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Abstract—Due to the severe damages of nuclear accidents,
there is still an urgent need to develop efficient radiation detec-
tion wireless sensor networks (RDWSNs) that precisely monitor
irregular radioactivity. It should take actions that mitigate the
severe costs of accidental radiation leakage, especially around
nuclear sites that are the primary sources of electric power and
many health and industrial applications. Recently, leveraging
machine learning (ML) algorithms to RDWSNs is a promising
solution due to its several pros, such as online learning and
self-decision making. This paper addresses novel and efficient
ML-based RDWSNs that utilize millimeter waves (mmWaves)
to meet future network requirements. Specifically, we leverage
an online learning multi-armed bandit (MAB) algorithm called
Thomson sampling (TS) to a 5G enabled RDWSN to efficiently
forward the measured radiation levels of the distributed radiation
sensors within the monitoring area. The utilized sensor nodes are
lightweight smart radiation sensors that are mounted on mobile
devices and measure radiation levels using software applications
installed in these mobiles. Moreover, a battery aware TS (BA-
TS) algorithm is proposed to efficiently forward the sensed
radiation levels to the fusion decision center. BA-TS reflects
the remaining battery of each mobile device to prolong the
network lifetime. Simulation results ensure the proposed BA-TS
algorithm’s efficiency regards throughput and network lifetime
over TS and exhaustive search method.

Keywords—Wireless Sensor Networks (WSNs), Radiation de-
tection, Multi-armed bandit (MAB), Thomson sampling, and
Network lifetime

I. INTRODUCTION

RECENT improvements in wireless communications and
electronics have facilitated employing wireless sensor

networks (WSNs) in essential applications of real life [1].
Figure 1 illustrates the main components of any WSN, where
any sensor nodes compose of four fundamental units, namely,
sensing, processing, transmission, and power units. The sens-
ing unit investigates the surrounding environment (radiation in
our case). Then it informs the central processing unit (CPU) to
compute/process/store the sensed data. The transmission unit
receives the information from the CPU and transfers it to the
cluster head (CH) or base station (BS). Finally, the power
unit manages battery power to the sensor node [2]. WSNs
have been widely applied in vital applications like precision
agriculture, smart cities, industrial, climate, forest, and animal
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tracking. Developing a radiation detection wireless sensor
network (RDWSN) gained a great focus due to the increased
objection against nuclear power plants (NPPs) after large
nuclear accidents such as Chernobyl and Fukushima Daiichi
[3]. The usage of such networks helps the authorities keep
watching and continuously identifying the radiation levels of
the infected areas without threatening workers’ lives. The
main objective of any RDWSN is to measure and monitor
the radiation levels inside the monitored area then provide an
early alarm if these levels exceed the threshold values [4].
A common challenge for a RDWSN is how to efficiently
integrate the available information from individual sensors to
make a global decision about the presence of a contaminated
materials or radiation leakage.

Ionized radiation can harm the human body in several
manners, where the disadvantageous health impacts produced
from the exposure can remain for several months without clear
appearance. Such harmful impacts vary from light diseases
like skin reddening to severe consequences like cancer or
even death death, according to the amount of radiation stored
inside the body, the radiation form, exposure time interval,
and the exposure way. In most of the world, a radiation
emergency status arises when nuclear material is leaked or
blasted during a disaster or crime. In such major event,
radioactive materials are released in either high doses that
may extremely threaten biological life and cause sudden death
within a week or low doses that might result in cancer and
later disadvantageous health outcomes. The radiation hazard of
nuclear power utilization issues from all classes of the nuclear
power applications like nuclear power plants (NPPs) is very
dangerous and should be kept under continuous observations
from the responsible authorities. Hence, there is an urgent need
to have a continued radiation monitoring network that operates
within and around the NPP to provide continuous real time
radiation levels measurments as an early precaution stage.

The main fear from any accident inside or around NPP is
exposure to radiation with large doses. In such accidents, the
exposure sources certainly are the leaking radioactive material
to the surrounding environment, such as radioactive gases
and liquids. Moreover, toxic clouds and atoms, breath, and
ingestion of radioactive materials are other forms of dangerous
radiation exposure methods to the livings inside and around
the NPP. According to the nuclear safety report issued by
the international atomic energy authority (IAEA), there is still
more work that can be done to strengthen nuclear management
systems by making use of new technology. Case studies that
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Fig. 1. WSN main elements

ensure the detection of radioactive materials and accidental
radiation leakage is a life-threatening issue for environmental
facilities, public health, and safety are as follow:

• Case 1 (Fukushima disaster) the Fukushima Daiichi
nuclear disaster resulted from the earthquake in Japan on
March 11, 2011, has produced severe atomic pollution
in Japan and around the world. The quake caused a
14-meter-high tsunami that crossed the plant’s seawall
(12 m height) and flooded the plant’s lower grounds
around the units 1–4 reactor constructions with seawater,
filling the bunkers and hitting the emergency generators.
Large amounts of water polluted with radioactive isotopes
were released into the Pacific Ocean during and after the
disaster. Still, there are severe outcomes of the nuclear
crisis due to the long half life time of the leaked materials.
Although the main cause was from nature, this accident
showed a considerable safety plus security shortage ex-
istence in most of the NPPs around the world. In NPPs,
large amounts of nuclear fuel and waste that include large
quantities of uranium or other radioactive materials are
stored. To enhance the safety and security level of any
NPP, it is vital to advance a fast and precise detection
system for any radiation leakage.

• Case 2 (Radon detection) Radon cannot be seen by
the human eye, unperfumed, and tasteless radioactive
gas produced through the normal decay of radium, ura-
nium, and thoron in dust, crag, and water, respectively.
Its relationships with various diseases, particularly lung
cancer, are well known. Radon can penetrate homes
through cracks and holes. Although ease of detection of
radon level nowadays in residence, ways to determine the
source of decay have not been well-studied. Detection
and further removal of the decay source can lower the
radiation pollution generated by Radon and accordingly
improve the environments of nearby residents [5].

• Case 3 (Nuclear waste leak detection) the industry of
nuclear power and also industrial petroleum digging
companies create thousands of tons of deadly nuclear
wastes every year all over the world [6]. Such wastes

are requested to be transported into specialized treatment
centers to reduce its severe damage to the health of the
nearby residents.

Additionally, nuclear fuel and waste that contain uranium
or other radioactive materials are also utilized in all NPPs.
They are sealed in fuel rods that are bundled together into
nuclear fuel authorities. If these materials are wrongly leaked,
thousands of people will be under danger over a lot of years.
This is due to the long half lifetime of the leaked materials
that can move past homes, workplaces, stadiums, stations,
schools, and hospitals. A human that stands just one yard
from an unshielded, 10-year-old fuel waste might obtain a
fatal dose of radiation in a few three minutes. A 30 second
exposure time at such places would significantly raise the risk
of deadly diseases like cancer and genetic damage. Hence, it
is life-threatening to rapidly and precisely locate any radiation
leakage.

A radiation detector, also recognized as a particle detector,
is an equipment used to detect, track, identify high-energy
particles released from radioactive materials. These particles
include neutrons, alpha particles, beta particles, and gamma
rays. Generally, the detected radiation counts of the detectors
can be demonstrated as a combination of the radioactive source
signal and the regular background radiation [7]. There are var-
ious types of radiation detectors, such as scintillator detectors,
ionizing gas detectors, and Geiger counters. According to the
proposed scenario, our primary focus in this paper is on smart
Giger types that are mounted on mobile devices, as will be
shown later.

Recently, Artificial intelligence (AI) techniques, particularly
machine learning (ML), is a talented solution for radiation de-
tection tasks because of its online-learning and self-decision-
making characteristics. This will overcome the difficulties of
dealing with a large number of sensors and the continuous
upgrade of radiation levels around the NPP. Reinforcement
learning (RL) is one of the main branches of ML, where
the player associates with the environment and attempts to
maximize the long-term rewards by online learning. It is
worth noting that RL techniques are promising online solutions
and instant radiation level notifications through informing the
decision-maker if the radiation level in a specific area is
increased. If a sensor device measures a high radiation level, it
must automatically forward its data to the decision-maker for
this critical notification. However, due to the nature of utilized
wireless communication channels that may be blocked due
to radiation and blockage effects, we leverage a multi-armed
bandit (MAB) algorithm to forward the data to the manager
through other mobile devices.

The state-of-the-art communication network, such as recent
ones that are based on millimeter waves (mmWave) like our
case, permits the construction of RDWSN, where the measured
radiation levels/data can be forwarded in real-time to the data
fusion center for analysis and interpretation. However, once
a nuclear radiation disaster happens, the ordinary networks
and electric power sources will be stopped. Hence, in this
paper, we propose a scenario where the workers inside and
around NPP measures radiation levels from their own mobile
devices through mounting smart Giger, which is cheap, light,
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and practical. Moreover, there are mobile devices mounted
in a fixed, known place around NPP. These mobile devices
construct an RDWSN and forward its data to the fusion data
center. These devices utilize mmWave channels that have a
large bandwidth and cope with 5G/B5G requirements. Even
though mmWaves have short wavelengths, highly absorbed by
oxygen, blocked by thin papers. Hence beamforming between
transmitter and receiver is required every time. By leveraging
ML to efficiently forward the measured data, we propose an
energy-efficient MAB algorithm based on Thompson sampling
(TS) strategy while considering the remaining batteries of the
mobile sensors. This scheme speeds up the searching process
and makes beamforming one time only to the targeted device,
not like exhaustive search that performs beamforming to all
surrounding devices/detectors, resulting in large overhead and
large processing time.

Paper organization as follows. Section 2 reviews the related
work of RDWSNs. Section 3 discusses the utilized network
scenario using mobile devices as smart radiation sensors. The
proposed battery aware TS (BA-TS) algorithm is described in
section 4, after providing short notes about the TS algorithm.
Section 5 previews simulation results that confirm the superior
performance of BA-TS. Finally, section 6 concludes the work.

II. RDWSNS RELATED WORK

WSNs have fascinated many researchers, resulting in rapid
development in essential applications such as environmental
monitoring and military surveillance. A general overview of
different programming methodologies and other model-based
methods for developing WSNs is given in [8]. A safe moni-
toring WSN system that detects x-ray levels in hospitals and
industrial places using both X-ray radiation sensor and body
infrared sensor on the sensor network nodes is proposed in
[9]. Another WSN design from a group of radiation detection
stations with variant types of sensors is discussed in [10].
Their design located the stations in different areas and assumed
that the sensors would utilize the GSM network to send its
data to a central control station. The location of each sensor
is determined using GPS module. A combined simulation
of WSN and radiation detection with directional gamma-
ray detectors is conducted in [11]. They assumed that the
radiation source (60Co and 137Cs) is transported through
crossroads, and they proposed two algorithms to localize
and quantify the radiation sources with different speeds and
communication protocols. An overview of detecting radiation
using mobile sensor networks is discussed in [12]. An active
radiation monitoring system for mobile radiated environments
is proposed in [13]. The monitoring technique defines if the
radiation source is inbound or outbound.

The authors of [14] proposed a radiation detection system
for a nuclear facility that consists of Geiger miller tube
(GMT) detectors controlled from a single receiver end. The
proposed design permits faraway operators to manage/store
the radiation levels data issued from radioactive source at
different times, which plots the radiation curve of a whole year.
A self-regulating micro controller-based system that includes
the standard internet protocols and designated for detecting

Fig. 2. RDWSN with smart sensors inside/around NPP

radiation in gamma ray area is proposed in [15]. The measured
data are sent to the decision-making factors via wireless
networks. Furthermore, the authors of [16] presented a mobile
ad-hoc wireless network (MANET), to monitor environmental
settings inside and around an NPP, particularly radiation levels.
Sensors were deployed in a fixed position around the plant.
Also, the staff were equipped with mobile sensing devices
like PDAs that detect radiation levels. An extreme learning
machine (ELM) algorithm is proposed in [17] to protect WSN
from several attacks hence extending its life time.

However, existing related work doesn’t consider new mobile
network scenarios, i.e., 5G nor recent detectors like smart
Gigers that can be easily mounted on mobile devices of the
NPP staff to measure radiation levels everywhere. Further-
more, to the best of our knowledge, the paper firstly leverages
recent ML techniques to implement in radiation monitoring
utilizing mmWave communications. The network is vital for
continuous inspection during stoppage periods and during
accidents to avoid hazardous situations.

III. SYSTEM MODEL

Figure 2 shows the suggested RDWSN network architecture,
where multiple mobile devices mounting smart Gigers are
distributed in the NPP area, which is called the sensor nodes.
These sensor nodes are handheld by the workers inside the
NPP. Each sensor collects its own radiation readings through
its mounted smart Giger dongle. Then, it should relay this
reading to the nearest radiation fusion center for analysis and
making decisions. In the considered RDWSN, each radiation
sensor should proactively discover its nearby sensors and
then select one of them to relay its own readings, and so on
till reaching the fusion center. The selected nearby mobile
sensor should maximize the achievable data rate of the
sensor-to-sensor link while considering the limited remaining
energy of the sensors. Moreover, we follow the mmWave
link model that models the mmWave blockage as Poisson
distribution.
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Our problem formulation is defined as follow the smart
sensors need to forward their measured data to the fusion
center. Hence it searches for the best nearby device to establish
device to device link so as to forward the measured data to
the fusion center. Hence, the selected nearby device should
be selected in a way to maximize the throughput and also
considering the blockage around. The problem is formulated
as MAB where the player chooses an arm of the bandit to
choose the optimal route with the highest probability of reward
maximization i.e., signal to noise ratio (SNR) or throughput.
Achieving such target is a challenging issue due to the
unknown probability distribution of highly dynamic wireless
communication channels. Hence, we propose levering TS to
solve the problem as will be shown next section. Moreover,
TS are modified to consider the remaining battery of each
sensor/device. In our MAB model, there is a set of K devices
(arms). In each round t, the player (a smart sensor that needs
to transmit data) selects an arm at and detects the reward rt for
the selected arm. There is an important compromise between
receiving new info about rewards, i.e., exploration, and optimal
selections by means of the existing info, i.e., exploitation.

IV. PROPOSED MAB ALGORITHM

In this section, we will first discuss the proposed TS
algorithm to forward the sensed data. Moreover, the TS is
modified to consider the remaining batteries of the mobile
devices to simulate real scenario and make sure the data are
forwarded. Hence BA-TS algorithm is presented.

A. Thompson Sampling (TS) Algorithm

TS also was first introduced in 1933 [18] for modeling
experimental effort in two-armed bandit problems issued from
clinical trials. It is an online decision MAB algorithm where
sequential actions are taken to weigh between exploiting and
exploring new arms. The algorithm marks a wide range of
difficulties in a computationally efficient, hence, enjoying wide
usage and applications. TS central strategy is to assume prior
distribution for the rewards and updates the posterior distri-
butions within the learning process. Throughout the learning
process, each arm is sampled according to the recommended
posterior distribution and choosing the device that gives the
maximum reward.

Although TS was proposed using Bernoulli distribution as a
prior assumption, we implement Gaussian distribution to our
reward. This is due to most of the wireless communication
channels distributions are gaussian ones generated from the
white Gaussian noise distribution. Hence modified TS with
normal distribution is implemented here a as in [19]. Regards
Gaussian bandits, picking up a device m generates a reward of
1 and 0 with probability Φm and 1− Φm, respectively. In the
first-round t = 1, action a1 is taken and reward r1

∑
(0, 1)

is collected with success probability p(r1 = 1| a1,Φ). r1 is
recorded, then another action a2 is operated then the process
is repeated. In TS adopted in this paper, a random sample Φk

for each arm m based on its normal distribution. Hence the
policy of TS is as follow

 

Algorithm 1:  BA-TS for forwarding radiation levels in WSN. 

1: Input:  𝛯th , 𝛯𝑚 (𝑡 = 1), 1 ≤ 𝑚 ≤ 𝑀    

2: Initialization: pull each smart detector 𝑚  once for 𝑡 = 𝑚   first 

rounds and modify the remaining levels of the batteries  𝛯𝑚  𝑡  every 

round t for all M detectors  

3: If  𝛯𝑚 (𝑡) > 𝛯th  for any 𝑚 ∈ 𝑀 do 

•  Round update 𝑡 = 𝑡 + 1 

• Select the maximum rewarded smart detector  𝑘𝐵𝐴−𝑇𝑆
∗  𝑡   using (2). 

• modify the remaining battery of the selected detector in last step 

else  

game end (all detectors are out of battery) 

End IF 

Fig. 3. Proposed BA-TS algorithm

kTS(t) = arg max
1≤m≤T

[Φm(t)],Φm(t) ∼ N(Ῡm (t) ,
1

Tm,t + 1
)(1)

where Ῡm (t) is D2D link throughput in bps between the
TX mobile device and nearby device m at time t. Tm,t reflects
how many times device/smart detector m has been nominated
till time t. Hence, a random sample is taken from each smart
detector m based on the PDF of the normal distribution and
selecting the arm that has the maximum reward.

B. BA-TS algorithm

An important issue that simulates the real-life scenario is
the remaining batteries of mobile devices. This motivated us
to modify the TS algorithm to be battery aware. Hence, a
budget constraint MAB algorithm is implemented where the
remaining battery of each device is considered. A threshold
limit is defined as any device remaining battery is below this
threshold is quitted from the game. The BA-TS algorithm main
equation is as follow

kBA−TS (t) = arg max
1≤m≤T

[Φm (t)− dm
Em (t)

], (2)

The newly added term dm

Ξm(t) is appended to the typical TS
equation (2) to reflect the remaining battery levels of the
devices that utilize smart radiation sensors related to its re-
moteness from the sensor device that needs to forward its data.
Figure 3 describes the BA-TS algorithm steps in more detail.
The proposed algorithm simulates real-life scenarios where the
detectors/mobile devices that have low battery are quitted from
the game to save the small remaining battery percentage for
main communications. Moreover, the TS algorithm provides
a strong guarantee to select the most appropriate arm (link
route).

V. NUMERICAL RESULTS

Numerical simulations are implemented to approve the
superior performance of the proposed BA-TS over both con-
ventional TS without adding the residual energy term, i.e.,
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dm

Em(t) , in (2), and exhaustive search schemes. In the exhaustive
search, the detector which wants to forward its data, searches
all neighbor mobile devices/detectors around it and tries to
communicate with each one causing large overhead of trying
to send data to all devices around. Then, the best suitable
device is selected according to the largest SNR produced to
have better quality of service for the communication link. The
metrics used to evaluate the performance are the throughput in
Gbps, energy efficiency in [Gbps/mJ], and network lifetime.

Figure. 4 displays the throughput evaluations against dif-
ferent number of distributed detectors assuming that there is
no blockage between them. The proposed BA-TS algorithm
have close throughput to the conventional TS and both have
superior performances over exhaustive search approach. For
the brute force/exhaustive search method, the throughput is
greatly diminished against the increment of distributed de-
tectors because of the large overhead. Meanwhile, both the
proposed BA-TS and TS will communicate with a single
detector every round. Note that the throughput performance
of both MAB based algorithms (TS and BA-TS) is improved
as the number of distributed detectors is increased due to
the long-term average throughput maximization. The extra
remaining battery term, i.e., dm

Ξm(t) modifies the BA-TS and
improves its performance by ranking nearer devices achieving
higher data rates with high remaining batteries. At 20 (100)
smart detectors, the proposed BA-TS has 1.11 (6) over the
exhaustive search scheme, respectively.

Figure. 5 previews the energy efficiency (EE) of the
proposed BA-TS in Gbps/mJ versus various number of
smart detectors at zero blockage. The EE is related to the
remaining battery of each smart detector at each round. By
increasing the number of smart detectors, EE of the compared
methods relatively increased because of the increment in
the number of smart detectors that are able to establish the
required communication link. This diminishes the used-up
energy per selected smart sensor. The proposed BA-TS
shows the best performance as it tries to maximize the
long-term average throughput while preserving the residual
energies of the nearby smart detectors when establishing the
communication links resulting in better EE performance. At
20 (100) intelligent radiation detectors, the proposed BA-TS
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Fig. 6. Network life time

has 1.22 (2.43) and 1.94 (3.25) EE increment than TS and
exhaustive search methods, respectively.

Figure. 6 discusses the performance of network lifetime,
known as the time at which the remaining battery of one of
the nearby smart radiation detectors falls below the assigned
threshold level of the battery,i.e, Ξth = 0.11joule. In Fig.
6, 50 smart radiation detectors are utilized, and the network
lifetime is measured against different blockage percentages.
The network lifetime is significantly prolonged due to highly
obtained data rates that reduce the data transmission time,
followed by low battery consumption. The proposed BA-TS
approves superior network lifetime performance over both TS
and exhaustive search schemes at all blockage levels. BA-Ts
have the best network performance, while Exhaustive search
has the worst performance.

VI. CONCLUSION

Radiation detection levels around nuclear sites gained more
attention due to its panic importance to society and severe
radiation risks to the environment. In this paper, we pro-
posed BA-TS MAB based algorithm that efficiently detects
radiation levels around NPP. The network utilizes mmWaves
plus a smart radiation detector, which is mounted on the
smart mobiles of every worker in the NPP to continuously
measure the radiation levels, then forward the measured data
to the fusion center by establishing a communication link with
the surrounding smart detectors. BA-TS not only hurry the
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exploration process but also maximize the throughput while
counting the remaining batteries percentages of the nearby
smart detectors. Also, it approved its superior performance
over both regular TS and exhaustive search methods.
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