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Abstract—Beamforming training (BT) is considered as an 

essential process to accomplish the communications in the 

millimeter wave (mmWave) band, i.e., 30 ~ 300 GHz. This process 

aims to find out the best transmit/receive antenna beams to 

compensate the impairments of the mmWave channel and 

successfully establish the mmWave link. Typically, the mmWave 

BT process is highly-time consuming affecting the overall 

throughput and energy consumption of the mmWave link 

establishment. In this paper, a machine learning (ML) approach, 

specifically reinforcement learning (RL), is utilized for enabling 

the mmWave BT process by modeling it as a multi-armed bandit 

(MAB) problem with the aim of maximizing the long-term 

throughput of the constructed mmWave link. Based on this 

formulation, MAB algorithms such as upper confidence bound 

(UCB), Thompson sampling (TS), epsilon-greedy (e-greedy), are 

utilized to address the problem and accomplish the mmWave BT 

process. Numerical simulations confirm the superior performance 

of the proposed MAB approach over the existing mmWave BT 

techniques. 

 
Keywords—millimeter wave, beamforming training, multi-

armed bandit, reinforcement learning 

I. INTRODUCTION 

IFTH (5G) and beyond 5G (B5G) wireless communications 

aim to support variety of intensive data rate applications 

ranging from virtual and augmented reality to internet of things 

(IoTs), unmanned aerial vehicles (UAVs) and wearables [1]. 

Immigration towards higher frequency bands, e.g., millimeter 

wave (mmWave) and Terahertz (THz) bands, seems to be an 

attractive solution due their large available spectrum [2,3]. 

MmWave band (30 ~ 300 GHz), which is the main concern of 

this paper, has a large swath of unlicensed spectrum that can 

support 5G and B5G massive data requirements [4,5]. However, 

due to its highly operating frequency, mmWave channel is 

fragile in nature compared to the conventional microwave band, 

i.e., sub 6 GHz band [6]. High propagation path loss is expected 

at the mmWave band reaching 28 dB loss compared to the 5 

GHz microwave band [7]. Moreover, mmWave band suffers 

from high susceptibility to shadowing even human/wall 

shadowing can extremely degrade the quality of the mmWave 

link [8]. To overcome this tough channel impairments, 

directional communication using steerable antenna arrays is 

typically used for establishing the mmWave communication 

links. Thus, antenna beamforming is typically exploited for 

constructing the mmWave link between transmitter (TX) and 

receiver (RX) [9,10]. Due to the massive multi-input multi-

output (MIMO) antenna arrays used at mmWave TX/ RX, 
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analogue beamforming using antenna phase shifters is 

commonly used to accomplish the beamforming process [9,10]. 

Moreover, hybrid (analogue/digital) precoding can be used to 

increase the radio frequency (RF) chains of the mmWave 

transceiver system [11]. Beamforming training (BT) is defined 

as the process of finding out the best TX/RX beam directions 

maximizing the achievable data rate of the mmWave link. 

Variety of mmWave BT strategies can be found in literature 

aiming to maximize the achievable data rate of the mmWave 

link while reducing the BT overhead [12]. MmWave standards, 

e.g., IEEE 802.11ad WiGig standard [13], suggested the use of 

exhaustive search (EX) BT [13]; by which all available TX/RX 

beam combinations are examined and the best beam pair is 

selected for constructing the WiGig link. EX BT has the 

maximum data rate while it has the highest BT overhead as well. 

This motivates the design of efficient mmWave BT schemes 

that emulates the best data rate attained by the EX BT while 

highly overcoming its substantial BT overhead.  

Recently, machine learning (ML) is considered as a 

talented approach that can address a lot of 5G and B5G 

challenges and optimize the network performance by the means 

of sophisticated learning and autonomous decision-making 

processes [14,15]. Specifically, future networks will be in a 

great need to learn devices characteristics as well as human 

behaviors for optimizing the system performance by taking 

advantage of the powerful smart handheld devices available 

nowadays [14,15]. Broadly speaking, ML algorithms can be 

categorized into three main categories: namely, supervised 

learning, un-supervised learning and reinforcement learning 

[14,15]. In supervised learning, ML algorithms are used to map 

the labeled outputs with their corresponding labeled inputs 

using either regression or classification techniques. Towards 

that, variety of regressions and classification techniques were 

proposed in literature for supervised ML such as K-nearest 

neighbor (KNN), support vector machine (SVM) and different 

neural networks (NNs) architectures [14,15]. These algorithms 

are used to model the underlying system and then predicting the 

outputs for new inputs. Supervised ML algorithms can be 

applied for estimating/predicting radio parameters associated 

with massive MIMO channels, spectrum sensing in cognitive 

radio systems, modulation detection and classification, etc., 

[14,15]. In un-supervised learning, only the labeled inputs are 

available for the ML algorithms and the task of the algorithms 

is to identify the hidden patterns in the labeled input data. 

Towards that, variety of clustering techniques were utilized in 

the un-supervised ML. Un-supervised ML algorithms can be 
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applied for users’ behavior learning and classification, resource 

allocation and association, optimal cells deployment, etc., 

[14,15]. In reinforcement learning (RL), an agent is interacting 

proactively with the environment with the aim of maximizing 

its designated long-term reward in trial and error fashion. The 

main challenge of the RL algorithms is to resolve the tradeoff 

between manipulating the current selection and discovering new 

selections, which is formally denoted as exploitation-

exploration dilemma. Q-learning and multi-armed bandit 

(MAB) are considered as the most famous RL algorithms. RL 

can be applied for base station/ relay/channel online selections, 

access and handover decision making, power control, etc., 

[14,15]. 

In this paper, RL will be utilized to address the problem of 

mmWave BT by considering it as a MAB problem. In this MAB 

formulation, the mmWave transceiver system will act as the 

agent which aims to maximize its long-term reward, i.e., the 

average throughput in this case. This agent will interact with the 

environment by selecting a different beam setting at each time 

and obtain its corresponding reward. Based on the achieved 

rewards, the agent tries to compromise the exploitation-

exploration tradeoff, i.e., either exploiting the best beam 

direction so-far or exploring new ones. Towards that, three 

MAB algorithms, namely upper confidence bound (UCB), 

Thompson sampling (TS), and epsilon greedy (e-greedy) will be 

investigated to address the MAB based mmWave BT problem. 

Due to the use of one beam direction at a time while maximizing 

the achievable throughput, very low BT overhead is consumed 

by the proposed MAB based BT. This in turns gets the proposed 

BT scheme has better long-term average throughput 

performance compared to the existing mmWave BT techniques 

while reducing its energy consumption as well.      

The main contributions of this paper can be summarized as 

follows: 

• MmWave BT is formulated as a MAB problem with the 

mmWave transceiver acting as the agent trying to maximize 

its long-term average throughput via interplaying through 

the available beam directions.  

• Three main MAB algorithms; namely UCB, TS and e-

greedy are utilized to address this problem and iteratively 

selects the beam direction maximizing the long-term 

average throughput. 

• Numerical simulations are conducted to prove the 

effectiveness of the proposed MAB based mmWave BT 

over the baseline EX BT with respect to the obtained 

throughput and energy efficiency. Moreover, the 

convergence analysis of the proposed MAB based BT 

algorithms is investigated. 

The rest of this paper is constructed as follows, Section II 

gives the literature review, and Section III gives the system 

model of mmWave BT. Section IV formulates the mmWave BT 

as a MAB problem and gives the suggested three MAB 

algorithms to address it. Performance evaluations are given in 

Section V followed by the conclusion in Section VI. 

II. LITERATURE REVIEW 

 The existing mmWave BT schemes can be divided into 1) 

Without mmWave channel estimation and 2) With mmWave 

channel estimation [12]. In the first category, the BT process is 

done by testing the whole/partial beam space of the mmWave 

transceiver for obtaining the best beam direction maximizing 

the achievable data rate. EX BT, adaptive beam search BT, 

numerical search BT, and location-based BT are types of this 

category [13], [16,20]. While the EX BT tests all available beam 

space [13], the adaptive beam search BT uses multi-level BT 

strategy [16]. Although adaptive beam search BT highly relaxes 

the BT overhead required by the EX BT, it suffers from low 

coverage due to the use of wider beams at the earlier stages of 

the BT process [14]. In the numerical search BT, numerical 

algorithms such as Rosenbrock or Tabu algorithms [17,18] are 

used to find out the best beam direction starting with a randomly 

selected beam. In the location-based BT, the location of the 

mmWave transceiver is utilized to narrow the number of 

searched beams to be that only expected to cover the mmWave 

device at its current location. Different localization techniques 

with different localization errors were investigated in the 

location-based BT schemes, such as GPS, Wi-Fi, Li-Fi 

localization techniques [19,20]. In the second category, 

mmWave channel estimation is used to firstly estimate the 

mmWave channel, then the beamformer is adjusted based on the 

estimated channel coefficients, i.e., angle of departures (AoDs) 

and angle of arrivals (AoAs). In this regard, compressive 

sensing (CS) was extensively used to exploit the sparsity 

inherent in the low scattering mmWave channel for estimating 

its coefficients, i.e., path gains, AoDs, and AoAs. Based on the 

estimated channel coefficients, adaptive beam search was 

proposed by the authors in [11] to optimize the hybrid precoding 

construction. However, this scheme still suffers from low 

coverage due to the use of the adaptive beam searching 

mechanism. To further reduce the complexity of the channel 

estimation-based BT, localization was used by the authors in 

[9,19] to further reduce the complexity of the constructed CS 

matrices and hence reducing the complexity of the BT process. 

The main drawback of these conventional BT techniques is that 

the BT process should be re-performed either using the whole 

beam space or a sub-set of it at every scheduled beacon frame 

even in case of beam refinement. This results in highly 

increasing the BT overhead especially when using too sharp 

beams with a large beam space. The large BT overhead of the 

conventional BT techniques can be efficiently overcome if 

learning is introduced to the BT process. That is, the mmWave 

transceiver can learn from its previous BT interactions with the 

environment to enhance its future beam selections. Recently, 

ML especially MAB algorithms attract researchers to apply 

them to reduce the complexity of the mmWave BT process as 

given in [21,23]. The authors in [21] proposed linear TS for 

constructing the mmWave beamformer based on Kalman filter 

sparse Bayesian learning (KSBL) channel estimator. Despite the 

novelty of the algorithm, the TS algorithm is performed based 

on estimating the mmWave channel, which highly increases the 

complexity of the algorithm. However, in the proposed MAB 

based BT, no prior channel estimation is needed, and only the 

achievable data rate is required. This contributes in highly 

reducing the complexity of the BT process. In [22], the authors 

considered the mmWave beamforming problem as an 

adversarial MAB problem and proposed an exponential weight 
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(EXP3) algorithm with one-bit feedback to address it. The main 

drawback of this work is the use of indirect, i.e., binary, 

feedback, which degrades the performance of the beamformer. 

Instead, in this paper, we will use the whole achievable data rate 

of the beamformer, which can be measured by the TX side  

 

 

Fig.1. Block diagram of mmWave analog BT 

without the need for feedback. In [23], the authors proposed to 

use the UCB algorithm for position aided coarse and fine levels 

BT. Also, the algorithm makes use of a small offline database 

for the purpose of initialization. Yet, in the proposed MAB 

setting, a single common MAB is designed to flexibly work with 

neither pre-knowledge of the environment nor users’ positions. 

Also, not only UCB is used but also TS and e-greedy are 

adopted as well. 

III. SYSTEM MODEL 

 Herein, the system model of mmWave analog BT will be 

explain in detail in addition to the used mmWave channel 

model. Also, the BT optimization problem will be formulated.  

A. MmWave Beamforming and Channel Model 

 Fig.1 shows the system model of mmWave analog BT, in 

which NTX and NRX antenna elements are used by the TX and RX 

respectively. In Fig.1, 𝑊(𝑛, 𝑏) is the antenna weight vector 

(AWV) of antenna element n required for beam steering the 

direction b, where NTX (NRX) and BTX (BRX) are the total number 

of TX (RX) antenna elements and beam directions, respectively. 

TX and RX codebooks, i.e., 𝑾𝑇𝑋 or 𝑾𝑅𝑋, support a variety of 

antenna array geometries and offer flexibility in terms of the 

number, size and the spacing between antenna elements. For 

phased array antennas, the columns of the codebook matrix 

specify the discrete phase shifts applied to individual antenna 

elements to form the beam in a certain direction. Conventional 

codebook designs such as that proposed by WiGig standards 

[24] are based on AWVs drawn from the following equation: 

W(𝑛, 𝑏) =  𝒿
𝑓𝑙𝑜𝑜𝑟{

𝑛 ×𝑚𝑜𝑑(𝑏+ (
𝐵
2

),   𝐵)

𝐵
4

}     ,    

 

𝒿 = √−1, 1 ≤ 𝑏 ≤ 𝐵,    1 ≤ 𝑛 ≤ 𝑁             (1)  

This codebook design has drawbacks of low beamforming 

efficiency and vulnerability of phase shifting errors. Thus, 

several codebook designs were proposed in literature to 

overcome these drawbacks as given in [25,26]. Moreover, novel 

codebook designs were given in [11,19] by utilizing the 

quantization angles covered by each beam direction. 

Based on 𝑾𝑇𝑋 and 𝑾𝑅𝑋, the received signal 𝑦 for a given 

signal 𝑥 can be expressed as: 

𝑦 = 𝑾𝑅𝑋
𝐻 (: , 𝑏𝑟𝑥)𝑯𝑾𝑇𝑋(: , 𝑏𝑡𝑥)𝑥 + 𝑾𝑅𝑋(: , 𝑏𝑟𝑥)𝒏             (2) 

where 𝑾𝑇𝑋(: , 𝑏𝑡𝑥) and 𝑾𝑅𝑋(: , 𝑏𝑟𝑥) are the TX and RX AWVs 

of lengths 𝑁𝑇𝑋 ×1 and 𝑁𝑅𝑋 × 1 in the directions of 𝑏𝑡𝑥 and 𝑏𝑟𝑥,  

 

i.e., corresponding to the columns 𝑏𝑡𝑥 and 𝑏𝑟𝑥 in 𝑾𝑇𝑋 and 𝑾𝑅𝑋, 

respectively. 𝐻 denotes the Hermitian transpose, and 𝒏 is the 

zero mean additive white gaussian noise term (AWGN) vector 

of length 𝑁𝑅𝑋 × 1. 𝑯 is the 𝑁𝑅𝑋 × 𝑁𝑇𝑋 channel matrix, which 

can be represented as: 

𝐇 =
1

𝜎
 ∑ 𝜒ℓ𝚻𝑅𝑋(Φℓ)𝚻𝑇𝑋

𝐻

𝐿

ℓ=1

(Θℓ),                               (3) 

where 1 ≤ ℓ ≤ 𝐿 indicates the number of channel paths and 𝐿 

is the total number of multi-paths, and 𝜎 is the average path loss 

depending on the separation distance between the mmWave TX 

and RX and the path loss exponent. 𝜒ℓ is the path gain of channel 

path ℓ, and Θℓ ∈  [0,2𝜋] and Φℓ ∈  [0,2𝜋] are the AoD and AoA 

of path ℓ. 𝚻𝑇𝑋(Θℓ) and 𝚻𝑅𝑋(Φℓ) are the array responses of both 

TX and RX, which can be expressed as: 

𝚻𝑇𝑋(Θℓ) = [1, 𝑒𝑗
2𝜋
𝜆

𝑑 sin(Θℓ), . . , 𝑒𝑗(𝑁𝑇𝑋−1)
2𝜋
𝜆

𝑑 sin(Θℓ)]
𝑇

, (4) 

𝚻𝑅𝑋(Φℓ) = [1, 𝑒𝑗
2𝜋
𝜆

𝑑 sin(Φℓ)
, . . , 𝑒𝑗(𝑁𝑅𝑋−1)

2𝜋
𝜆

𝑑 sin(Φℓ)
]

𝑇

,         (5) 

where 𝜆 is the signal wavelength and 𝑑 is the separation distance 

between TX and RX.    

B. Optimization Problem Formulation of MmWave BT  

The main goal of the mmWave BT is to maximize the long-

term average throughput in bit per second (bps), i.e., finding out 

the optimal TX/RX beam directions 𝑏𝑡𝑥
⋆  and 𝑏𝑟𝑥

⋆  maximizing the 

achievable data rate while using the lowest BT overhead. This 

can be formulated as follows: 

(𝑏𝑡𝑥
⋆ , 𝑏𝑟𝑥

⋆ ) = 

arg max 
   

𝜔 (
𝑇𝐷log2 (1 +

|𝑾𝑅𝑋
𝐻 (: , 𝑏𝑟𝑥)𝑯𝑾𝑇𝑋(: , 𝑏𝑡𝑥)|2

𝑁0
)

𝐾𝑇𝐵𝑇 + 𝑇𝐷

),     

s.t. 

𝑏𝑡𝑥 ∈ 𝜙𝐵𝑇𝑋
, 𝑏𝑟𝑥 ∈ 𝜙𝐵𝑅𝑋

,𝑾𝑇𝑋 ∈ 𝝓𝑐𝑇𝑋
, 𝑾𝑅𝑋  ∈ 𝝓𝑐𝑅𝑋

    (6) 

where 𝜙𝐵𝑇𝑋
, 𝜙𝐵𝑅𝑋

 and 𝝓𝑐𝑇𝑋
, 𝝓𝑐𝑅𝑋

 are the beam spaces and 

codebook spaces of the TX, RX respectively, and 𝜔 is the used 

bandwidth. 𝐾 is the total number of TX/RX beam pairs used in 

the BT process, and 𝑇𝐷 and 𝑇𝐵𝑇  are time durations of data 

transmission and BT, respectively. The EX BT can find the 

optimal (𝑏𝑡𝑥
⋆ , 𝑏𝑟𝑥

⋆ ) beam pair, which maximizes the achievable 

data rate, i.e.,  log2 (1 +
|𝑾𝑅𝑋

𝐻 (:,𝑏𝑟𝑥)𝑯𝑾𝑇𝑋(:,𝑏𝑡𝑥)|
2

𝑁0
), but using the 

highest value of 𝐾, which is equal to 𝐾 = |𝜙𝐵𝑇𝑋
||𝜙𝐵𝑅𝑋

| beam 

pairs. Several BT designs can be found in literature trying to 

find out the beam directions that can achieve the data rate of the  
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EX BT while using lower 𝐾 value than that used by the EX BT. 

This results in enhancing the overall throughput and energy 

consumption over that obtained using EX BT. The ideal 

mmWave BT scheme is that can achieve the maximum data rate 

obtained by the EX BT by using just one beam pair in the BT 

process, i.e., 𝐾 = 1.   

IV. PROPOSED MAB BASED BT ALGORITHMS 

In this section, we will consider the optimization problem 

given in (6) as a MAB problem with the mmWave transceiver 

acts as the agent and the arms are the TX/RX beam pairs. Thus, 

the problem will be solved in time bases using MAB algorithms 

like UCB, TS, and e-greedy with the aim of maximizing the 

long-term average throughput. The MAB algorithms will select 

only a single beam pair at a time, i.e., every beacon frame, thus 

𝐾 = 1 is always satisfied. Based on the historical data rates 

achieved by the previously selected beam pairs up to time t and 

by considering the exploitation- exploration trade-off addressed 

by these algorithms, a beam pair will be selected for the beacon 

frame at time t.   

A. Proposed UCB Based MmWave BT 

The UCB deals with the exploitation-exploration trade-off 

very effectively. In which, the exploitation term is represented 

by the average rewards obtained by the played arms so far, while 

the exploration term is represented by how many times these 

arms were played so far. Thus, the algorithm is based on 

maximizing the confidence of the chosen arm by decreasing the 

un-certainty. The inputs for the proposed algorithm are the 

precoding matrices 𝑾𝑇𝑋 and 𝑾𝑅𝑋 , and the total cardinality of 

the beams space, i.e., 𝑀 = |𝜙𝐵𝑇𝑋
||𝜙𝐵𝑅𝑋

|. The algorithm is 

initialized by selecting each beam pair once for 𝑀 beacons and 

calculating their corresponding rewards as follows: 

Υ𝑚,𝑡 =  
   

𝑇𝐷log2(1+
|𝑊𝑅𝑋

𝐻 (:,𝑏𝑟𝑥,𝑚,𝑡)𝐻𝑊𝑇𝑋(:,𝑏𝑡𝑥,𝑚,𝑡)|
2

𝑁0
)

𝐾𝑇𝐵𝑇+𝑇𝐷
, 1 ≤ 𝑚, 𝑡 ≤ 𝑀 (7)  

where (𝑏𝑡𝑥,𝑚,𝑡 , 𝑏𝑟𝑥,𝑚,𝑡) is the selected beam pair 𝑚, 1 ≤ 𝑚 ≤ 𝑀 

at time 𝑡. After initialization, the algorithm is running using the 

equation of the UCB based beam pair selection as follows: 

(𝑏𝑡𝑥 , 𝑏𝑟𝑥)𝑚,𝑡 = arg max
1≤𝑚≤𝑀

(Υ̅𝑚,𝑡 + √
2ln (𝑡)

𝑠𝑚,𝑡
) ,

   

 𝑀 + 1 ≤ 𝑡 ≤ 𝑇 (8) 

where (𝑏𝑡𝑥, 𝑏𝑟𝑥)𝑚,𝑡 is the selected beam pair 𝑚 at time 𝑡, and 𝑇 

is the total horizon duration. 𝑠𝑚,𝑡 and Υ̅𝑚,𝑡 are the total number 

of times a beam pair 𝑚 is selected and its achievable average 

throughput up to time 𝑡. In (8), Υ̅𝑚,𝑡 and √
2ln (𝑡)

𝑠𝑚,𝑡
 represent the 

exploitation and the exploration terms, respectively. Thus, the 

UCB based BT tries to compromise between exploiting the 

beam pair having the maximum average throughput or 

exploring new beam pairs that have lower values of 𝑠𝑚,𝑡. Fig. 2 

summarizes the proposed UCB based mmWave BT algorithm.    

B. Proposed TS Based MmWave BT 

TS is a Bayesian algorithm that tries to build a probabilistic 

model for the reward obtained by each arm. That is, the 

collected rewards are used to construct posterior distributions 

and then selects arms randomly in a way that the drawing 

probability of each arm matches the probability of the particular 

arm being optimal. In detail, the TS algorithm samples the 

constructed posterior distributions of the arms’ rewards and then 

selects the arm having the maximum sample to play. For the 

underlaying mmWave BT problem, the attained throughput (the 

reward), can be modeled as a normal distribution. Thus, we will 

make use of the model given in [27,28], where the posterior 2 

 

Algorithm: UCB based mmWave BT 

Inputs: 𝑾𝑇𝑋 and 𝑾𝑅𝑋,   

Initialize: each Tx/RX beam pair, i.e., (𝑏𝑡𝑥, 𝑏𝑟𝑥)𝑚, 1 ≤ 𝑚 ≤
𝑀, will be selected once, and their corresponding 

Υ𝑚,𝑡 are evaluated 

For 𝑡 = 𝑀 + 1: 𝑇 

1. Draw a beam pair and obtain the reward Υ𝑚,𝑡  

(𝑏𝑡𝑥 , 𝑏𝑟𝑥)𝑚,𝑡 = arg max
1≤𝑚≤𝑀

(Υ̅𝑚,𝑡 + √
2ln (𝑡)

𝑠𝑚,𝑡

)

   

   

2. 𝑠𝑚,𝑡 = 𝑠𝑚,𝑡 + 1 

3. Υ̅𝑚,𝑡 =
1

𝑠𝑚,𝑡
∑ Υ𝑚,𝑗

𝑠𝑚,𝑡

𝑗=1  

END For 

Fig.2. Proposed UCB based mmWave BT algorithm 

Algorithm: TS based mmWave BT 

Inputs: 𝑾𝑇𝑋 and 𝑾𝑅𝑋,   

Initialize: Υ̅𝑚,𝑡 = 0, 𝑠𝑚,𝑡 = 0  

For 𝑡 = 1: 𝑇 

Sample Π𝑚,𝑡, 1 ≤ 𝑚 ≤ 𝑀, from normal distributions 

𝒩(Υ̅𝑚,𝑡 , α𝑚,𝑡
2 ) 

1. Draw a beam pair and obtain the reward Υ𝑚,𝑡  

        (𝑏𝑡𝑥 , 𝑏𝑟𝑥)𝑚,𝑡 = arg max
1≤𝑚≤𝑀

(Π𝑚,𝑡)
   

   

2. 𝑠𝑚,𝑡 = 𝑠𝑚,𝑡 + 1 

3. Υ̅𝑚,𝑡 =
1

𝑠𝑚,𝑡
∑ Υ𝑚,𝑗

𝑠𝑚,𝑡

𝑗=1  

END For 

Fig.3. Proposed TS based mmWave BT algorithm 

distribution of the throughput of beam pair 𝑚 comes from 

𝒩(Υ̅𝑚,𝑡 , α𝑚,𝑡
2 ). In this  model, the mean and the variance of the 

normal distribution are Υ̅𝑚,𝑡 =
1

𝑠𝑚,𝑡
∑ Υ𝑚,𝑗

𝑠𝑚,𝑡

𝑗=1  and α𝑚,𝑡
2 =

1

𝑠𝑚,𝑡+1
, 

respectively. In TS, at every time 𝑡, i.e., at every beacon frame, 

a sample Π𝑚,𝑡 is taken from each constructed posterior 

distribution and the beam pair having the maximum sample 

value will be played based on the following equation: 

(𝑏𝑡𝑥 , 𝑏𝑟𝑥)𝑚,𝑡 = arg max
1≤𝑚≤𝑀

(Π𝑚,𝑡), 
   

  1 ≤ 𝑡 ≤ 𝑇           (9) 

Fig.3 gives the proposed TS based mmWave BT algorithm. 

C. Proposed e-greedy based MmWave BT 

E-greedy is considered as the simplest MAB algorithm 

when dealing with the exploitation-exploration dilemma for arm 

selection. Simply, the arms exploitation is done with probability 

1 − 𝜀 and the arms exploration is done with probability 𝜀, where 

𝜀 is a system design parameter. Thus, in the proposed beam pair  
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selection, at a time 𝑡, the beam pair having the highest average 

throughput, i.e., the highest Υ̅𝑚,𝑡, will be selected with 

probability 1 − 𝜀; otherwise random beam pair is drawn from 

uniform random distribution, i.e., 𝒰(1, 𝑀), as shown in the 

proposed e-greedy based mmWave BT algorithm given in Fig.4.  

V. PERFORMANCE EVALUATIONS 

In this section, performance evaluations are conducted to prove 

the effectiveness of the proposed MAB based mmWave BT 

algorithms over the baseline EX BT and some of the existing 

approaches. The EX BT is selected as a benchmark approach 

because it has the optimal data rate performance.  

 

Algorithm: e-greedy based mmWave BT 

Inputs: 𝑾𝑇𝑋 and 𝑾𝑅𝑋, 𝜀    

Initialize: Υ̅𝑚,𝑡 = 0, 𝑠𝑚,𝑡 = 0  

For 𝑡 = 1: 𝑇 

1. Draw a beam pair and obtain the reward Υ𝑚,𝑡   

(𝑏𝑡𝑥, 𝑏𝑟𝑥)𝑚,𝑡 = {
arg max

1≤𝑚≤𝑀
(Υ̅𝑚,𝑡)     with probability 1 − 𝜀 

𝒰(1, 𝑀)              with probability  𝜀
   

   

2. 𝑠𝑚,𝑡 = 𝑠𝑚,𝑡 + 1 

3. Υ̅𝑚,𝑡 =
1

𝑠𝑚,𝑡
∑ Υ𝑚,𝑗

𝑠𝑚,𝑡

𝑗=1  

END For 

Fig.4. Proposed e-greedy based mmWave BT algorithm 

A. Simulation Parameters    

For realistic considerations, ray tracing is used to construct 

the mmWave channel in the conducted simulations. Fig. 5 

shows the used ray tracing indoor study area of dimension 

30 × 15 × 4 m3, where the mmWave AP operating at 60 GHz 

is attached at the ceiling and the mmWave user equipment (UE) 

is uniformly dropped inside the room area at a height of 0.75 m. 

Three mmWave paths are assumed with one line of sight (LOS) 

path and other non-LOS paths, other important parameters are 

given in Table I. Also, downlink transmission is assumed where 

the TX is the mmWave AP and the RX is the mmWave UE.  

 

 
Fig.5. Ray tracing indoor study area 

B. MmWave 3D Beamforming    

For the mmWave link, the mmWave AP is assumed to use 

3D beamforming while the UE is using omni-directional 

antenna pattern, i.e., BRX = 1. For the 3D beamforming, the 

azimuth coverage angle of the mmWave AP, 𝜗azm is divided 

into a number of beam tiers, which is equal to 𝑁tier =
𝜗azm

𝜗−3dB
, 

where 𝜗−3dB is the 3D beamwidth. Then, the total number of 

beams is equal to 𝐵𝑇𝑋 = 1 +
6𝑁tier(𝑁tier+1)

2
 [10]. For example, 

using 𝜗−3dB = 30° and 𝜗azm = 85°, as given in [10] and used in 

the simulation setting in Table I, then 𝑁tier ≈ 3 and 𝐵𝑇𝑋 = 36 

beams.  

C. Simulation Results   

In the conducted simulations, the performances of the MAB 

base BT algorithms will be compared with the performance of 

the EX BT in terms of average throughput in Gbps, i.e., 𝜔�̅�𝑚, 

and energy efficiency in Gbps/mJ, where the energy efficiency 

is calculated using the following equation  

𝛾𝐸 =
𝜔�̅�𝑚

𝑃𝑡(𝐾𝑇𝐵𝑇 + 𝑇𝐷)
 .                          (10) 

Fig. 6 shows the average throughput comparisons against 

the 3D beamwidth at LOS blocking probability of 0. As shown 

in this figure, as the 3D beamwidth is increased, the average 

throughputs of the MAB based BT schemes are decreased due 

to the decrease in the beamforming gain and hence the 

achievable data rate. TS shows the best performance due its 

inherent Bayesian functionality, and e-greedy has the worst 

performance among the MAB algorithms. However, all MAB 

based BT algorithms have better average throughput 

performance than the EX BT. This is due to the lower number  
 

TABLE I 

SIMULATION PARAMETERS 

Parameter Value 

𝜔 2.16 GHz [13]  

𝑇𝐷 1 msec [10] 

𝑇𝐵𝑇 23 usec [13] 

3D Beamwidth (𝜗−3dB) 10°, 20°, 30°, 40°, 50°, 60° 

LOS blocking probability 0, 0.2, 0.4, 0.6, 0.8 

TX power (𝑃𝑡) 10 dBm 

𝜀 0.1 [28] 

𝑇 2000 

Azimuth coverage angle 

(𝜗𝑎𝑧𝑚) 

85° [10] 

 
of beams used in each BT step which is equal to one beam per a 

beacon time. It interesting to note that the average throughput of 

the EX BT is highly decreased when the 3D beamwidth is equal 

to 10° due to the large number of trained beams which is equal 

to 270 beams. However, as the 3D beamwidth is increased, the 

BT overhead is decreased which increases the average 

throughput of the EX BT till reaching a point where the 

beamforming gain is highly decreased resulting in decreasing 

the average throughput again as shown in Fig. 6. From Fig.6, 

using 𝜗−3dB = 10°, about 4.5, 4.37, and 3.3 increase in average 

throughputs are obtained using TS, UCB and e-greedy based BT 

over using EX BT. However, using 𝜗−3dB = 60°, these values 

are decreased to 1.24, 1.2 and 1.18., respectively.  

Fig. 7 shows 𝛾𝐸 of the compared schemes against 𝜗−3dB. 

The MAB based BT shows superior 𝛾𝐸 performances over the 

EX BT at all values of 𝜗−3dB. This comes from the lower BT 

energy consumptions of the MAB based BT schemes compared 

to the EX BT due to the high decrease in the 𝐾 value in (10). In 

mmWave AP 

mmWave UE 
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consequence, this results in highly increasing the numerator of 

(10) and highly decreasing its dominator as well. Using 𝜗−3dB =
10°, about 1.5e+3, 1.48e+3, and 1.12e+3 increase in 𝛾𝐸 are 

obtained using TS, UCB and e-greedy based BT over using EX 

BT. However, using 𝜗−3dB = 60°, about 35.42, 35.3 and 31.3 

increase in the average throughputs are obtained.  

Fig. 8 shows the average throughput comparisons against the 

LOS blocking probability using 𝜗−3dB = 20°. As shown by this 

figure, the average throughputs of the compared BT schemes are 

decreasing with the increase of the LOS blocking probability. 

This is due to the low channel gains of the non-LOS paths, 

which results in decreasing the achievable data rate of all BT 

schemes. However, the proposed MAB based BT algorithms 

have better average throughput performances over the EX BT 

for all tested values of LOS blocking probability. This comes 

from the lower BT overhead of the proposed schemes. Also, it 

is interesting to note that the rate of decrease in the average 

throughputs of the MAB based BT algorithms are comparable 

to that belongs to the EX BT. This means that the MAB based 

schemes can withstand the harsh blockage environment  

 

 
Fig.6. Average throughput comparisons against 3D beamwidth 

 

 
Fig.7. Energy efficiency comparisons against 3D beamwidth 

 

 
Fig.8. Average throughput comparisons against LOS blocking 

probability 

 

 
Fig.9. Energy efficiency comparisons against LOS blocking probability 

 
Fig.10. Average throughput convergence rate using 3D beamwidth of 20° 

comparable to exhaustively searching all available beam space. 

At LOS blocking of 0, about 2, 1.96, and 1.5 increase in average 

throughputs are obtained using the proposed TS, UCB and e-

greedy BT algorithms over using the EX BT. However, at LOS 

blocking of 0.8, these values are decreased to be 1.54, 1.45 and 

1.24, respectively.  
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Fig. 9 shows 𝛾𝐸 comparisons against the LOS blocking 

probability. Again, the proposed MAB based BT algorithms 

demonstrate superior performances over the EX BT at all values 

of LOS blocking probability. Likewise, 𝛾𝐸 of the MAB based 

BT algorithms are decreasing with a comparable rate with that 

of the EX BT. At zero blocking, about 195, 195 and 146.8 

increase in 𝛾𝐸 are obtained using the proposed TS, UCB and e-

greedy BT algorithms over using the EX BT. However, at LOS 

blocking of 0.8, about 153.3, 153, and 121.9 increase in 𝛾𝐸  are 

obtained.   

Fig. 10 shows the average throughput convergence rate of 

the proposed MAB based BT schemes using 𝜗−3dB of 20° and 

at LOS blocking of 0 and 0.5 against the horizon. Moreover, the 

ideal average throughput performance is shown in Fig. 10, 

which corresponds to the BT scheme that can achieve the 

maximum data rate obtained by the EX BT using just one beam 

pair in the BT process, i.e., using 𝐾 = 1. This ideal performance 

is used as an upper limit performance of the MAB based BT 

schemes. As shown by Fig. 10, all MAB based BT schemes 

converge towards the ideal average throughput performance. At 

LOS blocking of 0, about 95 % of the ideal performance can be 

achieved by TS and UCB based BT while about 80 % is 

achieved by the e-greedy BT scheme. However, at LOS 

blocking of 0.5, about 83.3 % of the ideal performance is 

achieved by TS and UCB based BT while about 73% is achieved 

by the e-greedy based BT.  

Compared to the existing mmWave BT techniques, in [20], 

the authors proved that 8 and 26 beam pairs should be used in 

the BT process when using the high accurate Li-Fi and Wi-Fi 

localization-based BT to obtain 95% of the data rate obtained 

by the EX BT. This emphasizes the high superior performance 

of the proposed MAB based BT over the high accurate 

localization-based BT techniques such as Li-Fi based 

localization. Also, to obtain 95% of the data rate achieved by 

the EX BT, the schemes given in [9], [11] and [19], which are 

based on CS based mmWave channel estimation, need almost 

961, 94 and 64 beam switchings respectively, as stated in [19]. 

Also, numerical search BT needs high number of beam 

switchings to achieve 95% of the data rate achieved by the EX 

BT as given in [17].   

VI.  CONCLUSION  

In this paper, a reinforcement learning approach is 

introduced to address the crucial problem of mmWave BT by 

considering the problem as a multi-armed bandit problem. In 

this formulation, the mmWave transceiver was acting as the 

agent, the candidate TX/RX beam pairs are the arms and the 

attained average throughputs are the corresponding rewards. 

Based on this formulation, three MAB algorithms were adopted 

to address mmWave BT. The proposed MAB based BT 

techniques employed only one beam pair for BT at a time. Then, 

based on the historical performance of the operated beams, new 

beam pair selection is decided by the MAB algorithms at each 

beacon time. Thus, very low overhead is consumed by the BT 

process, which highly improves the average throughput and 

energy efficiency of the proposed MAB based BT techniques 

over the baseline EX BT under different scenarios. Moreover, 

the proposed MAB BT schemes converged to the optimal 

performance with high percentages especially at zero blocking. 

Furthermore, the proposed scheme showed superior 

performance over the location-based BT even using high 

accurate localization technique in addition to the CS channel 

estimation-based BT techniques. 
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