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Abstract—In this paper, the performance of Low-Density 

Parity-Check (LDPC) codes is improved, which leads to reduce 

the complexity of hard-decision Bit-Flipping (BF) decoding by 

utilizing the Artificial Spider Algorithm (ASA). The ASA is used 

to solve the optimization problem of decoding thresholds. Two 

decoding thresholds are used to flip multiple bits in each round of 

iteration to reduce the probability of errors and accelerate 

decoding convergence speed while improving decoding 

performance. These errors occur every time the bits are flipped. 

Then, the BF algorithm with a low-complexity optimizer only 

requires real number operations before iteration and logical 

operations in each iteration. The ASA is better than the optimized 

decoding scheme that uses the Particle Swarm Optimization 

(PSO) algorithm. The proposed scheme can improve the 

performance of wireless network applications with good 

proficiency and results. Simulation results show that the ASA-

based algorithm for solving highly nonlinear unconstrained 

problems exhibits fast decoding convergence speed and excellent 

decoding performance. Thus, it is suitable for applications in 

broadband wireless networks. 

Keywords—a low-density parity-check (LDPC); hard-decision 

Bit-Flipping (BF); particle swarm optimization (PSO); artificial 

spider algorithm (ASA)  

I. INTRODUCTION 

HE low-density parity-check (LDPC) code is a good 

method for approaching the Shannon limit [1]; it has been 

widely used in many fields, such as deep-space 

communications, optical communications, and disk storage [2], 

[3]. The performance of LDPC codes approaches the Shannon 

limit through iterative belief propagation decoding. In recent 

years, LDPC codes have become a popular topic in the field of 

coding due to their excellent performance [4]. Although the 

decoding performance of belief propagation algorithms is 

commendable, their implementation complexity is relatively 

high. Gallager [5] first introduced the concept of bit-flipping 

(BF) decoding. This process involves repeatedly passing 

binary messages between two sets of nodes, namely variable 

nodes (VN) and check nodes (CN) [6]; it uses reliable channel 

information as input values. CN adopts exclusive OR 
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operation.  The BF has a very low complexity decoder but 

low-resolution and its error correction capability is poor. 

Although its performance is slightly poor, the BF algorithm 

only involves logical operations; thus, it is simple, fast, and 

easy to implement. To improve the performance of the BF 

algorithm, a weighted BF (WBF) algorithm [8] and various 

improved algorithms [9] have been developed. However, 

decoding complexity is considerably increased. In real-time 

communication systems, reducing decoding complexity is 

frequently necessary and decoding speed must be increased as 

much as possible while ensuring decoding performance [10]. 

ASA is an optimization approach proposed by Behrouz et al. 

[11]; it is inspired by the natural hunting behavior of spiders. 

The application of ASA to BF exhibits good capacity, 

efficiency, and durability. 

Compared with other known evolutionary methods, such as 

the honey bee algorithm, particle swarm optimization (PSO) 

algorithm, and artificial bee colony algorithm, ASA exhibits 

better performance and effectiveness. Its response is more 

accurate, and it can be used to find the global optimal value 

and reduce the costs of various measurements and tests [11]. 

Considering the time-varying nature of wireless 

communication channels, error correction codes should be 

compatible with rates. ASA exhibits extremely low complexity 

and excellent decoding performance; thus, it is highly suitable 

for designing high-throughput hardware decoders in wireless 

networks. 

II. BF AND WBF ALGORITHMS 

Cellular communication systems, including broadband 

wireless networks, require reliable and high-speed 

transmission for gigabit ethernet, data storage, and long-haul 

optical channels. Three critical issues must be addressed to 

design high-performance and high-speed LDPC codes for 

these systems. A binary regular LDPC code with a code length 

of N and an information length of K must be considered [12]. 

Its check matrix H is a sparse matrix, i.e., H = [hmn] of M and 

N, and each column of H has a value of γ = 1 and ρ = 1. The 

set of bits participating in the m-th check equation (i.e., the set 

of 1 in the m-th row of H) is denoted as (m) = (n:hmn = 1), and 

the set of bits participating in the n-th check equation (i.e., the 

set of rows with 1 in the n-th column of H) is denoted as M(n) 

= {m:hmn = 1}.  
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 Assume that the binary code word is c = [c0, c1, ..., cN-1]. 

After binary phase-shift keying modulation, the sequence x = 

[x0, x1, …, xN−1] is obtained, where xn = 1−2cn. x enters the 

mean value of zero, and the variance is σ2 = N0/2. An additive 

white Gaussian noise (AWGN) channel is obtained after the 

channel output sequence r = [r0, r1, n..., rN−1], where rn = xn + 

vn, and vn is AWGN. In accordance with the received sequence 

r, the binary hard decision sequence z = [z0, z1, …, zN−1]. If rn > 

0, then zn = 0; if rn = 0, then zn = 1.  

As shown in Figure 1, in each iteration of the BF algorithm, 

the value of the syndrome is first calculated according to the 

hard decision sequence of the previous round. If all syndromes 

are 0, the iteration is stopped and the decoding is successful, 

otherwise the correction involved in each bit is calculated. The 

number fn of the check equation with sub-1, flip the bit zn 

whose fn is greater than a certain preset threshold T and then 

enter the next round of iterations until the decoding is 

successful or the maximum number of iterations is reached. 

The size of the threshold T can be set appropriately to achieve 

the best decoding performance.  

 

Fig. 1.  Flowchart for BF. 

 

 The syndrome s = [s0, s1, …, sM−1] is calculated through the 

hard decision z as follows: 

𝑠𝑚 = ∑ 𝑧𝑛 ℎ𝑚𝑛 𝑚𝑜𝑑 2,𝑚 = 0, 1, … ,𝑀 − 1 𝑁−1
𝑛=0 .               (1)                                  

If s = 0, then stop the iteration and display the decoding 

success; otherwise, proceed to Step (2).  

1) For each bit zn in the hard decision sequence, 

the syndrome that it participates in is 1. The number 

of check equations fn is as follows: 

𝑓𝑛 = ∑ 𝑠𝑚  ℎ𝑚𝑛 , 𝑛 = 0, 1, … , 𝑁 − 1 𝑀−1
𝑚=0 .                           (2)                                       

If fn > T, then flip zn and make a new hard decision z.  

2) Steps (1) and (2) are repeated until the decoding is 

successful or the maximum number of iterations is reached and 

the decoding failure is displayed. The BF algorithm is a simple 

hard decision algorithm. It only requires logical operations, 

and its implementation is extremely simple. However, its 

performance is slightly poor. The channel output is introduced 

into the BF algorithm. The soft information of symbol 

credibility can be effective in improving the performance of 

the BF algorithm, but it increases complexity.  

The WBF algorithm is an improved BF algorithm based on 

soft information. In each round of iteration, the flip of each 

symbol bit is calculated in accordance with the credibility of 

the check equation, i.e., function En, and the largest bit of En is 

flipped.  

The steps of the WBF algorithm are as follows. 

1) The reliability Lm of the m-th check equation is 

calculated. 

𝐿𝑚 =  { |𝑟𝑛| } , 𝑚 = 0 ,1, … ,𝑀 − 1𝑛∈𝑁(𝑚)
𝑚𝑖𝑛                            (3) 

The syndrome s from Equation (1) is calculated. If s = 0, then 

the iteration is stopped and the decoding success is displayed; 

otherwise, proceed to Step (3). 

  3) For each hard decision bit zn, its flip function En is 

calculated in accordance with the credibility of the check 

equation in which the bit participates. 

𝐸𝑛 = ∑ (2𝑠𝑚 − 1) 𝐿𝑚 𝑚∈𝑀(𝑛) , 𝑛 = 0 ,1 , … , 𝑁 − 1             (4) 

The largest bit zn of En is flipped to obtain a new hard 

decision sequence z.  

4) Steps (2) and (3) are repeated until the decoding is 

successful, or the maximum number of iterations is reached 

and the decoding failure is displayed.  

From Equation (3), the WBF algorithm M(ρ−1) requires real 

number operations to calculate the credibility of the check 

equation. Moreover, I (N−1 + ργ) times real numbers are 

required to calculate the flip function and perform bit flip 

operation, where I is the number of iterations, in the WBF 

algorithm. That is, the WBF algorithm has achieved 

performance improvements compared with the BF algorithm at 

the expense of complexity. 

III. OPTIMIZATION ALGORITHMS 

A) ASA 

ASA is a new method proposed by Behrouz et al. [11]. It 

simulates the behavior of hunting spiders, and its function is to 

limit the primary network to the allowable search range. All 

the nodes of the spiders web is calculated as the target function 

value. The best knot is equivalent to a captured insect around 

the node and an artificial spider can notice one, two, or as 

many captured insects as possible based on the choices. Then, 

an artificial spider weaves a small web around the center of its 

target to find the exact location of insects (i.e., prey. The small 

mesh nodes are calculated and the better node represents the 

most accurate location of an insect. 

 The next step is to weave artificial spiders at small intervals 

of time throughout the research area, allowing new insects 

(i.e., nodes with better target functional values) to enter the 

spider web. In addition to the insects caught in the previous 

stage, a spider also sends a small net to catch new insects and 

determine which is the best hunting option. As long as a spider 

weaves its web around its chosen victim, the optimum point is 

always reached. This pressure continues, and the spider web is 

transmitted. Spiders will not continue weaving in certain parts 
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of the entire primary web where no insects are caught after 

many iterations which are saving energy and accelerating the 

search for ideal insects. 

 In addition, the captured insects are secured as fast as 

possible in the subsequent repetition. If the position of the 

insects is not changed, then the small net will become smaller 

to cover the space between the nodes more accurately, finally 

catching the chosen insects. 

 The steps of the proposed ASA are described as follows. 

(1) The population points of each iteration that are regarded 

as primary are stored in a matrix called C. 

(2) The composition of the sample population is between 

zero and one in accordance with the number of departments. 

(3) The search range, number of elites, and initial area radius 

are determined and defined. 

 (4) The elites in the previous iteration are stored in a matrix 

called D. 

(5) New populations are formed in the domain in matrices C 

and D. 

(6) The objective function value is calculated and sorted. 

(7) A search is conducted locally for the elites in this 

iteration and for the global elites. 

(8) The elites in this iteration and the global elites are stored. 

(9) If the elite in this iteration is better than the global elite, 

then it is replaced. 

(10) The radius of neighbors will shrink if the global elite 

does not change.  

(11) If the neighboring radius reaches the minimum value, 

then it will remain constant. 

(12) In accordance with the coordinates of the elite, the range 

is reduced after a considerable number of iterations. 

(13)  When the stop criterion is satisfied, return to Step (4). 

The flowchart of ASA is depicted in Figure 2. 

 

 
Fig. 2. Flowchart of ASA. 

B) PSO 

The PSO algorithm was proposed by American electrical 

engineer Russel Eberhart and social psychologist James 

Kennedy [13] in 1995; it is based on the behavior of a foraging 

flock of birds. Each bird does not know where food is located. 

Over time, however, the birds, which are initially in random 

positions, learn from other members of the group and share 

information. Individuals continue to accumulate experience in 

finding food and spontaneously organize a community. 

Gradually, individuals move toward only one goal: food. Each 

bird can use certain experiences and information to estimate 

how valuable its current position is for finding food. Each bird 

can remember the best position it has found, which is called 

the local maximum. 

In addition, each bird can remember the best position that all 

individuals in the flock have found is called the global 

optimum. In entire flock the foraging center of the birds moves 

toward the global optimum. Through the constant movement 

of the bird flock’s foraging position. 

The process of PSO is summarized as follows [14].   

Step 1: The particle swarm is randomly initialized within the 

scope of initialization, including random position and velocity. 

Step 2: The fitness value of each particle is calculated. 

Step 3: The historical optimal position of an individual 

particle is updated. 

Step 4: The historical optimal position of the particle swarm 

is updated. 

Step 5: The velocity and position of the particles are updated. 

Step 6: If the termination conditions are not met, then 

proceed to Step 2. 

The flowchart of the PSO algorithm is presented in Figure 3. 

 
Fig. 3. Flowchart of the standard PSO algorithm. 
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In the flock of birds foraging model, the each individual can 

be as a particle regarded and the flock of birds can be as a 

group of particles regarded. An individual particle is composed 

of three vectors. Suppose that in a D-dimensional target search 

space with x⃑ i= (xi1, xi2, ..., xiD). Then the best position that it 

has individually found as p⃑ i = (pi1, pi2, ..., piD) and its velocity 

as v⃑ i = (vi1, vi2, ..., viD).  

Particles are originally initialized in a manner uniform 

random throughout the search space and the velocity are 

randomly initialized. The particles are move throughout the 

search space in according with a fairly simple set of update 

equations.  The algorithm updates the entire swarm at each 

time step by updating the position of each particle in every 

dimension and the velocity by using the following equations 

[15]: 

 vid = vid + c ϵ1 (pid − xid) + cϵ2 (pgd − xid),                               (5)                           

  xid = xid + vid,                                                                         (6)                                    

Where c = 2.0 is a constant value, and ϵ1 and ϵ2 are 

independent random numbers. For each individual dimension, 

d = 1 to D is uniquely generated at every update and in the best 

position found by any neighbor of the particle.  

      The maximum value of particle velocity (Vmax) is a 

parameter that prevents the system from entering an explosive 

state by limiting the velocity of all the particles. Thus, particle 

position increases rapidly and approaches infinity. 

      The PSO algorithm is summarized as follows. 

for each time step t, do, 

for each particle i in the swarm, do, 

update position x⃑ t by using Equations (1) and (2), 

calculate particle fitness f(x⃑ t), 
update p⃑ i, p⃑ g, 

end for, 

end fo,r 

 

IV. PROPOSED OPTIMAL BF ALGORITHM 
 

For the AWGN channel, consider the real number sequence r 

= [r0, r1, ..., rN−1] of the channel output. For each output symbol 

rn, its absolute value | rn | can be used as the reliability measure 

of the hard decision zn because the absolute value of the log-

likelihood ratio associated with this hard decision | ln( ρ( rn | cn 

= 1)/ρ (rn |cn = 0)) | is proportional to | rn |.| rn | the greater the 

value of zn, the higher the reliability of the hard decision, the 

smaller the possibility of error, the smaller the value of | rn |, 

the lower the reliability of the hard decision of zn, and the 

greater the possibility of error. Therefore, an improved BF 

algorithm based on two thresholds is proposed in accordance 

with a preset real number. The bits in the hard decision 

sequence are divided into two groups. The first group is the bit 

with the channel output amplitude, i.e., the bit group with the 

higher error probability. The first group is the bit whose 

channel output amplitude with greater error probability. The 

second group is composed of bits whose channel output 

amplitude with less error probability. In the iterative process, 

the improved BF algorithm uses two decoding thresholds T1 

and T2 to determine hard decisions whether to flip the features 

in the sequence. In order to better correct the bits with greater 

error probability in the first group, a smaller threshold T1 is 

used to determine whether to flip, and at the same time, to 

avoid falsely flipping the more reliable bits in the first group, 

use a larger threshold T2 to determine whether to bits flip.  

The steps of the improved BF algorithm are as follows. 

1) The bits in the hard decision sequence are divided into 

two groups in accordance with the amplitude of the 

channel output sequence.  

2) The syndrome s from Equation (1) is calculated. If s = 0, 

then stop the iteration and display the decoding success; 

otherwise, proceed to Step (3).  

3) For each bit zn in the hard decision sequence, the number 

fn of the check equation with syndrome 1 is calculated using 

Equation (2). If fn is greater than the threshold that corresponds 

to the bit, then zn is flipped.  

4) Steps (2) and (3) are repeated until the decoding is 

successful or the maximum number of iterations is reached and 

the decoding fails.  

In summary, the improved BF algorithm only requires N real 

number comparison operations before iteration, and the 

iteration process is complicated. The degree is the same as that 

in the standard BF algorithm, and it only involves logical 

operations. Multiple bits can be flipped in each iteration, and 

thus, the improved BF algorithm has faster convergence speed. 

Moreover, the use of two decoding thresholds can reduce 

errors when flipping bits in each iteration, therefore, the 

improved BF algorithm exhibits excellent decoding 

performance. The quantity of real number operations is 

extremely small; hence, the improved algorithm’s decoding 

delay is very short and its decoding speed is very fast. 

 

V. SIMULATION RESULTS 
 

The improved BF algorithm for LDPC codes is based on 

error checking. The algorithm uses a method that involves 

setting decision thresholds when decoding. This method 

reduces the number of iterations in the decoding process along 

with decoding complexity. The simulation results show that 

LDPC codes for ASA have fewer iterations and exhibit better 

performance than other BF algorithms.      

Figures 4 and 5 present the LDPC codes (255, 175) with a 

column weight of 16. When the signal-to-noise ratio (SNR) is 

4 dB and the number of iterations I = 500, the different values 

of T1 that correspond to the decoding performance of T2 are 

set as 12 and 16, respectively. Through the simulation results 

presented in Figure 4 and the comparison between the PSO 

and ASA results, T1 = 8.3 and 8.15, respectively. When T1 is 

determined, the best threshold for the second group can also be 

determined and described by simulating the effect of the T2 

value on the decoding performance illustrated in Figure 5. 

Therefore, T2 = 12.3 and T2 = 11.9, respectively.   

The maximum iteration numbers of PSO and ASA are 

approaching 360 and 290 for the best T1 and T2 values for 

each iteration, respectively. The final threshold approaches 

close to the base after these iteration numbers. ASA is 

effective at finding the minimum threshold of the base matrix 

of LDPC codes during the given maximum number of 

iterations. Consequently, the best thresholds can be 

determined. 
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Fig. 4. Decoding thresholds T1 of LDPC codes under 

varying numbers of iterations 

 
 

Fig. 5. Decoding thresholds T2 of LDPC codes under 

varying numbers of iterations 
 

The modified LDPC scheme can change the information for 

threshold decoding and is expected to provide better 

performance in the presence of the bit error rate (BER) along 

with the iteration numbers shown in Figure 6. 

 
 

Fig. 6 BER of LDPC codes under varying numbers of 

iterations. 
 

The error correction performance of LDPC codes (255, 175) 

under various BF algorithms is presented in Figure 7. 

 
Fig. 7. Error performance of LDPC codes (255, 175) under 

BF algorithm, WBF algorithm, PSO, and ASA 

 

When the BER is approximately 10−4, the PSO algorithm 

exhibits more improvement than the BF and WBF algorithms. 

Meanwhile, the improved ASA can obtain a coding gain of 

nearly 0.1 dB compared with PSO, i.e., an evident difference 

for all SNRs. Algorithm performance is slightly better, and the 

performance improvement of the decoding algorithm exhibits 

higher practical application values. From the previous analysis, 

decoding complexity is extremely low for ASA and its 

decoding delay is very short. The decoding convergence 

iteration times for PSO and ASA of the code are set as 360 and 

290 for BERs of 1.122×10−4 and 8.766×10−5, respectively. 

ASA is highly suitable for communication systems with high 

real-time requirements, as shown in Table I. 

 
TABLE I 

 NUMBER OF ITERATIONS REQUIRED FOR T1 AND T2 

 Number of 

iterations 

(T1, T2) BER  

PSO 360 (8.3, 12.3) 1.122 × 10−4 

 

ASA 290 (8.15, 11.9) 8.766×10−5 

 

 

VI. CONCLUSION 

 With the growth in diversity and the high-speed 

transmission rate of communication services in modern 

society, channel error correction coding and decoding 

technologies are playing an increasingly important role in 

digital communication. However, the generation of error code 

platforms limits the superior performance of LDPC code 

applications. Code algorithms play a crucial role in the error 

platform. The improvement of decoding algorithms is an 

important research direction toward reducing the error 

platform. The optimization of decoding algorithms plays an 

essential role in reducing the error platform to a certain extent 

and exploring better decoding algorithms.  

Accurate evaluations are crucial for the search for thresholds 

of LDPC codes that are found or lie close to the Shannon 

limit. Such search will be considerably easier by using 
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optimization methods to accurately calculate the expected 

value of a message transmitted from a check node. 

The search for thresholds is typically implemented by using 

intelligent algorithms due to the high dimensions of the 

solution. These algorithms generally require a pool of 

solutions, and a fitness function is applied to evaluate the 

goodness of the solutions. The best group is selected and 

generated. 

In the current study, an optimization method (i.e., ASA) is 

applied to find the optimum degree via the developed 

capability improvement for the BF of LDPC codes. Compared 

with PSO, ASA is extremely close to the complex decoding 

algorithms for solving problems with high dimensions. To 

solve a continuous optimization problem and achieve highly 

rapid and accurate results, ASA exhibits good capability, 

robustness, and proficiency. Through the introduction of 

ASA, we achieve better trade-off between performance and 

complexity. We determine that ASA demonstrates 

considerably better performance than the WBF and the 

normalized PSO algorithms. 
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