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Abstract—Real-time data processing systems utilize Digital
Signal Processing (DSP) functions as the base modules. Most
of the DSP functions involve the implementation of Fast Fourier
Transform (FFT) to convert the signals from one domain to an-
other domain. The major bottleneck of Decimation in frequency-
Fast Fourier Transform (DIF-FFT) implementation lies in using a
number of Multipliers. Distributed arithmetic (DA) is considered
as one of the efficient techniques to implement DIF-FFT. In this
approach, the multipliers are not used. The proposed technique
exploits the very advantage of the look-up table by storing the
Twiddle factors, thereby avoiding the multipliers required in
the butterfly structure. DIF-FFT using Distributed Arithmetic
(DIF-FFT DA) models, with different adders such as Ripple
carry adder (RCA), Carry-lookahead adder (CLA), and Sklansky
prefix graph adder, are proposed in this paper. The three
proposed models are synthesized using Cadence 6.1 EDA tools
with a 45nm CMOS technology. Compared to the traditional
method, it is observed that the area is improved by 53.11%,
53.35%, and 50.15%, power is improved by 42.31%, 42.52%,
and 40.39%, and delay is improved by 45.26%, 45.42%, 41.80%,
respectively.

Keywords—Fast Fourier Transform, Adders, Distributed Arith-
metic, DSP

I. INTRODUCTION

IN signal processing, there are many types of transforms,
such as Fourier transform, Laplace transforms, and Z-

Transforms to convert one form of the signal to another form
of the signal. Discrete Fourier Transform (DFT) is one of the
powerful mathematical tools for analyzing a discrete signal.
In 1964, Kim et al. [1] used a divide and conquered approach
to reduce DFT’s computational complexity using FFT. This
method is considered a breakthrough in the development of
high speed and low complex FFT algorithms, which is still
one of the majorly used algorithms in Speech Processing,
Communications, and Frequency estimation. There are two
types of FFT computations: Decimation in time (DIT) and
Decimation in frequency (DIF), each of which has many
variations such as radix-2, radix-4, split radix, etc., [2]. The
radix-4 is slightly more sophisticated than the radix-2 FFT.
The butterfly structure of the radix-4 algorithm consists of 4
inputs and 4 outputs, shown in Figure 1.

Radix-4 DIF-FFT requires many multipliers to multiply the
twiddle factor with an integer in the butterfly stages. Every
twiddle factor multiplication involves four multiplication and
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Fig. 1. Basic Radix-4 structure

two addition operations. Hence radix-4 DIF-FFT requires
24 multiplications and 96 additions. Here, the number of
multiplications needed is very high, making the FFT more
complicated. Many multipliers in literature can optimize the
DIF-FFT computations limiting them to some extent of partial
product reduction. Though these multipliers are fast, their
computational complexity is very high. Therefore, in this
paper, multiplications are avoided by adopting the Distributed
Arithmetic (DA) approach to implement a radix-4 DIF-FFT
[3]. DA is a mathematical technique used to calculate the
sum of products. DA-based architectures usually occupy a
low area, less power, and available at less affordable prices
than other architectures. Especially for FFT implementations,
DA can save arithmetic calculations in butterfly structure by
using look-up tables (LUTs). In the butterfly structure, twiddle
factors are fixed constants, and these values are multiplied with
input values that can be directly stored in the LUTs.

The radix-4 FFT is an efficient algorithm and a mathe-
matical tool. The advantage of radix-4 is to compute four
complex multiplications at a time for one input. For an N-
point DFT sequence, the twiddle factors are associated with
it. This algorithm can be implemented in many ways; being
radix-4 is one of the most popular [4]. The implementation
of radix-4 16-point FFT requires a number of multiplier and
adders. Multipliers play a critical role in FFT implementation.
Fig 2 shows the Radix-4 16-point butterfly structure in a
simple manner of splitting the first stage into stage-1 and stage-
2. Input is given in normal order and output is taken in bit-
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reversal order. It consists of sixteen inputs and outputs having
a real and imaginary part. For this implementation, using an 8,
10-bit array multiplier for complex multiplication for addition
using different adders such as RCA, CLA, Sklansky prefix
graph adder. For an N-point DFT sequence, the twiddle factors
associated with it are defined by the following equations.
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After evaluating the equation (3), once the summation has
been split, its four terms can be equated as in equation (4).
Since X(4p), X(4p + 1), X(4p + 2) and X(4p + 3) are N

4
point FFT’s this process will be repeated to obtain sixteen
N/16-point FFT’s.

II. DISTRIBUTED ARITHMETIC

As observed from literature, DA is considered as a suitable
technique for the design of bit-level architecture to implement
vector- vector multiplications [5], [6]. The whole process can
be divided into two parts: one is look-up and another is
computation. In DA, the computation is possible with one
assumption. Either the multiplier or multiplicand has to be
a fixed constant. The sum of the product representation of DA
can be considered as in the equation.

y =

K∑
k=1

TkXk (5)

The basic DA implementation shown in Figure 3, the input
is X one-bit-at-a-time into ROM LUT with address values are
pre-computed and stored in ROM [7]. The selector is a control
signal for the adder/subtractor circuit, after that, any of two
values are added via accumulator and shifter when output is
ready at Y.

The pre-computed values are stored in LUT using the DA
assumptions and the basic implementation of the distributed
arithmetic of ROM address and contents are shown in Table I.

The implementation of a finite impulse response filter on field-
programmable gate arrays (FPGAs) becomes complex when
multipliers are used in the design. FIR low-pass filters using
modified DA based on FPGAs are implemented in which the
MAC unit is replaced with DA [8].

y = [

4∑
K=1

T1.bKn

]
= T1b1n + T2b2n + T3b3n + T4b4n (6)

It increases the speed of architecture and reduces the
computational complexity by reducing the look-up table size.
Venkatachalam et al. [9] implemented an approximate sum
of products design using DA in which all the look-up table
contents are pre-computed. These values are retrieved from
LUT with a control signal, thereby reducing the complexity.
This paper aims to improve energy efficiency using the DA
algorithm for Radix-4 DIF-FFT, which can perform without a
multiplier. Using LUTs, the design can perform both signed
and unsigned number operations depending upon the control
signal.

III. DIF-FFT ARCHITECTURE IMPLEMENTATION

In this work, DIF-FFT Radix-4 architecture is implemented
using Distributed arithmetic algorithm and adders, which re-
duces the computational complexity. In this design, computa-
tional complex multipliers are replaced by LUTs, due to which
the delay is reduced. DA, along with different adders, are
used to implement multiplier-less DIF-FFT [10]. Therefore,
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Fig. 2. Radix-4 16-point DIF-FFT structure

Fig. 3. DA based implementation

three models are proposed using different adders such as RCA,
CLA, and Sklansky prefix graph adder. For in-depth analysis,
a comparison of traditional radix-4 DIF-FFT butterfly structure
using array multiplier and DIF-FFT using the DA technique
is made. The implemented design is also compared with the
different adders and summarized into three proposed models.

Proposed model 1 represents the implementation of Radix-4
16-point DIF-FFT DA using an RCA. RCA is a digital circuit
that performs the arithmetic sum of two binary numbers, and
it can be designed with full adders connected in cascade form.
In RCA, the output is generated after the carry is produced by
the previous stage. The final sum and carry bits will be valid
after some considerable delay. Figure 4 shows the Radix-4

16-point DIF- FFT implementation using RCA (8, 9, 16, and
32-bit) and DA technique. In brief, 16-point DIF-FFT having
sixteen frequency domain inputs, namely, x0, x1, x2, x3, and
x15, are transformed to their time components in bit reversal
order X0, X8, X4, X12, X2, and X15 via four stages.

The butterfly gets divided into halves by using the Cooley-
Tukey algorithm. LUT comes into the picture at this stage,
where each LUT stores the result obtained from the multiplica-
tion of twiddle factors with all possible combinations of input.
For each twiddle factor, two LUTs are required to store the real
and imaginary parts whose output can be treated as the LUT
address, which stores the pre-computed actual production. The
values stored in LUTs are extracted, which represents the
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Fig. 4. Radix-4 16-point DIF-FFT using Distributed Arithmetic

TABLE I
ROM-ADDRESSES AND IT’S CONTENT.

b1n b2n b3n b4n Content

0 0 0 0 0
0 0 0 1 T4 = 0.11
0 0 1 0 T3 = 0.95
0 0 1 1 T3 + T4 = 1.06
0 1 0 0 T2 = -0.30
0 1 0 1 T2 + T4 = -0.190
0 1 1 0 T2 + T4 = 0.65
0 1 1 1 T2 + T3 + T4 = 0.75
1 0 0 0 T1 = 0.72
1 0 0 1 T1 + T4 = 0.83
1 0 1 0 T1 + T3 = 1.67
1 0 1 1 T1 + T3 + T4 = 1.78
1 1 0 0 T1 + T2 = 0.42
1 1 0 1 T1 + T2 + T4 = 0.53
1 1 1 0 T1 + T2 + T3 = 1.37
1 1 1 1 T1 + T2 + T3 + T4 = 1.48

partial output of the second stage. Since a single look-up table
requires more memory, each twiddle factor is replaced with
two LUTs. Values extracted from these two LUTs are added,
representing the actual output, using 16 and 17-bit adders.

An increase in the input size of the second stage of DIF-
FFT requires the large size of memory to build a LUT,
which enforces the optimization. This dissimilar partitioned
LUT based DA technique is capable of reducing the required
memory size at the cost of computation. Since the size of LUT
is 28, it can be partitioned into two halves: one having size
28 to 25 (32 locations) and the other with size 24 to 20 (16
locations) shown in Figure 5 and Figure 6.

In this stage, the twiddle factor values are simply -j, so
LUT is not required. Finally, the output is converted using a
bit reversal technique. Using the entire computations, a signal
is converted from the frequency domain to the time domain.
The example of c5 value 80 is the partial output of the second
stage. Four LSB bits of c5 are multiplied with both real and
imaginary values of a twiddle factor representing an address of
LUT-1 of both the parts. Five MSB bits of c5 are multiplied

with both the parts, resulting in the address bit generation
of LUT-2 of each part, which is done by the control signal
as shown in Figure 4. The values at these addresses from
LUT-1 and LUT-2 are extracted and given as the input to the
adder, which results in the final output of the second stage. For
example, the binary value of c5 is 001010000. Four LSB bits
0000 are given as the input address to the LUT-1, and the five
MSB bits 00101 are given as the input address to the LUT-2.
The values at these addresses are extracted as explained above
and given as the input to the adder which performs the addition
on these values and produces the real value output shown in
Figure 5. Before the addition operation, the extracted values
are adjusted to ensure both the values follow the same notation.
The same procedure is followed for the imaginary part as well
as shown in Figure 6. The second stage output becomes the
input to the third stage, and further operations will be carried
out as explained in the above.

Proposed model 2 represents the implementation of Radix-4
16-point DIF-FFT DA using CLA. In this model, a CLA is
used for implementation, which solves the carry delay problem
by calculating the carry signals in advance, based on the input
signals. No need to wait for the carry to ripple from the
previous stages, thereby reducing the delay.

TABLE II
COMPARISON OF CONVENTIONAL RADIX-4 16-POINT DIF-FFT

STRUCTURE USING ARRAY MULTIPLIER AND DIFFERENT ADDERS

Radix-4 16-point DIF-
FFT Traditional structure
using Array multiplier

Area(nmˆ2) Power (µW) Delay(nS)

Radix-4 DIF-FFT using
RCA

15363.50 4015.92 1.848

Radix-4 DIF-FFT using
CLA

15100.72 3907.89 1.853

Radix-4 DIF-FFT using
Sklansky prefix graph
adder

17574.73 4566.03 1.883

Proposed model 3 represents the implementation of Radix-
4 16-point DIF-FFT DA using Sklansky prefix graph adder.
Proposed implementation using Sklansky prefix graph adder
achieves the minimum logic depth at the cost of large fan-out.
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Fig. 5. Stage-2 partial output (Real)

TABLE III
COMPARISON OF PROPOSED RADIX-4 16-POINT DIF-FFT WITH DA AND

ADDERS

Proposed
Radix-4
16-point
DIF-FFT
using DA

Area(nmˆ2) Power(µW) Delay(nS) PDP(µJ) %improve
PDP

Radix-4
DIF-FFT
DA using
RCA

7203.47 2317.03 1.012 2344.83 68.30

Radix-4
DIF-FFT
DA using
CLA

7043.30 2245.87 1.011 2270.58 68.44

Radix-4
DIF-FFT
DA using
Sklansky
prefix
graph
adder

8759.49 2721.55 1.003 2982.82 65.30

This adder reduces the critical path with maximum fan-out
[11], [12].

IV. RESULTS AND DISCUSSION

The Radix-4 DIF-FFT traditional structure and the pro-
posed radix-4 DIF-FFT DA architecture design are modeled
in Verilog HDL and synthesized using Cadence 6.1 EDA
tools with 45nm CMOS technology, where the technology

library gsclib045-translated.lef is used. The multiplier unit
is used for a traditional structure for different formats such
as signed, unsigned, and combined signed/unsigned partial
product array has been implemented. These partial product
arrays are reduced by using a CSA tree structure or other
structures. In the DA algorithm, adders play a crucial role.
The LUT optimization also comes with the usage of an adder.
Table II lists the conventional structure comparison using
array multiplier and different adders such as RCA, CLA, and
Sklansky prefix graph adder. The proposed results having very
much reduction comparing to the existing implementations
[13]–[15].

Table III shows the results of the proposed radix-4 16-
point DIF-FFT DA using different adders. While replacing
multipliers, the computation is only adders. Existing adders are
using to improve the PDP of the proposed architecture. The
percentage of improvement in PDP compared to a conventional
structure is also listed.

Figure 7 and Figure III shows the graphical representation
of delay and power of three proposed models DIF-FFT with
DA using different adders. The implemented layout diagram of
the proposed radix-4 16point DIF-FFT using DA is presented
in Figure 9.

Proposed models are very efficient are in terms of area DIF-
FFT DA with CLA required less area, in terms of power DIF-
FFTDA with RCA, and in terms of delay DIF-FFT DA with
Sklansky prefix graph adder.
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Fig. 6. Stage-2 partial output (Imaginary)

Fig. 7. Delay of the proposed DIF-FFT DA using different adders

Fig. 8. Power consumption of the proposed DIF-FFT DA using different
adders

V. CONCLUSION

Fast Fourier Transform (FFT) is the de facto standard to
implement a Discrete Fourier Transform of a sequence. In
general, FFT requires a more significant number of multipliers

Fig. 9. Layout chip diagram for proposed radix-4 16-point DIF-FFT DA

to implement the design, which increases the delay and power
consumption. This work proposes a high-performance DIF-
FFT Architecture Design using Distributed Arithmetic with
different adders. The computationally complex multiplier unit
is replaced with a Distributed arithmetic approach in which all
the pre-computed values (twiddle factors) are stored in LUTs.
The obtained results of Conventional radix-4 16-point DIF-
FFT with array multiplier using adders and proposed radix-4
16-point DIF-FFT with DA using adders are compared. It can
be observed that the proposed method requires less hardware
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to implement DIF-FFT with DA, which results in increased
availability and energy savings.

VI. FUTURE WORK

The FFT structure and will be further analyzed to see which
technique will give the best overall performance in terms of
cost, power, area size, speed, and time. This proposed DIF-
FFT DA method will decrease the cost for implementing
this structure compared to the traditional computing approach.
Given that there is a great demand for new and improved
technology for DIP and DSP applications, in calculating the
SOP, DA is the most efficient and speed for SOP the method
discussed in this paper will be used in implementing the new
radix-4 FFT structures employing DA at different N point.
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