
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2020, VOL. 66, NO. 4, PP.715-721

Manuscript received April 20, 2020; revised October, 2020. DOI: 10.24425/ijet.2020.134032

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—Establishing the proper values of controller

parameters is the most important thing to design in active queue

management (AQM) for achieving excellent performance in

handling network congestion. For example, the first well known

AQM, the random early detection (RED) method, has a lack of

proper parameter values to perform under most the network

conditions. This paper applies a Nelder-Mead simplex method

based on the integral of time-weighted absolute error (ITAE) for a

proportional integral (PI) controller using active queue

management (AQM). A TCP flow and PI AQM system were

analyzed with a control theory approach. A numerical

optimization algorithm based on the ITAE index was run with

Matlab/Simulink tools to find the controller parameters with PI

tuned by Hollot (PI) as initial parameter input. Compared with PI

and PI tuned by Ustebay (PIU) via experimental simulation in

Network Simulator Version 2 (NS2) in five scenario network

conditions, our proposed method was more robust. It provided

stable performance to handle congestion in a dynamic network.

Keywords— network congestion control, active queue

management (AQM), Proportional integral (PI) controller,

Nelder-Mead simplex method, Integral of time-weighted absolute

error (ITAE)

I. INTRODUCTION

HE Active queue management (AQM) is an essential

intermediate network solution for network traffic to control

congestion. AQM performs packet dropping in a buffer network

router before congestion. The first AQM, random early

detection (RED) [1], was proposed as a solution for network

congestion to support the end-to-end transmission control

protocol (TCP) congestion control, i.e., TCP RENO. RED

reduces the synchronization problem because of its drop-tail

mechanism and its ability to maintain the desired queue length.

The drawback of RED is its sensitivity to parameter settings

with a dynamic network load. Hollot proposed the proportional

integral (PI) AQM [2] to overcome the challenges faced by RED

and to provide PI tuning parameters using a control theory

approach through the TCP flow model. This model converts the

time function to the transfer function of s, so AQM can be

designed and analysed in a practical manner. It is an alternative

solution, especially for finding the best parameters for an AQM

controller.

Through a control theory approach, AQM can be designed and

analysed practically, this solution overcomes the drawbacks of

the heuristic approach. The first AQM designed using control

theory with a PI controller had a method for tuning its

parameters [2]. Nonetheless, PI is still problematic for obtaining

Misbahul Fajri and Kalamullah Ramli are with Electrical Engineering

Department, Engineering Faculty, Universitas Indonesia, Kampus Baru UI

Depok, Indonesia (e-mail: misbahul.fajri61@ui.ac.id; k.ramli@eng.ui.ac.id).

proper parameter values for good response and robustness in

uncertain network traffic.

Other tuning approaches for PI AQM controllers have been

described, as listed below. However, they also have problems,

e.g., they require complex computations and still perform

poorly. PIU [3] is another PI scheme that was examined in this

research, and this paper found that PIU performed worse than

Hollot’s PI [2]. PIU proposed a resilient switching controller

using the design method [4]. [5] introduced a parameter tuning

algorithm for PI AQM based on the relationship between the

controller parameter and the control damping ratio, resulting in

an effective algorithm. Three sets of PI parameters were

compared in [6], resulting in properly configured controller

parameters that can stabilize and retain good performance in a

dynamic network. [7] implemented a fractional order PI

controller in AQM with three selected sets of parameters,

resulting in more stable and higher queue occupancy than RED.

Reference [8] used a particle swarm optimization (PSO)

algorithm to get the best parameter of a first-order controller for

a TCP/AQM system, resulting in a proposed controller that is

efficient in searching and better than PI AQM scheme. [9]

formulated automatic tuning PID AQM parameters using

quantitative feedback theory (QFT) with PSO optimization

heuristic algorithms to reach robust stability with minimal cost

effort. [10] implemented a genetic algorithm (GA) with a first

delay TCP AQM model approximation to derive optimal PI

controller parameters, resulting in a good performance in ITAE,

shortest settling time, and lowest overshoot.

Other optimization methods, such as hybrid GA and bacterial

foraging (BF) algorithms, were used to find optimal PID AQM

parameter in [11], resulting in stable queue length, low packet

loss, and high link utilization. Optimal PID AQM using ITAE

criteria with a D-stable region approach was designed in [12]

that resulted in high utilization, much faster and smaller

oscillations than RED and PI AQM.

For better robustness in wide range network conditions, one

should consider three parameters: network load (N), round-trip

time (RTT), and link capacity (C). However, the parameter

controller should also be properly tuned, so an AQM controller

can quickly regulate queue length to the desired value and

maintain stability with less oscillation. The proper parameter

value can discard disturbance or error that has advantages for

the system process [13]. Two criteria of the desired network

performance that are expected to be achieved are short queuing

delay and high link utilization [14]. Those will impact to the

Design of Network Traffic Congestion

Controller with PI AQM Based on ITAE Index
Misbahul Fajri, and Kalamullah Ramli

T

716 M.FAJRI, K.RAMLI

application with better network QoS parameters, such as latency

and throughput [15]. Therefore, the challenge is to design and

find the proper formula for the abovementioned criteria.

The other research [16] aimed to obtain PID parameters using

an optimization approach. That paper resulted that ITAE offered

the best performance compared with ISE, IAE, and ITSE

criteria. This paper studied and implemented ITAE with a PI

controller in the NS2 network simulator [17] to understand its

performance under real network conditions. This paper

proposes a robust PI AQM, termed PITAE, that is tuned by an

optimization method using a Nelder-Mead simplex algorithm

with the ITAE index to get optimal parameter values that

perform satisfactorily in a wide range of dynamic network

traffic conditions. This method has been implemented in other

areas except in AQM. So we interested to study and see this

method in AQM to handle network traffic. Furthermore, this

method is fast convergence and easy in implementation [18].

The paper is organized as follows. A theoretical background

is given in Section 2. The proposed PITAE design is explained

in Section 3. The simulation analysis is given in Section 4.

Section 5 concludes this paper.

II. NETWORK CONGESTION CONTROL

A. TCP/AQM Flow Model

The TCP flow model in non-linear differential equations

has been formulated by Misra that is a solution for further

analysis of the network congestion control algorithm [19]:

))((
))((

))((

2

)(

)(

1
)(tRtp

tRtR

tRtWtW

tR
tW −

−

−
−= (1)

=

+−

+−

=

0,)(
)(

)(
,0max

0)(
)(

)(

qtW
tR

tN
C

qtW
tR

tN
C

q
 (2)

Where W is the average TCP window size (packets), R(t) =

round-trip time = Tp + (q(t)/C) (s), Tp = propagation delay (s),

q(t) = queue length (packets), C = link capacity (packets/s), P =

packet drop probability, and N = number of TCP sessions.

Herein, W denotes the time derivative of W. The initial part of

the first formula is the window’s additive increase (1/R), while

the final part is the window’s multiplicative decrease (W/2) in

response to packet marking p. The second formula in (2)

represents the bottleneck queue length.

The differential equation of the TCP flow model can assist

in designing and determining the best AQM controller

parameters because TCP control has a feedback process, the

ACK signal, that is generated by a receiver to inform the sender

when a packet has arrived; it is then used to decide whether the

packet window size needs to be increased or decreased. The

existence of a feedback process allows the TCP flow model to

be analysed using a control theory approach, e.g., the

transformed form of the TCP flow model.

In [2], the stochastic equation above was transformed by

classic control theory through linearization and by ignoring the

time-out mechanism. With assuming that both the TCP load and

link capacity are constant, i.e., N(t) N and C(t) C. W with q

as the state and p as input and the operating points (wo, qo, and

po) are derived by setting W = 0 and q = 0. Continuing to

simplify this model while ignoring residual behavior means

focusing on the nominal behavior of the window dynamic. The

transfer function of the TCP/AQM flow is given by:

0

0

2

0

2

2

0

1
,

2
2)(

R
s

R

N

G

CR

N
s

N

CR

sG queuetcp

+

=

+

=
 (3)

Where Gtcp is TCP window control mechanism, Ro is round-

trip time at the operating point, and Gqueue is queue dynamic. The

feedback of the TCP/AQM flow system is shown in Figure 1.

e-sR GtcpGc Gqueue

AQM TCP Flow

Qref Q+

-

pe

Error
signal

Control
signal

Controlled
output

Reference
input

Fig. 1. Feedback of the TCP/AQM system.

According to (3) and Figure 1, the TCP/AQM dynamic can

be expressed as

sR

queuetcpp esGsGsG 0)()()(
−

= (4)

B. Proportional Integral Controller

The AQM is presented by the Gc function, which is applied

with a PI controller. A transfer function of the PI controller is

given by

)()()(se
s

K
seKsG i

pc += (5)

where Kp is a proportional gain, and Ki is an integral gain.

To obtain the z-domain transfer function, (5) is converted from

the s-domain using a bilinear transform (Tustin’s rule) to

preserve stability [20]. Then the discrete PI controller is given

by

)1(.)(.)1()(−++−= nebneanpnp (6)

By using Ts as the sampling time, then

2

2

sI
p

sI
P

TK
Kb

TK
Ka

−=

+=
 (7)

In network simulator NS2 has the module for the AQM in

TCP/IP protocol, this simulator has build-in AQM scheme that

can be used, and the default is the drop-tail mechanism. The

default has to be changed to the appropriate AQM at the TCL

script for running a simulator and adding a module for a new

AQM algorithm.

C. Nelder-Mead Simplex Method

This method is based on some basic operations over a

simplex. The initial simplex can be created using an initial guess

[21]. A Nelder-Mead simplex does not need a constraint in

computation to find a minimum of a function of n variables. The

Nelder-Mead simplex has four methods [18], each with their

DESIGN OF NETWORK TRAFFIC CONGESTION CONTROLLER WITH PI AQM BASED ON ITAE INDEX 717

default coefficient. These are reflection=1, expansion=2,

contraction=1/2, and shrinkage=1/2. The Nelder-Mead simplex

method has a function

)(xfy = (8)

Where x and y are a vector of independent variables and a

real function value, respectively. The Nelder-Mead simplex is

defined by n+1 vertices and x is defined as a centroid of all

vertices excluding xn+1. The vertices are ordered from lowest to

the highest function value. In a triangle (M) centroid is

calculated in all vertices except xw. The steps to find the

optimum value are

a. Reflection (R) which calculates new vertex xr=M+(M-

xw), where =1

b. Expansion (E) which calculates a new vertex xe=M+(M-

xw), where =2

c. Contraction (C) which lays a new vertex xc=xw+(M-xw),

where =0.5 or =-0.5

d. Shrinkage/reduction (S) which replaces all vertices

except the best one. xs=(xs+xb)/2

The initial simplex is created from an initial guess x1. The

method compares function values at the three vertices of triangle

which are considered as f(xg), f(xb) and f(xw) that are considered

as good to worst point of triangle. The step Nelder-Mead

method [22] are

1. Order the vertices xb<xg<xw. Calculate centroid.

2. If f(xr)<f(xb) the perform either reflection (R) or

expansion (E) else perform contraction (C)

3. If f(xg)<f(xr) then accept xr and compute

4. If f(xr)<=f(xg) then R→ E and compute xe

5. If f(xe)<=f(xr) then accept xe and go to 1 else accept xr

6. If f(xr)<f(xw) then xw→ R and compute C with =0.5

7. If f(xr)>=f(xw) then C with =-0.5

8. If f(xc)<f(xw) then xw→ C else make S.

9. If stopping criterion is met, then stop, else go to 1.

The geometric algorithm with the figure is shown in Figure

2.

W

B

G

R

C1

B

W G

M

R

E

S

R

B

B

W

W G

G

M

C2

M

(b)

M

(d)

(a) (c)

Fig. 2. Diagram of the Nelder Mead Simplex algorithm.

D. Cost Function of ITAE

The optimal algorithm needs an objective function as an

initial value to start the process and usually uses performance

criteria as a function of error. The best performance is obtained

by selecting the correct performance criteria. There are several

criteria that the parameters are dependent on, one of those is

ITAE.

The ITAE offers the best performance because this criterion

does not discriminate against the larger initial error in the first

or transient response, but does penalize smaller error at a steady-

state condition [23]. Moreover, the ITAE results in a

conservative setting, and it is uncomplicated and more time-

saving than ITSE. The ITAE objective function is given by (9)

where t is time and e is an error.

dttetJ)(
0

0

=
 (9)

III. DESIGN OF OPTIMAL PITAE AQM

PI controllers have been used in industrial processes. They

have been implemented in network congestion control protocols

for the past decade because of their simple mechanism, easy

implementation, and good response.

For the searching of optimum values, the Nelder-Mead

simplex method was chosen because of its fast convergence and

easy implementation. To use this, this method needs initial

values and an objective function that will be described in the

following subsection. The proposed scheme PITAE controller

and its parameters Kp and Ki are tuned by optimization using the

ITAE criteria as shown in Figure 3.

Initial Parameters
(Kp, Ki)

ITAE

Nelder-Mead
Algortihm

PI TCP/AQM
+

-

Queue length
Reference

p

Kp Ki

Fig. 3. Design of proposed PITAE AQM tuning.

The initial guess parameters used the parameters of PI, i.e.,

Kp=1.8182x10-5 and Ki=0.9612x10-5 that was tuned by Hollot

with gain and phase margin approach. PIU was tuned by

Ustebay with the small-gain theorem [24]. The result of our

proposed design was calculated by the Matlab/Simulink toolbox

that implements the ITAE objective function based on Hollot

linearized network parameters [2]. The purpose of our proposed

design was to avoid sensitive parameters by using an optimal

searching method employing the Matlab fminsearch tool [23].

The resulting parameters of the PITAE are depicted in Table I.

TABLE I

AQM OPTIMIZATION RESULTS IN NORMAL TRAFFIC

Parameter PI PIU PITAE

Kp 1.8182e-5 3.5232e-5 4.566e-5
Ki 0.9612e-5 0.8953e-5 2.317e-5

718 M.FAJRI, K.RAMLI

IV. SIMULATION AND ANALYSIS

The simulation topology with a bottleneck link is shown in

Figure 4, where the dumbbell network with multiple TCP

connections from S1,2,…N to D1,2,…N, shares a bottleneck link

between routers R1 and R2. The configuration of link capacity

and propagation delay is also shown in Figure 4. The link

capacity of C is set to 15 Mbps, and the propagation delay Tp is

set to 5 ms in a normal traffic scenario. Other links have their

capacities set to 10 Mbps and the propagation delays set to 5 ms.

The maximum buffer size of each router is set to 800 packets,

and the queue length target is set to 200 packets. The average

packet size is 500 bytes and the simulation running time is 60 s.

The PI AQM algorithm was implemented in an NS2

simulator using the Hollot design with a = 1.822 × 10−5, b =

1.816 × 10−5, and Fs = 160. This was compared with the PIU

scheme using the parameters of Kp=3.5243x10-5 and

Ki=0.8953x10-5 [24]. This work focuses on the evolution of the

queue length, as one of the strategic keys for AQM performance.

.

.

.

.

.

.

N Senders N Receivers

10Mbps
5ms

C=15Mbps
Tp=5ms

Sn

S1

S2

Router 2Router 1
Bottleneck link

D1

D2

Dn

10Mbps
5ms

Fig. 4. Network simulation topology.

A. Result in Normal Traffic Condition

This simulation demonstrated the performance in normal

traffic that is a usual traffic condition, where there was a greedy

100 long-live TCP flow, a shared bottleneck link with a 15 Mbps

capacity, and a propagation delay Tp of 5 ms. Figure 5a

illustrates the evolution of the queue length for PI, PIU, and

PITAE. PI (the red line) and PIU (the green line) show that both

have large overshoot in the queue and have long transient

response times. Meanwhile, PITAE reduced the overshoot and

quickly regulated the queue length to the target value, because

the parameters of our proposed are tuned in minimizing error

with the multiplication of time.

Figure 5b shows that PITAE had the shortest queuing delay

and deviation or jitter from the others. The jitter was

approximated by the length from the lower to upper boundaries

of the boxplot in the graph of the queuing delay. Table II shows

that all the methods had the same throughput. However, PITAE

had the smallest average queue length and the shortest

bottleneck link delay.

(a)

(b)

Fig.5. Performance in normal traffic (a) Queue length (b) Queuing delay

B. Case in Heavy Traffic

In the case of overload traffic with 400 greedy TCP

connections and a long delay propagation time, 100 ms is

depicted in Figure 6. It shows that PI and PIU could not handle

a big load initially which is shown in Figure 6a. This led to

dropped packets due to buffer overflow. Both PI and PIU also

required a long settling time. However, PITAE could maintain

the queue length with excellent response times and reduced

overshoot in the overloaded case.

As presented in Figure 6b, the queuing delay in this

scenario was shortest using PITAE. The average queue length

and the link delay for those AQMs are presented in Table III.

Again, PITAE performed the best.

TABLE II

AQM OPTIMIZATION RESULTS IN NORMAL TRAFFIC

Parameter PI PIU PITAE

Average of queue (packets) 301 307 237

Throughput (Kbps) 14993 14993 14993
Bottleneck link delay (ms) 93 94 74

DESIGN OF NETWORK TRAFFIC CONGESTION CONTROLLER WITH PI AQM BASED ON ITAE INDEX 719

(a)

(b)

Fig.6. Performance in heavy traffic (a) Queue length (b) Queuing delay

C. Test for Small Buffer Size

Next, the proposed method was validated versus the well-

known PI and PIU schemes by reducing the buffer size to 400

packets. In Figure 7a, the PI and PIU algorithms generated long

buffer overflows at 20 s, which means almost all of the arrived

packets were dropped; this led to a synchronization problem. In

contrast, the PITAE scheme had a stable response by keeping

the queue length around the desired target from the beginning

of the process.

PITAE had the best performance in regulating the queuing

delay as shown in Figure 7b. The further analysis shown in

Table IV shows that our proposed scheme reduced the average

queue length and link delay up to 25 percent when compared

with the other methods.

(a)

(b)

Fig.7. Performance for small buffer size (a) Queue length (b) Queuing delay

D. Result on Changing the Set-Point

Different target values were tested by increasing the

reference queue from 200 to 300 packets in a heavy traffic

scenario. This is shown in Figure 8a, PI and PIU had a bad

response with buffer overflow in the initial process, along with

a long settling time at around 37 s. PITAE was good enough to

regulate the queue length around the set-point value and had a

quick settling time of 22 s. Figure 8b depicts that PITAE had the

best performance in keeping the queuing delay shorter as

compared with the others. PITAE could regulate the average

queue length closes to the target value of 300 and keep a small

link delay as shown in Table V.

TABLE III

AQM OPTIMIZATION RESULTS IN HEAVY TRAFFIC

Parameter PI PIU PITAE

Average of queue (packets) 382 403 265

Throughput (Kbps) 14943 14942 14941

Bottleneck link delay (ms) 212 218 177

TABLE IV

AQM OPTIMIZATION RESULTS IN SMAL BUFFER SIZE

Parameter PI PIU PITAE

Average of queue (packets) 299 305 237

Throughput (Kbps) 14993 14993 14993
Bottleneck link delay (ms) 92 94 74

720 M.FAJRI, K.RAMLI

(a)

(b)

Fig.8. Performance on changing set-point (a) Queu length (b) Queuing

delay

E. Scenario of Different Link Capacities

This scenario changed the link capacity from 15 Mbps to

10 Mbps. This is presented in Figure 9a, PI (the red line)

experienced a long overshoot and failed to achieve the reference

value of 200, and PIU (the green line) reduced overshoot a little

from PI. Meanwhile, the proposed solution, PITAE (the blue

line), had the best response, keeping the queue length to the

desired reference value. The PITAE queuing delay was the

smallest as illustrated in Figure 9b. The characteristics of those

three mechanisms are shown in Table VI. PITAE was more

powerful than the other two for average queue length and

bottleneck link delay, which was 245 packets and 113 seconds,

respectively. Furthermore, based on Table I and performance in

all scenarios above, it can be concluded that bigger Kp and Ki

values keep the queue closed to the target value of 200 packets.

(a)

(b)

Fig.9. Performance in different link capacities (a) Queue length (b) Queuing

delay

CONCLUSION

This paper has formulated a robust PI AQM based on the
ITAE criterion for network congestion control. Tuning of the
parameter controller was run by the Nelder-Mead simplex
method to find the optimal value of PI parameters. This was
implemented in a network simulator for further analysis and
compared with PI (which was used as an initial parameter for
optimization) and PIU. The results indicated that our proposed
approach had the best performance in five network traffic
scenarios in regulating the queue close to the target value and
keeping the shortest queuing delays.

ACKNOWLEDGEMENTS

The authors would like to thank the Funding of Doctor
Dissertation Program (PDD), Ministry of Higher Education and
Technology Research of the Republic of Indonesia, for
supporting this research.

TABLE V

AQM OPTIMIZATION RESULTS ON CHANGING THE SET-POINT

Parameter PI PIU PITAE

Average of queue (packets) 454 469 353

Throughput (Kbps) 14945 14942 14940

Bottleneck link delay (ms) 233 237 203

TABLE VI

AQM OPTIMIZATION RESULTS IN DIFFERENT LINK CAPACITIES

Parameter PI PIU PITAE

Average of queue (packets) 321 326 245

Throughput (Kbps) 9995 9995 9995

Bottleneck link delay (ms) 145 147 113

DESIGN OF NETWORK TRAFFIC CONGESTION CONTROLLER WITH PI AQM BASED ON ITAE INDEX 721

REFERENCES

[1] S. Floyd and V. Jacobson, "Random early detection gateways for
congestion avoidance," IEEE/ACM Transactions on Networking, vol. 1,

pp. 397-413, 1993.

[2] C. V. Hollot, V. Misra, D. Towsley, and G. Weibo, "Analysis and design
of controllers for AQM routers supporting TCP flows," IEEE Transactions

on Automatic Control, vol. 47, pp. 945-959, 2002.

[3] D. Ustebay and H. Ozbay, "Switching Resilient PI Controllers for Active
Queue Management of TCP Flows," in 2007 IEEE International

Conference on Networking, Sensing and Control, 2007, pp. 574-578.

[4] D. Üstebay, H. Özbay, and N. Gündes, "A new PI and PID control design
method for integrating systems with time delays," in Proceedings of the

6th WSEAS International Conference on Signal Processing, Robotics and

Automation, 2007, pp. 60-65.
[5] M. XiaoYan, L. HongGuangr, and C. District, "A novel parameter tuning

algorithm for AQM-PI controllers," Research Journal of Applied Sciences,

Engineering and Technology, vol. 4, pp. 75-78, 2012.

[6] P. Dash, S. Bisoy, N. Kumar Kamila, and M. Panda, Parameter Setting

and Stability of PI Controller for AQM Router, 2016.

[7] A. Domański, J. Domańska, T. Czachórski, and J. Klamka, "The use of a
non-integer order PI controller with an active queue management

mechanism," in International Journal of Applied Mathematics and

Computer Science vol. 26, ed, 2016, p. 777.
[8] S. Testouri, K. Saadaoui, and M. Benrejeb, "Evaluation of a PSO

Approach for Optimum Design of a First-Order Controllers for TCP/AQM

Systems," Evaluation, vol. 4569, p. 3122, 2013.
[9] P. N. Baldini, G. Calandrini, and P. Doñate, "PSO algorithm-based robust

design of PID controller for variable time-delay systems: AQM

application," Journal of Computer Science & Technology, vol. 15, 2015.
[10] S. Chebli, A. El Akkary, N. Sefiani, and N. Elalami, "PI Stabilization for

Congestion Control of AQM Routers with Tuning Parameter

Optimization," IJIMAI, vol. 4, pp. 52-55, 2016.
[11] A. E. Abharian and M. Alireza, "Hybrid GA-BF based intelligent PID

active queue management control design for TCP network," in Electronics

Computer Technology (ICECT), 2011 3rd International Conference on,
2011, pp. 227-232.

[12] X. Wang, Y. Wang, and H. Zhou, "Optimal Design of AQM Routers with
D-Stable Regions Based on ITAE Performance," in 2006 First

International Conference on Communications and Electronics, 2006, pp.

78-83.

[13] M. Mohebbi and M. Hashemi, "Designing a 2-Degree of Freedom Model

of an Unbalanced Engine and Reducing its Vibrations by Active Control,"
International Journal of Technology, vol. 8, pp. 858-866, 2017.

[14] H. Wang, W. Wei, Y. Li, C. Liao, Y. Qiao, and Z. Tian, "Two-Degree-of-

Freedom Congestion Control Strategy against Time Delay and
Disturbance," in Global Telecommunications Conference (GLOBECOM

2010), 2010 IEEE, 2010, pp. 1-5.

[15] P. Rukmani and R. Ganesan, "Enhanced Low Latency Queuing Algorithm
for Real Time Applications in Wireless Networks," International Journal

of Technology, vol. 7, pp. 663-672, 2016.
[16] M. Fajri and K. Ramli, "Optimizing PID TCP/AQM using nelder-mead

simplex approach," presented at the Proceedings of the 3rd International

Conference on Communication and Information Processing, Tokyo,
Japan, 2017.

[17] T. Issariyakul and E. Hossain, Introduction to network simulator NS2:

Springer Science & Business Media, 2011.

[18] J. Glos and P. Vaclavek, "Efficient control of automotive R744 heat pump

using Nelder-Mead simplex method," in 2017 IEEE International

Conference on Industrial Technology (ICIT), 2017, pp. 785-790.
[19] V. Misra, W.-B. Gong, and D. Towsley, "Fluid-based analysis of a

network of AQM routers supporting TCP flows with an application to

RED," SIGCOMM Comput. Commun. Rev., vol. 30, pp. 151-160, 2000.
[20] Y. Li, K. T. Ko, and G. R. Chen, "Transient behaviour of PI-controlled

AQM," Electronics Letters, vol. 42, pp. 494-495, 2006.

[21] R. Abraján Guerrero and L. Márquez Martınez, "Automatic pid tuning, a
heuristic optimization approach," in Congreso Nacional de Control

Automático, 2010, pp. 6-8.

[22] D. Mukherjee, P. K. Kundu, and A. Ghosh, "PID controller design for an
interacting tank level process with time delay using MATLAB FOMCON

toolbox," in 2016 2nd International Conference on Control,

Instrumentation, Energy & Communication (CIEC), 2016, pp. 1-5.
[23] W. Xiuli, W. Yongji, Z. Hui, and H. Xiaoyong, "PSO-PID: a novel

controller for AQM routers," in 2006 IFIP International Conference on

Wireless and Optical Communications Networks, 2006, pp. 5 pp.-5.
[24] H. U. Ünal, D. Melchor-Aguilar, D. Üstebay, S.-I. Niculescu, and H.

Özbay, "Comparison of PI controllers designed for the delay model of

TCP/AQM networks," Computer Communications, vol. 36, pp. 1225-
1234, 2013.

