
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2021, VOL. 67, NO. 4, PP. 565-570 

Manuscript received August 27, 2021; revised November, 2021                          DOI: 10.24425/ijet.2021.137847 

 

 

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0, 

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited. 
 

 1 

Abstract—This paper presents low-cost, configurable PCI Express 

(PCIe) direct memory access (DMA) interface for implementation 

on Intel Cyclone V FPGAs. The DMA engine was designed to 

support DAQ tasks including pre-triggering acquisition for 

transient analysis and multichannel transmission. Performance of 

the interface has been evaluated on Terasic OVSK board (PCIe 

Gen2 x4). Target configuration of this interface is based on the 

Avalon-MM Hard IP for Cyclone V PCIe core and Jungo 

WinDriver x64 for Windows. A sample speed of 1200 MB/s has 

been reported for DMA writes to PCIe memory. 

 
Keywords—DAQ, DMA, SoC, PCI Express, FPGA, transient 

analysis 

I. INTRODUCTION 

CI Express is long-standing computer bus offering multi 

Gb/s transmission speed. It was introduced by Intel as a 

third generation computer bus. PCIe uses serial point-to-point 

connection between devices. PCIe link consists of two ports, 

one port per a device, and their interconnections called lanes. A 

lane is two differential signal pairs, each of the pairs is used for 

transmission in one direction. In PC motherboards, PCIe rev. 

2.x and 3.x are commonly implemented with the number of 

lanes from 1 (x1) to 32 (x32). Specification [1] defines three 

layers: transaction layer (TL), data link layer (DL) and physical 

layer (PL). PCIe uses packets to carry data between 

components. Typically, user application operates on transaction 

layer packets (TLPs). Host memory is directly available for 

DMA access initiated by a peripheral device. DMA writes are 

performed by posting memory write packets (MWP). Memory 

read is a split transaction. Requester device sends memory read 

packet (MRP) addressed to a completer device. After the 

completer has received and decoded TLP, it prepares data and 

sends them to the requester in one or multiple completion TLPs. 

PCIe 2.x link operates with a speed of 5GT/s per lane and uses 

the 8b/10b transmission code. PCIe 3.x link operates with a 

speed of 8GT/s per lane and uses the 128b/130b code. For PCIe 

Gen2, maximum throughput is 0.5 GB/s per lane.  

In this paper low-cost PCIe DMA interface for FPGA-based 

DAQ cards is proposed. The described DMA engine supports 

pre-trigger acquisition for signal transient analysis and 

multichannel transmission. In articles e.g. [11-13], PCIe designs 

are reported based on custom DMA projects. This paper 

examines different approach, the use of available free IP cores 

for designing a functional PCIe DMA interface for DAQ 

systems. The proposed solution is based on Intel SoPC 

resources. In section II, architecture and components of the 

interface are described. Section III introduces projects used for 

prototyping this interface. Section IV discusses achieved 

performance. 
 

 
K. Mroczek is with Institute of Radioelectronics and Multimedia Technology 

(IRTM), Warsaw University of Technology, Poland (e-mail: krzysztof.mroczek@pw.edu.pl).   

Described DMA interface is a building block of a DAQ card. 

In our previous works, two general purpose DAQ cards were 

used for testing of methods applied in the IRTM NIALM system 

[2-3]. A new FPGA-based DAQ hardware will provide more 

flexibility and improve the system. 

II. COMPONENTS AND ARCHITECTURE OF DMA INTERFACE  

A. SoPC resources 

In the project presented in this paper, description of hardware 

system in FPGA has been developed using the Platform 

Designer (PD) from Intel Quartus Prime software and free IP 

cores. The PD is a high-level system integration tool for SoPC 

(System on a Programmable Chip). PD project includes 

components, interfaces and interconnections in graphical 

representation of a system [6]. Two interfaces from Avalon 

family were used in datapaths. The Avalon-ST (streaming) 

interface is intended for unidirectional point-to-point links 

between a source of data (ST source) and a destination (ST 

Sink). ST connections can be used for implementation of 

address-less transmission channels, including packets and 

multiplexed streams. The Avalon-MM (memory mapped) 

allows connecting a component with master interface to one or 

more slaves. The master initiates address-based read or write 

transfer to the destination slave. Address bus width can be 

selected at up to 64 bits, data width at up to 1024 bytes. Avalon-

MM enables single and burst transfers.  

PD schema of a SoPC is created and edited with GUI tool. 

Components from Quartus or user-defined are added to the 

schema from the IP Catalog. HDL description of a SoPC is 

automatically generated from PD project for synthesis and 

simulation. Generated HDL is available to be included in 

Quartus project. Important elements in PD are interconnections 

and bridges. PD supports 1-1, 1-N, N-M master-slave 

connections. Interconnections are generated automatically from 

schema, while bridges are added by the designer. PD generates 

interconnections with slave-side arbitration. If multiple masters 

are connected to the same slave, PD inserts arbitration logic. 

Round-robin algorithm is the default for arbitration. Arbitration 

selects one master from among the requesting and grants it 

access to the slave. PD generates parallel master-slave paths 

enabling concurrent transfers. 

PCIe protocol was implemented by applying Avalon-MM 

Cyclone V Hard IP for PCI Express (PCIE_AVMM) core [7]. 

PCIE_AVMM is compatible with Cyclone V chips comprising 

a hardened PCIe protocol stack. PCIE_AVMM supports PCIe 

Gen1 and Gen2 x1, x2 or x4. PCIE_AVMM connects PCIe hard 

SoPC-based DMA for PCI Express DAQ Cards 

Krzysztof Mroczek  

P 



566 K. MROCZEK 

 

block (PCIE_ST) to the application layer via the Avalon-MM 

bridge (Fig. 1). The PCIE_ST implements the PCIe protocol 

stack compliant with PCI Express Base Specification v. 2.1/3.0. 

It includes Data Link Layer, Physical Layer, and connections to 

LVDS transceivers. Using this IP can decrease overall 

development time. User application in FPGA can handle data 

transmission on Avalon-MM interfaces. Building, decoding of 

TLPs, and other protocol activities are implemented in the 

bridge. MWPs and MRPs initiated by host software are 

translated in the bridge to the Avalon-MM transfers. These 

transfers are performed on the Rxm_BARn master interfaces. Up 

to 6 Rxm_BARn can be configured. When PCIE_AVMM 

receives valid MWP, it initiates a write transfer on the activated 

Rxm_BARn interface. Receiving of MRP initiates read transfer, 

followed by sending back data in completion TLP. The Txs 

interface allows implementation of bus master DMA. The Txs 

is bursting Avalon-MM slave interface that translates transfers 

initiated by a peripheral device to MWP or MRP packets. 

Address translation from Avalon-MM to PCIe depends on the 

Avalon-MM address width setting, configurable to 32 or 64 bits. 

For 64-bit, no address translation is performed. In this case, the 

Avalon addresses are directly mapped to PCIe memory. 

B. PCI Express DMA interface 

The architecture of PCIe DMA interface is shown in Fig. 1. 

Logical connections between Avalon-MM master and slave 

interfaces are marked with dots. The PCIE_AVMM controller 

is configured for PCIe Gen2 x4 and 64-bit address space. The 

differential 100 MHz REFCLK signal from PCIe connector is 

the main clock source. Internal clocks are generated from this 

clock. PCIE_AVMM external interfaces and the DDR3 

controller are synchronized to the 125 MHz coreclkout (clk1). 

DMA components are synchronized to the 100 MHz clock 

(clk2). Software access to registers in components is performed 

on the Rxm_BAR2 master interface, connected to the B1 bridge. 

Avalon-MM master ports of DMA modules are connected to the 

Txs and the DDR3_C slaves via the B2 - B4 bridges. The bridges 

are implemented by applying Avalon-MM Clock Crossing 

Bridge component from PD. Applying these bridges helps to 

meet timing requirements for implementations in Cyclone V 

FPGAs. IRQ requests from system components are connected 

to the RxmIrq input of PCIE_AVMM. The PCIE_AVMM 

internal registers are accessed by the CRA interface. 

DMA memory space is divided into two regions, defined in PD: 

- PCIe memory; addresses up to 64 GB, 

- Board memory; addresses above 64 GB. 

Memory space can be extended by adding next regions of FPGA 

resources.  

The Stream DMA subsystem consists of dual channel DMA. 

The DMA writes data to PCIe or board memories. Each of DMA 

channels is handled by its own mSGDMA module, sourced 

from the PD IP Catalog [5]. Features of the mSGDMA IP are 

outlined in II.C.  

The DAQ_C module splits samples into the DMA channels. 

Functions of this module are described in II.D. Samples from a 

DAQ hardware are written to one of the DMA channels via two 

Avalon-ST interfaces, according to the selected buffering mode. 

To support a signal analysis in time window before and after a 

trigger event, pre-trigger buffering mode was developed. The 

mSGDMAs can have optional master interfaces for descriptors 

access. Depending on configuration, DMA descriptors are 

written to the controller FIFO by software or stored in memory 

(PCIe or board) as a linked list of records. 

 

Fig. 1 Architecture of PCIe DMA interface (a). Stream DMA1/2 (b). Memory 

DMA3 (c) 

 

The Memory DMA subsystem has one mSGDMA3 

controller, configured with two Avalon-MM ports (one for 

write, one for read) and prefetcher extension. This DMA allows 

moving data between memories located on the board and on 

PCIe. Write and read master ports of the mSGDMA3 are 

connected to the B3 and B4 bridges. Additional DMA 

components can be added to extend the functionality for 

multifrequency or multichannel data acquisition.  

PD is a robust tool for designing high throughput connections 

between multiple DMA masters and slaves. When the DMA 

masters perform transfers targeted to both Txs and DDR3, data 

are transmitted simultaneously in separate paths. Thus, 

throughput is maximized.  



SOPC-BASED DMA FOR PCI EXPRESS DAQ CARDS 567 

 

C. The mSGDMA 

The mSGDMA is configurable DMA controller enabling 

stream to memory, memory to stream and memory to memory 

transfers. The mSGDMA 1 and 2 modules are configured with 

the Avalon-ST input interface. The controller has one data 

mover module and the dispatcher module (Fig. 2(a)). The 

dispatcher receives and decodes descriptors, which are 

programming instructions for the data mover. Each descriptor 

describes a single transfer, defining the source and destination 

addresses, data length, options. Descriptors can be queued in 

advance in the dispatcher FIFO. The data mover fetches data 

from the internal buffer, written prior by the Avalon-ST port, 

and moves them to the destination memory in burst transfers on 

the Avalon-MM interface. Many parameters are available for 

static configuration. Packet support and extended feature set are 

the most important. Extended feature set allows 64-bit 

addressing, prefetcher extension, and events signaling.  

(a) 

(b) 

(c) 

Fig.2. (a) DMA_EXT configuration; (b) with Avalon-MM input; (c) 

DMA_EXTPREF configuration. Source: [5]. 

The DAQ_C module writes samples to the mSGDMA internal 

FIFO in packets. A packet begins with SOP (Start of Packet) 

signal asserted and ends with EOP (End of Packet) signal 

asserted. Packet mode enables termination of DMA transfer by 

a hardware signal. If EOP is asserted during writing a block of 

data, this block will be the last one in the current descriptor 

processed. After a descriptor is finished, the transfer status 

(number data of bytes, events) is written to the response FIFO. 

Two configurations of the mSGDMA have been applied in 

described project, outlined below.  

DMA_EXT: without prefetcher module (Enable Pre-Fetching 

module = Disable). 

Descriptors are written by software to the dispatcher FIFO. 

Status of transfer is written to the response FIFO. The response 

slave port is used for reading this FIFO. Software must read 

status for every completed descriptor. IRQs can be generated 

according to unmasked conditions. 

DMA_EXTPREF: with prefetcher module (Enable Pre-

Fetching module = Enable).  

This configuration allows transfers to non-contiguous memory 

buffers, typical in Windows and Linux. Software prepares 

linked list of descriptors located in memory. Additional 

prefetcher module fetches descriptors from the list. After 

fetching, the prefetcher writes a descriptor to the dispatcher 

FIFO. After transfer is finished, the dispatcher writes response 

data. Next, the prefetcher reads the response FIFO and performs 

descriptor write-back. The prefetcher has two Avalon-MM 

master ports, one for descriptors fetches, second for descriptor 

writes. After descriptor update, IRQ can be generated according 

to unmasked conditions. The Owned by Hardware (ObH) bit in 

the control field of a descriptor is used for synchronization 

between the controller and software. If the ObH is set to 1, the 

controller has access to the descriptor. Software can update the 

descriptor after the controller has changed the ObH to 0. 

One of essential functions of a DAQ hardware is support for 

continuous acquisition. In this mode, DMA most often works 

with a ring buffer. Ring buffer can be located on the DMA side 

or in software memory. The mSGDMA can be used in 

continuous mode. Two approaches can be applied in this DMA 

engine, described as follows. First is queuing of descriptors in 

controllers to form ring buffer. In the case of the DMA_EXT, 

software writes a descriptor to the dispatcher FIFO after 

completing of descriptor processing. With the prefetcher 

configuration, equivalent function can be achieved for 

descriptor list. The second is programming of the mSGDMA 

Park Write Mode. The park mode was used in the pre-trigger 

transmission, what is outlined in section III.  

D. The DAQ adapter 

The DAQ_C is a custom module written in Verilog. The main 

task of the DAQ_C is splitting incoming samples into one of 

two outputs, according to programmed mode. Samples from 

data source are passed to input port and written to the dual-clock 

FIFO (FIFOIN). Input side is synchronized to the sample clock, 

output to the clk2 system clock. Data bus is extended to 132 bits. 

128-bit sample block is written to the FIFOIN together with 5 

bits of tags. 4 tags are used to signal events, synchronous in time 

with samples. The meaning of the tags is as follows: 



568 K. MROCZEK 

 

EvPretrig – trigger for signaling change on data from pre- to 

post- trigger. 

EvError – error. 

EvApp, EvAppEOP – application defined events without and 

with generating of EOP request. 

Additional EvOverrun tag signals that samples have been 

overwritten due to lack of space in the FIFOIN.  

Data are read from the FIFOIN in 133-bit blocks, containing 

samples and tags. Samples are passed to the Avalon-ST ports 

and written to selected DMA channel. Tags are used as input to 

control logic. The mSGDMA buffers incoming samples before 

generating of Avalon-MM bursts. Therefore, the DAQ_C writes 

samples without forming bursts. The DMA state machine is 

shown in Fig. 3 and described below. Every DMA channel has 

32-bit sample counter (wCnt1, wCnt2) and buffer size register 

(rDMA1, rDMA2). Sample counters are initialized by writing 

buffer size of the performed DMA transfer(s), described by one 

or more descriptors. Data are written to DMA1 if the FSM is in 

the SD1 state, and to DMA2 if the FSM is in the SD2 state. 

Fig. 3. Stream DMA state machine  

 

The DAQ_C supports three acquisition modes. 

1. Single DMA1 (B1toB2 = 0; B1toTrg = 0). 

After unblocking by software, the FSM enters the SD1 state. 

Data are written to the mSGDMA1. The wCnt1 counts bytes 

written to the DMA1 channel. After the wCnt1 has expired, i.e. 

after the DMA1 phase is completed, the FSM enters the SD1E 

state. When the cyclic bit is set (B1toB1 = true), the wCnt1 is 

reloaded to initial value and the sequence is started again. 

Otherwise, the process is finished.     

2. Dual DMA1/2 (B1toB2 = 1; B1toTrg = 0). 

First, data are written to the DMA1. After the DMA1 phase is 

completed, the FSM enters the SD1E and SD2 states. Data are 

written to the mSGDMA2. The transmission is finished after the 

wCnt2 has expired. According to the cyclic bit, the DMA1 – 

DMA2 sequence is repeated by entering the SD1 state or the 

process is finished. 

3. Pre-trigger dual-channel (B1toB2 = 1; B1toTrg = 1).   

Pre-trigger samples are written to the mSGDMA1. The FSM 

cyclically enters the SD1 - SD1E states. When data block 

marked with the EvPretrig tag has been written on the DMA1 

Avalon-ST port, the FSM enters the SD1E state and then goes 

to the SD2 state. Samples after a trigger are written to the 

mSGDMA2. The last value of the wCnt1 and the number of 

finished buffers are stored in events registers. After the wCnt2 

has expired, the sequence is started again or the process is 

finished.  

The SH1 and SH2 bits control the termination of current DMA 

phase triggered by the EvAppEOP. To prevent overwriting of 

samples in continuous modes, software should unblock 

subsequent cycles by write to control register (it isn’t shown in 

conditions in Fig. 3 for the simplicity of the picture). 

The DAQ_C contains status registers for events signaled by 

the tags and the EvOverrun. When an event is signaled during 

writing of a sample block, current values of the sample register 

and the number of finished DMA buffers are stored in the status 

registers.  

The DAQ_C implements data and events validation. The 

validation acknowledges that data read in consumer side have 

been prior written by DMA. It can be carried out in two ways. 

The first method is including events signals and EOP in data bus 

of the ST interfaces. 8 bits in 128-bit data block are reserved for 

events. To determine address of the marked block, the event 

register is read. Next, the events byte is read from calculated 

address and data are validated. To preserve throughput, a known 

data pattern can be inserted synchronously with an event. The 

second method is connecting the events signals to the Avalon-

ST error port of the mSGDMA. When a DMA transfer is 

completed, if events were set during the transfer, the descriptor 

status field is updated during descriptor write-back. As it is 

shown in Fig. 1, the descriptor master ports and DMA data port 

are connected to the B2 bridge. Descriptor write-back is 

initiated after a transfer on data interface is finished. The Avalon 

transfers are queued in the B2 and performed at the master side 

in request order. To validate data, target side reads event 

registers and status field of descriptor.   

III. PROTOTYPING ON THE BOARD 

The PCIe DMA interface described above has been developed 

using the PD tool. Programming instructions on register level 

were simulated in ModelSim simulator. Extensive tests were 

performed on board to evaluate the DMA engine. Design has 

been prototyped in two projects implemented on Terasic OVSK 

board (PCIe Gen2 x4) [10]. 

The first test was based on a PCIE_DDR3 example for this 

board. In this project, different IP core is used as PCIe interface 

module. As it is shown in Fig. 4, the pcie_256_dma module is 

an instance of the V-series Avalon-MM DMA PCIe core 

(PCIE_AVMMDMA) [8]. The PCIE_AVMMDMA is 

configured with an internal DMA controller. This internal DMA 

moves data between Avalon-MM and PCIe in transfers 

programmed by descriptors. DMA transfers are initiated on the 

Avalon-MM master ports, what is different compared to the 

PCIE_AVMM Txs slave connection. The PCIE_AVMMDMA 

fetches data on the dma_wr_master interface and writes them to 

PCIe destination. The stream DMA1/2 subsystem (Fig. 1) was 

added to the base project. The mSGDMA1 and 2 modules were 

configured in the DMA_EXT mode. The DMA moves samples 

from data sources to DDR3 memory. 

        

           
                         
                      

         
                    

       

                      

         
                   

      

           
                    

       



SOPC-BASED DMA FOR PCI EXPRESS DAQ CARDS 569 

 

Test software was developed for Windows 10 x64. It uses Altera 

PCI API driver and C library, available at no cost. This driver 

doesn’t support interrupts. Software uses pooling in a thread for 

handling events and interacting with hardware. The first test 

procedure is based on descriptors queuing in advance. In this 

case, at the beginning, an assumed number of descriptors is 

queued in both mSGDMA controllers. Next, acquisition mode 

is set in the DAQ_C and data flow with programmed speed is 

started. The operation thread is periodically woken. When it is 

running, it reads events from hardware and response queues of 

the mSGDMAs. If any DMA transfer is finished, the thread calls 

the PCIE_DmaRead API to copy data from DDR3 to the 

program buffer. After data copying, finished transfer descriptor 

is written to the dispatcher FIFO in form of ring queue. The pre-

trigger mode was evaluated additionally in the second 

configuration. For this case, to perform continuous DMA writes, 

the mSGDMA1 is programmed in the Park Write mode. After 

trigger has occurred, the mSGDMA1 is reprogrammed to next 

trigger sequence. During post-trigger state, after processing a 

descriptor, the finished descriptor is written to the dispatcher 

FIFO of the mSGDMA2. 

 

Fig. 4. Interfaces of PCIE_AVMMDMA  

 

Maximum estimated data rate was in range 770 - 950 MB/s. The 

evaluated throughput is based on overrun criterion. Lack of 

interrupts and memory-oriented DMA are limitations of this 

design.  

The second project is implementation of the architecture 

shown in Fig. 1. Its structure is shown in Fig. 5. The DMA 

stream subsystem is connected to the PCIE_AVMM and the 

DDR3 controllers. The software layer for a hardware is based 

on Jungo WinDriver x64 [9]. Test software was written in C to 

evaluate pre-trigger and continuous modes. Acquisition mode 

with programmed sample rate was set in the DAQ_C. The DMA 

engine writes data to the destination memory in PCIe or DDR3. 

WinDriver supports continuous and S-G DMA buffers. For both 

memory options, the DMA_EXT and DMA_EXTPREF 

configurations of the mSGDMA have been applied accordingly. 

Interrupts from the system components were used as sources for 

MSI generation. The interrupts were handled in user-mode ISR 

registered by WinDriver. No data corruption errors were 

reported during the tests. Overrun criterion was applied for 

estimation of maximum throughputs. Maximum data rate set in 

samples simulator, which didn't cause noticeable overrun errors, 

was noted as a boundary value. The reported throughput results 

are shown in table 1 in rows 1 - 4. Results for DMA3 in row 5 

are based on Windows QuerryPerformanceCounter function. 

Data rate of about 1200 MB/s has been reported for DMA writes 

to PCIe memory and 1593 MB/s for the writes to DDR3.  

 

Fig. 5. Interface with PCIE_AVMM controller 

 

Continuous transmission to DDR3 with data copying to PCIe 

showed a speed above 800 MB/s. The performance of scatter-

gather DMA with buffers allocated by C malloc() was similar to 

the configuration with a pre-allocated continuous memory. An 

example of waveforms captured by SignalTap logic analyzer is 

shown in Fig. 6. It shows a change of state from the pre- to post- 

trigger state for a data rate of 1087 MB/s. 
 

TABLE I  

REPORTED THROUGHPUT  

 Test conditions 

DAQ_C FIFO size: 65536B; burst: 256B; TLP: 128B 

Throughput 

[MB/s] 

1 

2 

3 

4 

DMA write to PCIe 

DMA write to DDR3 

DMA write to PCIe + DMA3 PCIe - DDR3 

DMA write to DDR3 + DMA3 read DDR3 - PCIe 

1000 – 1200 

1593 

610 

> 800 

5 DMA3 PCIe read – DDR3 write 

DMA3 DDR3 read – PCIe write 

1100 – 1250 

1100 – 1270 

 



570 K. MROCZEK 

 

 

 
 

Fig. 6. S-G DMA to PCIe memory with data rate of 1087 MB/s. Waveforms captured by SignalTap. 

 

 

IV. THE PERFORMANCE 

The measured speed for PCIe transfers is smaller than 1600  

MB/s. It is a boundary value for this DMA engine, decreased 

due to application of the clock-crossing bridges. Theoretical 

maximum data throughput for PCIe Gen2 x4, TLP = 128 – 

256B, is 1684 – 1828 MB/s [11]. Factors decreasing the 

performance are related to both the host system and the DMA 

engine. It was noticeable, that increasing the number of 

processes running in OS may introduce overruns.  

Additional constrains should be assumed for a continuous 

transmission. The obligatory condition is that processing time 

in software must be lower than the time of filing the DMA 

buffers. From software perspective, queuing/linking of 

descriptors in advance can be programmed. For the pre-trigger 

mode, the DMA1 channel is reprogrammed to next buffer as a 

part of IRQ processing. Programming of the DMA2 channel is 

adding new descriptors on-line. Additionally, each of the 

channels must be unlocked for the next trigger sequence. To 

avoid overruns, the sizes of DMA buffers should be adjusted 

according to sample rate. The S-G buffers with a large number 

of physical pages are the next issue for analysis. 

The full design with the PCI_AVMM and DMA1-3 

configured in the DMA_EXTPREF utilizes 18% of ALMs and 

17% of memory on 5CGTFD9D5F27C7 FPGA. The DMA 

components (mSGDMAs, DAQ_C and bridges) use only 3% of 

ALMs and 8% of memory. More than a half of used ALMs are 

generated by the PD interconnections. Design containing only 

the stream DMA in the DMA_EXT, without the mSGDMA3, 

decreases ALM demand by 7%. Decreasing of resource usage 

can be one of further optimizations. 

V. SUMMARY AND CONCLUSION 

In conclusion, using the SoPC resources to design a functional 

PCI Express DMA has yielded assumed results. This paper 

presents a low-cost PCIe DMA interface for FPGA-based DAQ 

cards. This interface supports pre-trigger, continuous, and 

multichannel data acquisition with sample rate above 

1000 MB/s. The described DMA engine was successfully 

prototyped on Terasic OVSK board in two projects with the 

PCIE_AVMMDMA and PCIE_AVMM controllers. Further 

enhancements in hardware are planned to improve this DMA 

engine. WinDriver toolkit enables writing API library with a 

reduced effort for the kernel-mode programming. Due to high 

data rate, development of API library will require more analysis 

of software environment to obtain intendent features.   

REFERENCES 

[1] PCI Express Base Specification, rev. 3.0, PCI-SIG, Nov. 2010 

[2] A. Wójcik, R. Łukaszewski, R. Kowalik, W. Winiecki, “Nonintrusive 
Appliance Load Monitoring: An Overview, Laboratory Test Results and 

Research Directions”, Sensors, 2019, 19, 3621 

[3] A. Wójcik, P. Bilski, R. Łukaszewski, K. Dowalla, R. Kowalik, 
“Identification of the State of Electrical Appliances with the Use of a Pulse 

Signal Generator”, Energies, 2021, 14, 673. 

[4] K. N. Trung, E. Dekneuvel, B. Nicolle, O. Zammit, C. N. Van, G. 
Jacquemod, “Using FPGA for Real Time Power Monitoring in a NIALM 

System”, In Proc. 2013 IEEE International Symposium on Industrial 

Electronics (ISIE), 2013, pp. 1-6 

[5] Intel Corporation, Modular Scatter-Gather DMA Core, In Embedded 

Peripherals IP User Guide v. 18.1 

[6] Intel Corporation, Intel® Quartus® Prime Standard Edition User Guide v. 
18.1, Platform Designer 

[7] Intel Corporation, Cyclone® V Avalon® Memory Mapped (Avalon-MM) 

Interface for PCIe Solutions User Guide, UG-01110, 2020 
[8] Intel Corporation,V-Series Avalon-MM DMA Interface for PCIe 

Solutions User Guide, UG-01154, 2016 

[9] WinDriver, https://www.jungo.com/st/products/windriver/wd_windows/ 
[10] OpenVINO Stater Kit GT Edition User Manual, available on 

https://www.terasic.com.tw/ 

[11] L. Rota, M. Caselle, S. Chilingaryan, A. Kopmann, M. Weber, “A PCIe 
DMA Architecture for Multi-Gigabyte Per Second Data Transmission”, 

IEEE Transactions on Nuclear Science, vol. 62, no. 3, 2015, pp. 972 - 976 

[12] A. Byszuk, J. Kołodziejski, G. Kasprowicz, K. Późniak, W. M. Zabołotny 
“Implementation of PCI Express bus communication for FPGA-based data 

acquisition systems”, In Proceedings of SPIE Vol. 8454, 2015 

[13] L. Boyang, “Research and Implementation of XDMA High Speed Data 
Transmission IP Core Based on PCI Express and FPGA”, in 2019 IEEE 

1st International Conference on Civil Aviation Safety and Information 

Technology (ICCASIT), Oct. 2019, pp. 408–411 


