fp2 ,
for which Ord(g) = r. If r is large, then one can use the DH
scheme over Fp4 . Moreover, the security of such algorithm

(Figure 3) is equal to O

(
e

(
3
√

32
9 +o(1)

)
(4 ln p)

1
3 ·(ln (4 ln p))

2
3

)
and is much higher than for the DH scheme over Fp or Fp2 .

Fig. 3. Security of the DH scheme over Fp4 for SIDH primes

The Fp4 arithmetic may be built using sequence of Fp2
arithmetic, which requires, for properly chosen irreducible
polynomial, 3 multiplications in Fp2 and few additions in Fp2 .

F. Security of DH scheme over Fp6 for SIDH primes

The next finite field, which may be applied for DH scheme,
is Fp6 . The order of a multiplicative group of Fp6 field is
equal to p6− 1 = (p2− p+ 1)(p2 + p+ 1)(p+ 1)(p− 1). It is
possible to find the element g ∈ Fp6\(Fp3 ∪ Fp2), for which
Ord(g) = r, where r is large prime (in most cases) and r

divides p2 − p + 1. The DH scheme over Fp6 may be used
if r is large. The security of DH scheme over Fp6 for SIDH

primes is equal to O
(
e

(
3
√

32
9 +o(1)

)
(6 ln p)

1
3 ·(ln (6 ln p))

2
3

)
. The

comparison of security of the DH scheme over Fp6 with a
classical and quantum level of security of SIDH over Fp2 is
presented in the Figure 4.

Fig. 4. Security of DH scheme over Fp6 for SIDH primes

The Fp6 arithmetic may be built using the Fp2 arithmetic,
for properly chosen irreducible polynomial of degree 3 over
Fp2 . In such situation one multiplication in Fp6 requires
6 multiplications in Fp2 .

SIDH HYBRID SCHEMES WITH A CLASSICAL COMPONENT BASED ON THE DISCRETE LOGARITHM PROBLEM OVER FINITE FIELD EXTENSION 437

G. Security of DH scheme over Fp8 for SIDH primes

Another finite field, which may be applied is Fp8 . The order
of multiplicative group of Fp8 field is equal to p8 − 1 =

(p4 + 1)(p2 + 1)(p − 1)(p + 1). There exist elements which
belong to Fp8\Fp4 , whose order divides p4 + 1. If p4 + 1

has a large prime divisor r, then one can find an element
g ∈ Fp8\Fp4 , for which Ord(g) = r, where r is large. Then
one can use the DH scheme over Fp8 . The security of such

algorithm is equal to O

(
e

(
3
√

32
9 +o(1)

)
(8 ln p)

1
3 ·(ln (8 ln p))

2
3

)
.

The comparison of security of the DH scheme over Fp8 with
classical and quantum level of security of SIDH over Fp2 is
presented in the Figure 5.

Fig. 5. Security of DH scheme over Fp8 for SIDH primes

In order to build the Fp8 arithmetic using the Fp2 arithmetic,
it is necessary to choose irreducible polynomial of degree 2,
whose coefficients belong to Fp2 , and then it is necessary to
choose irreducible polynomial of degree 2, whose coefficients
belong to Fp4 . Then one multiplication in Fp8 requires 9 mul-
tiplications in Fp2 .

H. Security of DH scheme over finite fields with high extension
degrees

For the DH scheme, finite fields with high extension degrees
n > 8 may be used. However, if the arithmetic of Fpn will
use the Fp2 arithmetic, then the degree of an extension field
n should be divisible by two. In order to verify if there are
elements, whose order is a large prime, it is necessary to find
the factorisation of the number pn − 1 into prime factors.

I. Security recomendations

Basing on performed calculations and the above analyses,
the maximum number of bits of the finite field characteristic p,
for which the DH scheme may be used, has been determined.
These results are presented in the Table I.

TABLE I
MAXIMAL SECURITY LEVELS OF SIDH −DH HYBRID SCHEMES FOR

DIFFERENT DEGREES OF EXTENSION n.

DH(Fp4) DH(Fp6) DH(Fp8)

Degree n of field extension 4 6 8
Maximal bit-length of p 176b 281b 374b
Maximal level of 58 85 108
HS(SIDH(Fp2), DH(Fpn))

V. ARITHMETIC IN EXTENSION FIELDS

A. Fp4 arithmetic using Fp2 arithmetic

A field Fp4 may be constructed using an irreducible poly-
nomial of degree 2 with coefficients from an Fp2 field. An
example of such construction will be presented for prime p271.
For this prime, a polynomial f(t) = t2 + 1 is irreducible over
Fp and therefore its roots t generate the Fp2 field. Next, the
polynomial g(s) = s2 − (t + 1)s − t − 1 with coefficients
from Fp2 is irreducible over this field and therefore its root s
generates the Fp4 field.

The addition/subtraction of two elements A = a1s±a0 and
B = b1s ± b0, where A,B ∈ Fp4 , may be computed using
two additions/subtractions in Fp2 , because C = A ± B =

(a1 ± b1)s+ (a0 ± b0).
The multiplication of two elements A = a1s± a0 and B =

b1s± b0 may be computed using algorithm 1.

Algorithm 1 Multiplication in Fp4 generated by irreducible
polynomials f(t) = t2 + 1 and g(s) = s2 − (t+ 1)s− t− 1

Input: A = a1s + a0, B = b1s + b0, A,B ∈ Fp4 ,
a0, a1, b0, b1 ∈ Fp2

Output: C = c1s+ c0 = A ·B

1: D := a1;
2: E := a0;
3: F := b1;
4: G := b0;
5: H = D + E;
6: E = E ·G;
7: G = F +G;
8: D = D · F ;
9: F = G ·H;

10: F = F − E;
11: E = D + E;
12: D = D · t;
13: c1 = D + F ;
14: c0 = D + E;
return c1s+ c0;

Completing an optimization algorithm causes a reduction of
necessary memory registers. A multiplication of 2 elements
from Fp4 field may be carried out using only 5 variables.
Assuming that 1 register corresponds to 1 element from the
Fp2 field, where a bit-length of p is equal to 271, 1 register
requires 542 bits and the whole multiplication needs 2710 bits
of memory.

438 M. WROŃSKI, E. BUREK, Ł. DZIERZKOWSKI

B. Fp6 arithmetic using Fp2 arithmetic

The Fp6 field may be constructed using an irreducible
polynomial of degree 3 with coefficients from Fp2 field. An
examplary solution assumes that this polynomial is g(s) =

s3 + s− 1, so its roots s generate the Fp6 field.
The addition/subtraction of two elements A = a2s

2±a1s±a0
and B = b2s

2 ± b1s ± b0, where A,B ∈ Fp6 , may be
computed using three additions/subtractions in Fp2 , because
C = A±B = (a2 ± b2)s2 + (a1 ± b1)s+ (a0 ± b0).
The multiplication of two elements A = a2s

2 ± a1s± a0 and
B = b2s

2 ± b1s± b0 may be computed using algorithm 2.

Algorithm 2 Multiplication in Fp6 generated by irreducible
polynomials f(t) = t2 + 1 and g(s) = s3 + s− 1

Input: A = a2s
2+a1s+a0, B = b2s

2+b1s+b0, A,B ∈ Fp6 ,
a0, a1, a2, b0, b1, b2 ∈ Fp2

Output: C = c2s
2 + c1s+ c0 = A ·B

1: D = a2;
2: E = a1;
3: F = a0;
4: G = b2;
5: H = b1;
6: I = b0;
7: J = D + E;
8: K = D + F ;
9: L = G+ I;

10: K = K · L;
11: L = E + F ;
12: D = D ·G;
13: E = E ·H;
14: F = F · I;

15: G = G+H;
16: H = H + I;
17: G = J ·G;
18: I = G−D;
19: E = F − E;
20: c0 = I + E;
21: D = 2 ·D;
22: K = K −D;
23: c2 = K − E;
24: L = L ·H;
25: G = D −G;
26: G = G+ L;
27: c1 = G− F ;

return c2s
2 + c1s+ c0;

As well as in the multiplication in the Fp4 field, an opti-
mization allows to reduce a memory cost of algorithm 2. To
multiply 2 elements from Fp6 field, 9 registers are needed. As
assumed earlier, 1 register requires 542 bits, so the optimized
multiplication in Fp6 field needs 4878 bits of memory.

C. Fp8 arithmetic using Fp2 arithmetic

To construct the Fp8 field, an irreducible polynomial of
degree 2 with coefficients from Fp4 field is necessary. The
choice fell on h(u) = u2 − su + 1. Because a degree of
chosen polynomial is 2, as well as in Fp4 , the arithmetic in
both fields will be similar.

The addition/subtraction of two elements A = a1u ± a0
and B = b1u ± b0 may be computed using two addi-
tions/subtractions in Fp4 , because C = A±B = (a1± b1)u+

(a0 ± b0).
The multiplication of two elements A = a1u±a0 and B =

b1u± b0 may be computed using an algorithm 3.

Algorithm 3 Multiplication in Fp8 generated by polynomials
f(t) = t2 + 1, g(s) = s2 − (t + 1)s − t − 1 and h(u) =

u2 − su+ 1.
Input: A = a1u + a0, B = b1u + b0, A,B ∈ Fp8 ,

a0, a1, b0, b1 ∈ Fp4
Output: C = c1u+ c0 = A ·B

1: D = a1;
2: E = a0;
3: F = b1;
4: G = b0;
5: H = D + E;
6: D = D · F ;
7: E = E ·G;
8: F = F +G;

9: H = H · F ;
10: c0 = E −D;
11: D = s ·D;
12: D = H +D;
13: D = D + c0;
14: D = D − E;
15: c1 = D − E;

return c1u+ c0;

To multiply 2 elements from the Fp8 field with the optimized
algorithm, 5 variables are needed. However, 1 register corre-
sponds to 1 element from the Fp2 field and in the algorithm
3 coefficients are from the Fp4 field, so all of them require 2
registers. Summing up, the algorithm of multiplication in Fp8
needs 10 registers (5420 bits) to be completed.
The results of above analyses are presented in Table II.

TABLE II
COMPARISON OF ECDH OVER Fp AND DH OVER Fpn FOR DIFFERENT
VALUES OF n; bl(x) DENOTES THE BIT-LENGTH OF NUMBER x, HW (x)

DENOTES THE HAMMING WEIGHT OF NUMBER x AND
S(x) = bl(x) +HW (x).

ECDH(Fp) DH(Fp4) DH(Fp6) DH(Fp8)

Degree n of field extension 1 4 6 8
Length of private key bl(p) bl(r) bl(r) bl(r)

Length of public key 2 · bl(p) n · bl(p) n · bl(p) n · bl(p)
Single step cost 11M 3M 6M 9M

Validation cost (S(r) + 3)M S(r)M S(r)M S(r)M

VI. EXAMPLES OF DH SCHEME FOR SIDH HYBRID

SCHEMES AND ITS EFFICIENCY ANALYSIS

In this section some examples of hybrid SIDH-DH schemes,
with a complexity and security analysis, will be presented.

A. Assumptions

In every example and every protocol we assumed that
its efficiency is based on the number of multiplications and
inversions in the Fp2 field, because additions/subtractions have
a small impact on the efficiency of the algorithm. More-
over, for the ECDH algorithm, we assumed that the fastest
is application of ECDH based on the Montgomery curve
E : By2 = x3 + Ax2 + x over Fp, with cofactor equal to
4 and parameter B equal to 1.

We also assumed, that in every protocol, when computations
using the secret key are performed, the ladder technique is
used. A Montgomery ladder for the Montgomery curve may
be performed in 11 multiplications.

SIDH HYBRID SCHEMES WITH A CLASSICAL COMPONENT BASED ON THE DISCRETE LOGARITHM PROBLEM OVER FINITE FIELD EXTENSION 439

However, using the Montgomery curve with point repre-
sentation in XZ coordinates requires checking if x3+Ax2+x

B

is quadratic residue in Fp. If the Legendre symbol
(
B
p

)
=

B
p−1
2 is previously computed, then verification requires only

the computation of Legendre symbol
(
a
p

)
= a

p−1
2 , where

a = x3 +Ax2 + x.
In every protocol we also assumed, that every element sent

by the second person is checked if is proper.

B. Example I

Let’s consider the number p = 2137384 − 1 (it is 271 bit-
length prime number). For such prime, the SIDH algorithm
over Fp2 has 83 qubits level of quantum security and 72 bits
level of classical security. DH over Fp6 has 85 bits level of
classical security.

To check if there exist elements having a proper order, it is
necessary to factorize the number p2−p+1 (it is a cyclotomic
polynomial which divides p6 − 1). In this case p2 − p + 1 is
equal to 3 · 7 · 19 · 67 · 829 · r33 · r35 · r38 · r44 · r68 · r302, where
ri is i-bit prime.

If one chooses an element g of the order r302, then Pollard’s-
rho attack can break the DH over Fp6 by c1 · 2151 operations,
for some constant c1. Because sieve methods can break DH
over Fp6 by c2 · 285 operations, where c2 is some constant,
finally, DH scheme over Fp6 in this case ensures 85 bit level
of security.

So if a generator g has order r302 and the private key is
302 bit-length number, then ga requires 604 multiplications in
Fp6 , if Montgomery ladder is used.

In the second phase of DH algorithm (we describe the
operations which have to be performed by Alice), at first it
is necessary to check if received element B is proper. It may
be checked by computing Br302 . This operation does not have
to be computed securely and requires 451 multiplications in
Fp6 , assuming that standard left-to-right method is used. At
the end, it is necessary to compute Ba, which requires 604

multiplications in Fp6 .
Finally, the protocol requires in average case 9954 multipli-

cations in Fp2 .
DH scheme is in this case for 26, 88% slower than ECDH

scheme based on Montgomery curve, and the public key is
about six times longer (DH public key bit-length is equal to
1626 long and ECDH public key bit-length is equal to 271).

This example shows, that using DH over Fp6 is not compa-
rable with ECDH over Fp. It is clear, that if one wants to use
DH algorithm, at least at 80 bits level of security, the different
approach should be considered. Such approach is presented in
the next section.

VII. APPLICATION OF ALGORITHMS BASED ON DISCRETE

LOGARITHM OVER FINITE FIELD USING FINITE FIELD

ELEMENTS COMPRESSION

There are several algorithms equivalent to Diffie-Hellman
and using compression of finite fields elements, like LUC

[15], Gong-Harn algorithm [16] and XTR [17]. However, LUC
allows one to compress element from field Fp2n to the element
from the Fpn and Gong-Harn allows one to compress element
from field Fp3n to the element from the Fpn . XTR allows one
to compress element from field Fp6n to the element from the
Fp2n and, in the context of this article, seems to be the most
useful. In the next part of this section applications of XTR
algorithm will be shown.

A. XTR algorithm

The name of XTR algorithm comes from Efficient and
Compact Subgroup Trace Representation. The main idea of
XTR was to compress a public key representation, by using
elements from Fp2 , without losing a security of Fp6 field.
It may be achievable with an element g of order q > 6

which divides p2 − p + 1. The element g generates a sub-
group of a multiplicative group from Fp6 , because polynomial
p2−p+1 divides p6−1, which is an order of q of mentioned
multpilicative subgroup. As q is not a divisor of pk − 1 for
k = 1, 2, 3, the subgroup generated by g is not a part of any
proper subfield of Fp6 . The thing is that powers of g may
be represented using an element of Fp2 and that they may
be computed using arithmetic in Fp2 , avoiding using an Fp6
arithmetic, which needs almost 2 times more memory and has
bigger computational complexity. Using the above fact, trace
of g may be acquired as Tr(g) = g+gp

2

+gp
4

, where g ∈ Fp6
and Tr(g) ∈ Fp2 .

Algorithm 4 Computing Sn(c)

Input: c
Output: Sn(c)

case n is:
1) when 0 → S0(c) = (cp, 3, c);
2) when 1 → S1(c) = (3, c, c2 − 2cp);
3) when 2 → S2(c) = (c, c2 − 2cp, c3);
4) when >2 →

a) m = n;
b) if m is even → m = m− 1;
c) S̄k(c) = S3(c);
d) let m−1

2 =
∑r
j=0mj2

j , where mj ∈ {0, 1} and
mr = 1;

e) for j = r − 1, r − 2, ..., 0 do:
i) if mj = 0 → S̄2k(c) = (c4k, c4k+1, c4k+2) and
k = 2k;

ii) if mj = 1 → S̄2k+1(c) =

(c4k+2, c4k+3, c4k+4) and k = 2k + 1;
f) if n is even → Sm+1(c) = (cm, cm+1, cm+2) and
m = m+ 1;

5) Sn(c) = Sm(c);
return Sn(c);

In the XTR algorithm, computing a three-element set
Sn(c) = (cn−1, cn, cn+1) ∈ (Fp2)3 is necessary. It is possible

440 M. WROŃSKI, E. BUREK, Ł. DZIERZKOWSKI

by using algorithm 4 and using below formulas with given
c, cn−1, cn, cn+1:
• c2n = c2n − 2cpn;
• cn+2 = c · cn+1 − cp · cn + cn−1;
• c2n−1 = cn−1 · cn − cp · cpn + cpn+1;
• c2n+1 = cn+1 · cn − c · cpn + cpn−1;
• S̄t(c) = S2t+1(c).
Because computing Sa(Tr(g)) is obligatory to obtain

Tr(ga), algorithm 5 presents how to do this:

Algorithm 5 Computation of Tr(g)

Output: Tr(g), where g is some element of order q

1) Choose random c ∈ Fp2 \ Fp;
2) Compute cp+1;
3) If cp+1 ∈ Fp → return to Step 1;
4) Compute c(p2−p+1)/q;
5) If c(p2−p+1)/q = 3 → return to Step 1;
6) Tr(g) = c(p2−p+1)/q;

return Tr(g);

XTR version of the Diffie-Hellman protocol is shown in
algorithm 6:

Algorithm 6 XTR-DH
Input: public key data - p, q, T r(g)

Output: shared secret key - K

1) Alice chooses random a ∈ Z, where 1 < a < q − 2;
2) Alice computes Sa(Tr(g)) =

(Tr(ga−1), T r(ga), T r(ga+1)) and sends Tr(ga)

to Bob;
3) Bob chooses random b ∈ Z, where 1 < b < q − 2;
4) Bob computes Sb(Tr(g)) =

(Tr(gb−1), T r(gb), T r(gb+1)) and sends Tr(gb)

to Alice;
5) Alice computes Sa(Tr(gb)) =

(Tr(g(a−1)b), T r(gab), T r(g(a+1)b)) and knows
the K = Tr(gab);

6) Bob computes Sb(Tr(g
a)) =

(Tr(ga(b−1)), T r(gab), T r(ga(b+1))) and knows
the K = Tr(gab);

B. Example of XTR application

For the previously presented 271 bit-length prime number p,
XTR algorithm is more than twice faster than ECDH algorithm
and its security level is equal to 83 bits (it is the same security
level as for the DH over Fp6).

The public key in XTR algorithm is about twice longer (542
bits), comparing to the bit-length of public key (269 bits) in
ECDH algorithm based on Montgmery XZ arithmetic.

However, in the XTR algorithm it is suggested to use Fp2
field which is generated by the root of irreducible polynomial
f(t) = t2 + t + 1, because in such case t is the generator
of an optimal normal basis and computation of the Frobenius

endomorphism π(g) is just the rotation of the elements. It
is worth to note, that for the irreducible polynomial f(t) =

t2 + 1, for which the multiplication in a polynomial basis is
the most efficient, computation of π(g) for the element g =

g1t+g0, g ∈ Fp2 requires only one subtraction: π(g) = −g1t+
g0. Computation of Frobenius endomorphism is in such case
very efficient and it is not necessary to make any conversion
between a polynomial and normal bases.

The whole XTR algorithm requires in this case 3624
multiplications in the Fp2 field and is therefore 53%

faster than the previously presented ECDH algorithm using
Montgomery curve over Fp.

The comparison of efficiency of ECDH over Fp and XTR
over Fp6 is presented in the Table III.

TABLE III
COMPARISON OF EFFICIENCY OF ECDH OVER Fp USING MONTGOMERY

CURVE AND XTR OVER Fp6 , WHERE p = 2137384 − 1 IS 271-BITS
PRIME.

ECDH(Fp) XTR(Fp6)

Length of private key 269b 302b
Length of public key 269b 542b
Cost for 1 bit of private key 11M 4M

1st (2nd) round 2959M 1208M
Validation 477M 1208M
Additional computations (inversion) 949M 0M
Whole algorithm 7845M 3624M

QS(Q) 83q 83q
CS(Q) 63b 63b
CS(P) 135b 85b
HS(Q,P) 83 83

VIII. CONCLUSION AND FURTHER WORKS

In this paper was analyzed possibility of an application of
Diffie-Hellman scheme over extension fields and protocols
based on the discrete logarithm problem over finite fields,
which uses elements compression. The levels of security and
examples of applications of such protocols were presented. It
seems that XTR algorithm using traces of Fp6 elements over
Fp2 field may be used in the SIDH-XTR hybrid scheme for low
levels of security, up to 85 bits. In the example presented in a
previous subsection, XTR algorithm is about 53% faster than
ECDH based on Montgomery curve over Fp, having public
key twice longer.

The further works should focus on a hardware implementa-
tion of presented solution and investigation of other XTR-like
algorithms, whose efficiency in a hybrid scheme would be
comparable to an application of ECDH over Fp field, but a
security level of such solution would be at least 128 bits.

REFERENCES

[1] C. Costello, P. Longa, and M. Naehrig, “Efficient algorithms for super-
singular isogeny diffie-hellman,” in Advances in Cryptology – CRYPTO
2016, M. Robshaw and J. Katz, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 572–601.

SIDH HYBRID SCHEMES WITH A CLASSICAL COMPONENT BASED ON THE DISCRETE LOGARITHM PROBLEM OVER FINITE FIELD EXTENSION 441

[2] R. D. M. Wroński, T. Kijko, “Methods of generation of elliptic curves
for hybrid sidh scheme over large fields,” To appear in: Proceedings of
the Romanian Academy, Series A, vol. January-March, 2020.

[3] D. B. Roy and D. Mukhopadhyay, “Post quantum ecc on fpga
platform.” [Online]. Available: https://eprint.iacr.org/2019/568

[4] S. Jaques and J. M. Schanck, “Quantum cryptanalysis in the ram model:
Claw-finding attacks on sike,” in CRYPTO, 2019.

[5] D. J. et. al., “Supersingular isogeny key encapsulation (version from
april 17, 2019,” NIST PQC, 2019, https://sike.org/files/SIDH-spec.pdf.

[6] G. L. Mullen and D. Panario, Handbook of finite fields. Chapman &
Hall/CRC, 2013.

[7] P. Wang and F. Zhang, “Improved pollard rho method for computing dis-
crete logarithms over finite extension fields,” Journal of Computational
and Applied Mathematics, vol. 236, no. 17, p. 4336–4343, 2012.

[8] S. D. Galbraith, J. M. Pollard, and R. S. Ruprai, “Computing discrete
logarithms in an interval,” Mathematics of Computation, vol. 82, no.
282, p. 1181–1195, 2012.

[9] R. S. Ruprai, “Improvements to the gaudry-schost algorithm for multi-
dimensional discrete logarithm problems and applications,” Department
of Mathematics, Royal Holloway University of London, 2010.

[10] “1363-2000 - ieee standard specifications for public-key cryptography.”
[Online]. Available: https://standards.ieee.org/standard/1363-2000.html

[11] I. F. Blake, G. Seroussi, N. P. Smart, and K. Witold, Krzywe eliptyczne
w kryptografii. Wydawnictwa Naukowo-Techniczne, 2004.

[12] A. Guillevic, “Discrete logarithm computation in finite fields fpn

with nfs variants and consequences in pairing-based cryptography,”
personal site, 2019, https://members.loria.fr/AGuillevic/files/talks/19
Rennes STNFS.pdf.

[13] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” in Proceedings 35th Annual Symposium on Foundations
of Computer Science, Nov 1994, pp. 124–134.

[14] S. Wagstaf, “The cunningham project,” https://pdfs.semanticscholar.org/
66af/f30505c7cdf318756785a937744bca3b1e5b.pdf.

[15] P. J. Smith and M. J. Lennon, “Luc: A new public key system,” in SEC,
1993, pp. 103–117.

[16] G. Gong and L. Harn, “Public-key cryptosystems based on cubic finite
field extensions,” IEEE Transactions on Information Theory, vol. 45,
no. 7, pp. 2601–2605, 1999.

[17] A. K. Lenstra and E. R. Verheul, “The xtr public key system,” in Annual
International Cryptology Conference. Springer, 2000, pp. 1–19.

https://eprint.iacr.org/2019/568
https://sike.org/files/SIDH-spec.pdf
https://standards.ieee.org/standard/1363-2000.html
https://members.loria.fr/AGuillevic/files/talks/19_Rennes_STNFS.pdf
https://members.loria.fr/AGuillevic/files/talks/19_Rennes_STNFS.pdf
https://pdfs.semanticscholar.org/66af/f30505c7cdf318756785a937744bca3b1e5b.pdf
https://pdfs.semanticscholar.org/66af/f30505c7cdf318756785a937744bca3b1e5b.pdf

	Introduction
	Classical key-exchange protocols most suitable for the hybrid SIDH scheme
	Diffie-Hellman protocol
	ECDH protocol
	SIDH protocol

	Security
	Security of components of hybrid scheme
	Security of SIDH algorithm
	Attacks on the Discrete Logarithm Problem over a finite field
	The Pohlig - Hellman algorithm
	The Pollard's-rho algorithm
	The Pollard's-lambda algorithm

	Security of the ECDH algorithm
	MOV attack
	Anomalous attack

	General security of algorithms based on discrete logarithm problem over finite fields

	Security of discrete logarithm problem over prime field Fp and its small extensions for SIDH primes
	Special attacks on discrete logarithms over SIDH primes
	Security of DH scheme over Fp and Fp2
	Problem of factorisation of integers of the form p2-1, where p=f1m 2n +1
	Factorisation of numbers of the form wn1
	Algebraic factors method
	Aurifeuillean factorisation

	Security of DH scheme over Fp4 for SIDH primes
	Security of DH scheme over Fp6 for SIDH primes
	Security of DH scheme over Fp8 for SIDH primes
	Security of DH scheme over finite fields with high extension degrees
	Security recomendations

	Arithmetic in extension fields
	Fp4 arithmetic using Fp2 arithmetic
	Fp6 arithmetic using Fp2 arithmetic
	Fp8 arithmetic using Fp2 arithmetic

	Examples of DH scheme for SIDH hybrid schemes and its efficiency analysis
	Assumptions
	Example I

	Application of algorithms based on discrete logarithm over finite field using finite field elements compression
	XTR algorithm
	Example of XTR application

	Conclusion and further works
	References

