
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2020, VOL. 66, NO. 3, PP. 443-448
Manuscript received February 28, 2020; revised July, 2020. DOI: 10.24425/ijet.2020.131897

Using SAT Solvers to Finding Short Cycles in
Cryptographic Algorithms

Władysław Dudzic, and Krzysztof Kanciak

Abstract—A desirable property of iterated cryptographic al-
gorithms, such as stream ciphers or pseudo-random generators,
is the lack of short cycles. Many of the previously mentioned
algorithms are based on the use of linear feedback shift registers
(LFSR) and nonlinear feedback shift registers (NLFSR) and their
combination. It is currently known how to construct LFSR to
generate a bit sequence with a maximum period, but there is no
such knowledge in the case of NLFSR. The latter would be useful
in cryptography application (to have a few taps and relatively
low algebraic degree). In this article, we propose a simple
method based on the generation of algebraic equations to describe
iterated cryptographic algorithms and find their solutions using
an SAT solver to exclude short cycles in algorithms such as stream
ciphers or nonlinear feedback shift register (NLFSR). Thanks to
the use of AIG graphs, it is also possible to fully automate our
algorithm, and the results of its operation are comparable to the
results obtained by manual generation of equations. We present
also the results of experiments in which we successfully found
short cycles in the NLFSRs used in Grain-80, Grain-128 and
Grain-128a stream ciphers and also in stream ciphers Bivium
and Trivium (without constants used in the initialization step).

Keywords—NLFSR, short cycles, stream ciphers, Trivium,
Bivium, Grain-80, Grain-128

I. INTRODUCTION

THE phrase SAT solver is commonly used to refer to
software that solves the boolean satisfiability problem

(sometimes called propositional satisfiability problem and ab-
breviated SATISFIABILITY or SAT). It finds the evaluation
of variables (0 or 1) for which all logical formulas of a given
problem are met. This problem is an NP-complete problem
as demonstrated by Stephan Cook in [17]. Currently there
is no known algorithm which would effectively solve every
SAT problem, and it is believed that such an algorithm does
not exist. However, proof of this hypothesis has not been
carried out. There are many recognized SAT solvers which
use heuristic methods of solving the SAT problem. These can
be grouped according to technique, e.g. DPLL (Davis-Putnam-
Logemann-Loveland [11]) and CDCL (Conflict Driven Clause
Learning [12]).

In cryptology, SAT solvers are successfully used among
other methods in issues related to cryptanalysis of block
and stream ciphers [14], hash functions [7], and in methods
related to formal verification, automatic test pattern generation

This work was presented at the International Scientific Conference Math-
ematical Cryptology & Cybersecurity (MC&C 2020), Warsaw, 16-17.01.2020.

W. Dudzic is with Military University of Technology, Warsaw, Poland
(e-mail: wladyslaw.dudzic@wat.edu.pl).

K. Kanciak is with Military University of Technologycity, Warsaw,
Poland (e-mail: krzysztof.kanciak@wat.edu.pl).

and logic synthesis [18]. The idea of using SAT solvers to
search for short cycles of length n in iterated cryptographic
algorithms (like stream ciphers) or primitives (like LFSR) is
based on describing the n-iteration of an algorithm by an
algebraic system of equations, adding equations where initial
internal state equals final internal state, and then solving this
system using an SAT solver. When the problem is unsatisfiable
(unsat) the cycle of length n does not exist, but when it is
satisfiable (sat), the n-cycle exists, and we get the initial value
of the internal state. No known algorithm can check whether
the NLFSR or stream cipher has a full period with at least
polynomial complexity.

II. PREVIOUS WORK

Using SAT solvers to find short cycles in cryptographic
algorithms is a relatively new approach, and the most promis-
ing results can be found in [6] and [5]. Table I shows the
results of searching for short cycles in the NLFSRs used in
Grain-80 and Grain-128 stream ciphers, and also in stream
ciphers Bivium and Trivium (without constants used in the
initialization step) presented in [5]. Cycles of length 1 consist
of all 0. The experiments were run on a PC with Intel Core
i7-4600U CPU at 2.1 GHz with 8 GB RAM running under
Ubuntu 14.04 LTS.

Due to the addition of further conditions during calculations,
the algorithm proposed in [5] makes it possible to find all
cycles; however, its operation time is not satisfactory.

Currently, the search of NLFSRs with a maximum period
is also an important issue. The articles [15] and [21] show
results of searching such primitives using FPGA and [20] using
GPGPU. However, a state of found registers is not to large.

It can be proved [19] that only nonsingular NLFSR may
have a maximum period. The register is nosingilar if his
feedback function has the form:

f(x0, x1, · · · , xn−1) = x0 + g(x1, · · · , xn−1)

when we rotate register in left or:

f(x0, x1, · · · , xn−1) = xn−1 + g(x0, · · · , xn−2)

when we rotate register in right.
In other case is called singular [15]. However in general,

it is not know how to construct NLFSR with large state and
maximum period witch is cryptographically applicable.

III. EXPERIMENT

The proposed algorithm to find a cycle of length n consists
of three steps:

c© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/

444 W. DUDZIC, K. KANCIAK

TABLE I
RUNTIME, T, AND PEAK MEMORY CONSUMPTION, M (IN

KBYTES), USED BY THE ALGORITHM TO FIND N CYCLES OF
LENGTH K. [5]

1) generation of algebraic equations describing n iterations
of cryptographic algorithms in algebraic normal form
(ANF),

2) converting ANF to conjunctive normal form (CNF),
3) solving CNF problem using SAT solver.

In our experiments, we used two methods to generate alge-
braic equations that describe iterated cryptographic algorithms.
The first is based on manually generated equations. Handwrit-
ten equations seem to be the most natural and readable for
humans. For example, if the feedback function of NLFSR is:

f(x0, x1, x2, x3) = x0 ⊕ x1 ⊕ x2 ⊕ x1 · x3

we can describe 2 iterations of register using the equations:
x4 = x0 ⊕ x1 ⊕ x2 ⊕ x1 · x3

x5 = x0

x6 = x1

x7 = x2

x8 = x4 ⊕ x5 ⊕ x6 ⊕ x5 · x7

x9 = x4

x10 = x5

x11 = x6

and add conditions where the initial internal state is equal to
the final internal state:
x0 = x8

x1 = x9

x2 = x10

x3 = x11

where:

• x0 x1 x2 x3 - initial internal state
• x4 x5 x6 x7 - state after first iteration

• x8 x9 x10 x11 - state after second iteration

The second method uses automatically generated equations
(based on Cryptol implementation which is translated to the
and-inverted-graphs (AIG [2])) and converts them into ANF. In
this process we use SAW [9] and ABC [22] from UC Berkeley.
The idea of using an equation taken from implementation
was earlier explored by Courtois et al. [14] to conduct an
SAT attack on DES block cipher. In 2012, during SHA-
3 competition, Homsirikamol et al. [7] developed a similar
tool to obtain hardware equations that described SHA-3 final
candidates and evaluated their security margin.

The conversion of ANF to CNF is performed using a
modification of US open-source software available at https:
//www.lukbettale.ze.cx/anf2cnf. During conversion, the CNF
CUT parameter is always set to 3. It is possible that other
conversion methods may affect the effectiveness of solving
CNF problems. However, we have not yet conducted research
in this area.

To solve a CNF problem, we used a Plingeling SAT solver
on 44 cores Intel(R) Xeon(R) CPU E5-2699 v4 2.20 Ghz.
These results are presented in this article. We also used SAT
solvers CaDiCaL, Treengeling and Lingeling. A description
of the solvers we used and their benchmarks is presented in
article [1]. The maximum time limit for solving a task was
set at 3600 seconds. During testing, it was assumed that after
finding a cycle with the length n, there would be no further
search for cycles with the length kn, where k is an integer
greater than 0.

A. Analysis of 80-bit NLFSR from stream cipher Grain-80

The Grain-80 stream cipher was proposed in [13]. It has
been selected for the final eSTREAM portfolio for profile 2 by
the eSTREAM project. Grain stream ciphers are designed pri-
marily for restricted hardware environments. The key stream
generator contains 80-bit NLFSR and an 80-bit LFSR. The
LFSR is known to have the maximum period of 280− 1 since
it uses a primitive generator polynomial of degree 80. The
period of NLFSR is unknown and its feedback function F is:

F (x0, ..., x79) = 1+x16+x19+x27+x34+x42+x46+x51+
x58+x64+x70+x79+x16x19+x42x46+x64x70+x19x27x34+
x46x51x58+x16x34x51x70+x19x27x42x46+x16x19x58x64+
x16x19x27x34x42 + x46x51x58x64x70 + x27x34x42x46x51x58

During testing of 80-bit NLFSR from a Grain-80 cipher
(results in table II) we rotated register in right, periods of
length 2 and 3 were detected. Furthermore, it was found that
the examined register does not include periods from length 5
to 55 (excluding cycles of length 2k and 3k, where k is an
integer greater than 0 -– those lengths were omitted from the
calculation). Found cycles we present in table III. In article [5]
and results show in table I the cycle of length 2 was not found.
Probably authors not consider of 1 which is add to NLFSR
feedback function in original specification of Grain80.

B. Analysis of 128-bit NLFSR from stream cipher Grain-128

The Grain-128 stream cipher was proposed in [3]. The
design is very small in hardware, and targets environments

https://www.lukbettale.ze.cx/anf2cnf
https://www.lukbettale.ze.cx/anf2cnf

USING SAT SOLVERS TO FINDING SHORT CYCLES IN CRYPTOGRAPHIC ALGORITHMS 445

TABLE II
ANALYSIS OF 80-BIT NLFSR FROM GRAIN-80.

n
result
manual
method

result
automated
method

time
manual
method

time
automated
method

2 sat sat 0m 00.08s 0m 00.05s

3 sat sat 0m 00.07s 0m 00.06s

5 unsat unsat 0m 00.24s 0m 00.07s

7 unsat unsat 0m 00.24s 0m 00.09s

11 unsat unsat 0m 00.26s 0m 00.15s

13 unsat unsat 0m 00.34s 0m 00.18s

17 unsat unsat 0m 00.45s 0m 00.69s

19 unsat unsat 0m 00.81s 0m 01.02s

23 unsat unsat 0m 01.37s 0m 01.96s

25 unsat unsat 0m 03.22s 0m 04.19s

29 unsat unsat 0m 08.95s 0m 11.50s

31 unsat unsat 0m 10.03s 0m 10.92s

35 unsat unsat 0m 08.79s 0m 12.33s

37 unsat unsat 0m 11.57s 0m 10.64s

41 unsat unsat 1m 03.11s 0m 48.29s

43 unsat unsat 0m 42.09s 0m 33.52s

47 unsat unsat 7m 05.38s 3m 25.04s

49 unsat unsat 16m 24.07s 26m 15.56s

53 unsat timeout 58m 27.69s -------

55 unsat timeout 55m 26.48s -------

59 timeout timeout ------- -------

TABLE III
CYCLES FOUND IN NLFSR FROM GRAIN-80.

n state [hex]

2 AAAAAAAAAAAAAAAAAAAA

3 92492492492492492492

with very limited resources in gate count, power consumption,
and chip area. Similar to Grain-80, it contains 128-bit NLFSR
and 128-bit LFSR.

The LFSR is known to have the maximum period of 2128−1
since it uses a primitive generator polynomial of degree 128.
The period of NLFSR is unknown, and its feedback function
F is:

F (x0, ..., x127) = x127 + x101 + x71 + x36 + x31 + x124x60 +
x116x114 + x110x109 + x100x68 + x87x79 + x66x62 + x59x43

During testing of 128-bit NLFSR from a Grain-128 cipher
(results in table IV) we rotated register in right, periods of
length 7, 8 and 59 were detected. Furthermore, it was found
that the examined register does not include periods from length
2 to 44 (excluding cycles of length 7k and 8k, where k is an
integer greater than 0 — those lengths were omitted from the
calculation). Found cycles we present in table V.

C. Analysis of 128-bit NLFSR from stream cipher Grain-128a

The Grain-128a stream cipher was proposed in [10]. The
algorithm is a new version of Grain-128 and is strengthened
against all known attacks and observations, with built-in
support for optional authentication. The period of the new
128-bit NLFSR is also unknown, and its feedback function
F is:

TABLE IV
ANALYSIS OF 128-BIT NLFSR FROM GRAIN-128.

n
result
manual
method

result
automated
method

time
manual
method

time
automated
method

2 unsat unsat 0m 00.04s 0m 00.04s

3 unsat unsat 0m 00.05s 0m 00.04s

4 unsat unsat 0m 00.05s 0m 00.05s

5 unsat unsat 0m 00.05s 0m 00.07s

6 unsat unsat 0m 00.05s 0m 00.05s

7 sat sat 0m 00.06s 0m 00.06s

8 sat sat 0m 00.06s 0m 00.06s

9 unsat unsat 0m 00.07s 0m 00.11s

10 unsat unsat 0m 00.06s 0m 00.11s

11 unsat unsat 0m 00.09s 0m 00.10s

12 unsat unsat 0m 00.08s 0m 00.13s

13 unsat unsat 0m 00.09s 0m 00.12s

15 unsat unsat 0m 00.16s 0m 00.49s

17 unsat unsat 0m 00.17s 0m 00.64s

18 unsat unsat 0m 00.60s 0m 00.81s

19 unsat unsat 0m 00.93s 0m 01.42s

20 unsat unsat 0m 00.86s 0m 00.77s

22 unsat unsat 0m 01.07s 0m 01.34s

23 unsat unsat 0m 02.31s 0m 01.42s

25 unsat unsat 0m 02.23s 0m 02.47s

26 unsat unsat 0m 02.80s 0m 03.43s

27 unsat unsat 0m 08.94s 0m 08.04s

29 unsat unsat 0m 07.95s 0m 12.42s

30 unsat unsat 0m 08.42s 0m 06.53s

31 unsat unsat 0m 24.80s 0m 27.63s

33 unsat unsat 1m 07.11s 1m 08.25s

34 unsat unsat 0m 16.37s 0m 31.43s

36 unsat unsat 1m 15.63s 2m 20.12s

37 unsat unsat 0m 58.69s 1m 01.83s

38 unsat unsat 3m 16.68s 3m 33.52s

39 unsat unsat 0m 51.58s 1m 06.15s

41 unsat unsat 4m 39.11s 4m 46.36s

43 unsat unsat 17m 48.66s 15m 15.22s

44 unsat unsat 25m 56.06s 20m 06.97s

45 timeout timeout ------- -------

50 timeout timeout ------- -------

51 timeout timeout ------- -------

52 timeout timeout ------- -------

53 timeout timeout ------- -------

54 timeout timeout ------- -------

55 timeout timeout ------- -------

57 timeout timeout ------- -------

58 timeout timeout ------- -------

59 sat timeout 31m 58.28s -------

60 timeout timeout ------- -------

F (x0, ..., x127) = 1 + x31 + x36 + x71 + x101 + x127 +
x43x59 + x60x124 + x62x66x68x100 + x79x87 + x109x110 +
x114x116 + x45x49x57 + x102x103x105 + x32x34x35x39

During testing of 128-bit NLFSR from a Grain-128a cipher
(results in table VI) we rotated register in right, periods of
length 3, 31, 37 and 65 were detected. Furthermore, it was
found that the examined register does not include periods from
length 2 to 41 and length 44 (excluding cycles of length 3k,
31k and 37k, where k is an integer greater than 0 -– those

446 W. DUDZIC, K. KANCIAK

TABLE V
CYCLES FOUND IN NLFSR FROM GRAIN-128.

n state [hex]

7 3A74E9D3A74E9D3A74E9D3A74E9D3A74

8 2F2F2F2F2F2F2F2F2F2F2F2F2F2F2F2F

59 C83BBB78A6B74C1907776F14D6E98320

lengths were omitted from the calculation). Found cycles we
present in table VII.

D. Analysis of Bivium and Trivium

We also applied the presented algorithm to Trivium [4]
stream ciphers and his simpler version Bivium [8]. Referring
to figure 1 in Bivium we can distinguish two LFSR’s: 93-bit
register A and 84-bit register B. The Internal state of Bivium
consists 177 bits.

Fig. 1. Bivium and Trivium stream ciphers

The Trivium stream cipher includes an additional 111-bit
register C. All used LFSRs are known to have the maximum
period, since Trivium uses a primitive generator polynomials
of degree 93, 84, 111. The internal state of Trivium consists
of 288 bits. Trivium was submitted to the profile 2 (hardware)
of the eSTREAM competition and has been selected as part
of the portfolio for low area hardware ciphers profile 2 by
the eSTREAM project [16]. It is not patented and has been
specified as an International Standard under ISO/IE. The
algorithm generates up to 264 bits of output keystream from
an 80-bit key and an 80-bit IV vector.

During testing Bivium key stream generator (results in ta-
ble VIII) were not included constants used in the initialization
step. A period of length 3 was detected. Furthermore, it was
found that the examined construction does not include periods
from length 2 to 46 or from length 52 to 55 (excluding cycles
of length 3k, where k is an integer greater than 0 — those
lengths were omitted from the calculation). Found cycle we
present in table IX (|| is bitwise concatenation).

During testing Trivium key stream generator (results in
table X) were not included constants used in the initialization
step of Trivium. Periods of length 3, 10 and 11 were detected.
Furthermore, it was found that the examined construction does
not include periods from length 2 to 31 (excluding cycles

TABLE VI
ANALYSIS OF 128-BIT NLFSR FROM GRAIN-128A.

n
result
manual
method

result
automated
method

time
manual
method

time
automated
method

2 unsat unsat 0m 00.05s 0m 00.29s

3 sat sat 0m 00.04s 0m 00.33s

4 unsat unsat 0m 00.05s 0m 00.39s

5 unsat unsat 0m 00.05s 0m 00.27s

7 unsat unsat 0m 00.06s 0m 00.33s

8 unsat unsat 0m 00.05s 0m 00.30s

10 unsat unsat 0m 00.07s 0m 00.36s

11 unsat unsat 0m 00.07s 0m 00.41s

13 unsat unsat 0m 00.10s 0m 00.45s

14 unsat unsat 0m 00.09s 0m 00.51s

16 unsat unsat 0m 00.39s 0m 00.79s

17 unsat unsat 0m 00.17s 0m 01.00s

19 unsat unsat 0m 01.38s 0m 02.01s

20 unsat unsat 0m 01.00s 0m 01.68s

22 unsat unsat 0m 01.16s 0m 02.15s

23 unsat unsat 0m 02.11s 0m 02.55s

25 unsat unsat 0m 05.51s 0m 06.29s

26 unsat unsat 0m 04.11s 0m 04.49s

28 unsat unsat 0m 04.00s 0m 05.18s

29 unsat unsat 0m 11.42s 0m 18.47s

31 sat sat 0m 01.11s 0m 06.75s

32 unsat unsat 0m 30.62s 0m 54.72s

34 unsat unsat 0m 30.00s 1m 22.09s

35 unsat unsat 0m 35.77s 0m 46.86s

37 sat sat 0m 03.84s 0m 10.74s

38 unsat timeout 19m 19.39s -------

40 unsat unsat 2m 05.77s 5m 17.70s

41 unsat timeout 29m 58.56s -------

43 timeout timeout ------- -------

44 unsat unsat 17m 45.83s 47m 14.03s

46 timeout timeout ------- -------

47 timeout timeout ------- -------

49 timeout timeout ------- -------

50 timeout timeout ------- -------

52 timeout timeout ------- -------

53 timeout timeout ------- -------

55 timeout timeout ------- -------

56 timeout timeout ------- -------

58 timeout timeout ------- -------

59 timeout timeout ------- -------

61 timeout timeout ------- -------

64 timeout timeout ------- -------

65 timeout sat ------- 57m 56.46s

of length 3k, 10k and 11k, where k is an integer greater
than 0 -– those lengths were omitted from the calculation).
We also examined Trivium with key stream generators as
included constants used in the initialization step, but no cycles
were found from length 2 to 177. Found cycles we present in
table XI.

E. Manualy generation of equantions versus automated gen-
eration of equantions

In our experiments we used two methods to generate equa-
tions in algebraic normal form: manual (based on handwritten
equations) and automated (based on AIG graphs). The main

USING SAT SOLVERS TO FINDING SHORT CYCLES IN CRYPTOGRAPHIC ALGORITHMS 447

TABLE VII
CYCLES FOUND IN NLFSR FROM GRAIN-128A.

n state [hex]

3 6DB6DB6DB6DB6DB6DB6DB6DB6DB6DB6D

31 0E739A721CE734E439CE69C8739CD390

37 FBA40E3E6FDD2071F37EE9038F9BF748

65 049D61EB869158AE824EB0F5C348AC57

TABLE VIII
ANALYSIS OF BIVIUM

(WHITHOUT CONSTANTS USING IN INITIALIZATION STEP)

n
result automated

method
time automated

method

2 unsat 0m 00.05s

3 sat 0m 00.03s

4 unsat 0m 00.03s

5 unsat 0m 00.03s

7 unsat 0m 00.03s

8 unsat 0m 00.04s

10 unsat 0m 00.05s

11 unsat 0m 00.08s

13 unsat 0m 00.05s

14 unsat 0m 00.07s

16 unsat 0m 00.10s

17 unsat 0m 00.17s

19 unsat 0m 00.24s

20 unsat 0m 00.33s

22 unsat 0m 00.36s

23 unsat 0m 00.08s

25 unsat 0m 00.32s

26 unsat 0m 00.06s

28 unsat 0m 00.44s

29 unsat 0m 01.67s

31 unsat 0m 05.69s

32 unsat 0m 01.01s

34 unsat 0m 28.18s

35 unsat 0m 04.36s

37 unsat 3m 19.98s

38 unsat 2m 22.31s

40 unsat 0m 01.78s

41 unsat 0m 00.37s

43 unsat 53m 20.32s

44 unsat 39m 57.73s

46 unsat 2m 33.90s

47 timeout -------

49 timeout -------

50 timeout -------

52 unsat 0m 03.90s

53 unsat 58m 16.13s

55 unsat 0m 40.02s

56 timeout -------

differences between the two sets are the number of equations
and the maximal algebraic degree. For the method based on
handwritten equations, the maximal algebraic degree depends
on the form of the NLFSR feedback function, and for the
method based on AIG graphs, the maximal algebraic degree
is always equal to 2. This is a natural consequence of the
construction of AIG graphs. For this reason, the number of
equations is higher when the second method is used.

TABLE IX
CYCLES FOUND IN BIVIUM

(WITHOUT CONSTANTSUSED IN THE INITIALIZATION STEP).

n state [hex || bit]

3
00000000000000000000000124
924924924924924924 || True

TABLE X
ANALYSIS OF TRIVIUM

(WHITHOUT CONSTANTS USING IN INITIALIZATION STEP)

n
result automated

method
time automated

method

2 unsat 0m 00,05s

3 sat 0m 00,06s

4 unsat 0m 00,07s

5 unsat 0m 00,07s

7 unsat 0m 00,09s

8 unsat 0m 00,09s

10 sat 0m 00,14s

11 sat 0m 00,09s

13 unsat 0m 00,07s

14 unsat 0m 00,14s

16 unsat 0m 00,31s

17 unsat 0m 00,37s

19 unsat 0m 01,14s

23 unsat 0m 00,11s

25 unsat 0m 14,38s

26 unsat 0m 00,11s

28 unsat 2m 49,88s

29 unsat 0m 00,11s

31 unsat 51m 54,39s

32 timeout -------

The task in the CNF can be characterized by the number of
variables and the number of clauses. Due to the ANF systems
from which our CNF tasks were generated, it was typical
that CNF systems generated from the AIG based method
had many more variables and clauses than those generated
from handwritten equations. In both cases, it is clear that the
increase in both indicators is linear. The relevant dependencies
are shown in figure 2 and 3.

Fig. 2. Number of variables in CNF on n-th iterationfor Grain-80

Despite the significant differences between CNF generated
by the handwritten equations method and the AIG graph

448 W. DUDZIC, K. KANCIAK

TABLE XI
CYCLES FOUND IN TRIVIUM

(WITHOUT CONSTANTSUSED IN THE INITIALIZATION STEP).

n state [hex]

3
000000000000000000000004924924924924
924924920000000000000000000000000000

10
94E5394E5394E5394E5394E733CCF33CCF33
CCF33CCF6F5BD6F5BD6F5BD6F5BD6F5BD6F5

11
4148290520A4148290520A413E27C4F89F13
E27C4F899BC3786F0DE1BC3786F0DE1BC378

Fig. 3. Number of clauses in CNF on n-th iterationfor Grain-80

method, the time to find solutions is similar. The time dif-
ference is due to heuristic methods of solving the CNF task
by Plingeling SAT solver. Considering this fact, it is difficult
to assess which method of generating equations is better. Both
methods allow the occurrence of short cycles in tested NLFSRs
and stream ciphers to be easily checked.

IV. CONCLUSION

In summary, our experiments discovered short cycles in the
NLFSRs used in Grain-80, Grain-128 and Grain-128a stream
ciphers (all examineted registers are nonsingular in case when
they will be rotate in right) and also in stream ciphers Bivium
and Trivium (without constants used in the initialization step).
Furthermore, by obtaining proof of the contradiction of the
SAT problem, we also determined the number of iterations
for which such cycles do not exist.

The time needed to find a cycle or proof of its absence is
better than that of the algorithm used in [5]. This is clearly
shown as the iteration of the given transformation increases.
This fact allowed us to evaluate a larger range of iterations
than was tested in [5]. Unfortunately, due to the nature of
the SAT problem, it we did not estimated the computational
and memory complexity. This is the main disadvantage with
respect to the method proposed in [5].

In the future, we want to use the divide-and-conquer strategy
in solving SAT. We believe that this approach can significantly
reduce the calculation time, which will allow for evaluation of
a larger range of iterations.

In our opinion, the presented method may prove to be a
good approach to check whether a given iterated cryptographic
algorithm has short cycles. Certainly, it is useful when no other
algorithms exist (except brute force) to check this property (i.e.

in the case of NLFSR). It can also be useful in determining
the distribution of cycles of tested transformation.

From the cryptanalysis point of view, it will be interesting to
check how the cycles found affect the security of the examined
algorithms. The occurrence of short cycles in the key stream
generator in practice discredits such an algorithm

REFERENCES

[1] A. Biere, "CADICAL, LINGELING, PLINGELING, TREENGELING
and YALSAT Entering the SAT Competition 2017".

[2] A. Biere, "The AIGER And-Inverter Graph (AIG) Format", 2007.
[3] A. Maximov, M. Hell, T. Johansson and W. Meier, "A Stream Cipher

Proposal: Grain-128", IEEE International Symposium on Information
Theory, 2006, doi: 10.1109/ISIT.2006.261549.

[4] C. De Canniere and B. Preneel, "Trivium Specifica-
tions", Springer Berlin Heidelberg, pages 244-266, 2008,
doi: 10.1007/978-3-540-68351-3_18.

[5] E. Dubrova and M. Teslenko, "An efficient SAT-based algorithm
for finding short cycles in cryptographic algorithms", Proceedings of
the Third Annual ACM Symposium on Theory of Computing, 2018,
doi: 10.1109/HST.2018.8383892.

[6] E. Dubrova and M. Teslenko, "On Finding Short Cycles in Cryp-
tographic Algorithms", Cryptology ePrint Archive, Report 2016/1068,
2016.

[7] E. Homsirikamol, P. Morawiecki, M. Rogawski and M. Srebrny, "Secu-
rity Margin Evaluation of SHA-3 Contest Finalists through SAT-Based
Attacks", Computer Information Systems and Industrial Management,
pages 56–67, 2012, doi: 10.1007/978-3-642-33260-9_4.

[8] J. Borghoff, L. R. Knudsen and M. Stolpe, "Bivium as a
Mixed-Integer Linear Programming Problem", Lecture Notes
in Computer Science (LNCS), Vol. 5921, pp 133-152, 2009,
doi: 10.1007/978-3-642-10868-6_9.

[9] K. Carter, A. Foltzer, J. Hendrix, B. Huffman, A. Tomb, "SAW: the
software analysis workbench", Proceedings of the 2013 ACM SIGAda
annual conference on High integrity language technology, pages 15-18,
2013, doi: 10.1145/2527269.2527277.

[10] M. Ågren, M. Hell, T. Johansson and W. Meier, "Grain-128a:
a new version of Grain-128 with optional authentication", In-
ternational Journal of Wireless and Mobile Computing, 2011,
doi: 10.1504/IJWMC.2011.044106.

[11] M. Davis and H. Putnam, "A Computing Procedere for Quantification
Theory", Journal of the ACM, 1960, doi: 10.1145/321033.321034.

[12] M. Davis, G. Logemann, D. Loveland, "A Machine Program
for Theorem Proving", Communications of the ACM, 1962,
doi: 10.1145/368273.368557.

[13] M. Hell, T. Johansson and W. Meier, "Grain: a stream cipher for
constrained environments", International Journal of Wireless and Mobile
Computing, 2007, doi: 10.1504/IJWMC.2007.013798.

[14] N. T. Courtois and G. V. Bard, "Algebraic cryptanalysis of thedata
encryption standard", Springer Berlin Heidelberg, pages 152–169, 2007,
doi: 10.1007/978-3-540-77272-9_10.

[15] T. Rachwalik, J. Szmidt, R. Wicik and J. Zabłocki, "Generation of
Nonlinear Feedback Shift Registers with Special-Purpose Hardware",
2012 Military Communications and Information Systems Conference,
MCC 2012, 2012.

[16] S. Babbage, J. Borghoff and V. Velichkov, "The eSTREAM Portfolio in
2012", ICT-2007-216676. ECRYPT II, 2012.

[17] S. Cook, "The complexity of theorem proving procedures", Proceedings
of the Third Annual ACM Symposium on Theory of Computing, 1971,
doi: 10.1145/800157.805047.

[18] S. Hassoun and S. Tsutomu, "Logic Synthesis and Verification", Kluwer
Academic Publishers, 2002, doi: 10.1007/978-1-4615-0817-5.

[19] S. W. Golomb, "Shift Register Sequences", Aegean Park Press, 1981,
doi: 10.5555/578271.

[20] P. Augustynowicz and K. Kanciak, "Scalable Method of Searching for
Full-period Nonlinear Feedback Shift Registers with GPGPU. New List
of Maximum Period NLFSRs" International Journal of Electronics and
Telecommunications, 2018, doi: 10.24425/119365.

[21] P. Dąbrowski, G. Łabuzek, T. Rachwalik and J. Szmidt "Searching for
Nonlinear Feedback Shift Registers with Parallel Computing", Informa-
tion Processing Letters, 2013, 10.1016/j.ipl.2013.12.002.

[22] R. Brayton, A. Mishchenko, "ABC: An Academic Industrial-Strength
Verification Tool", Springer Berlin Heidelberg, pages 24-40, 2010,
doi: 10.1007/978-3-642-14295-6_5.

	Introduction
	Previous work
	Experiment
	Analysis of 80-bit NLFSR from stream cipher Grain-80
	Analysis of 128-bit NLFSR from stream cipher Grain-128
	Analysis of 128-bit NLFSR from stream cipher Grain-128a
	Analysis of Bivium and Trivium
	Manualy generation of equantions versus automated generation of equantions

	Conclusion
	References

