
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2022, VOL. 68, NO. 1, PP. 153–160
Manuscript received September 20, 2021; revised January, 2022. DOI: 10.24425/ijet.2022.139863

Fading Channel Prediction for 5G and 6G Mobile
Communication Systems

Maciej Soszka

Abstract—Nowadays, there is a trend to employ adaptive so-
lutions in mobile communication. The adaptive transmission sys-
tems seem to answer the need for highly reliable communication
that serves high data rates. For efficient adaptive transmission,
the future Channel State Information (CSI) has to be known. The
various prediction methods can be applied to estimate the future
CSI. However, each method has its bottlenecks. The task is even
more challenging while considering the future 5G/6G communi-
cation where the employment of sub-6 GHz and millimetre waves
(mmWaves) in narrow-band, wide-band and ultra-wide-band
transmission is considered. Thus, author describes the differences
between sub-6 GHz/mmWave and narrow-band/wide-band/ultra-
wide-band channel prediction, provide a comprehensive overview
of available prediction methods, discuss its performance and
analyse the opportunity to use them in sub-6 GHz and mmWave
systems. We select Long Short-Term Memory Recurrent Neural
Network (RNN) as the most promising technique for future CSI
prediction and propose optimising two of its parameters - the
number of input features, which was not yet considered as an
opportunity to improve the performance of CSI prediction, and
the number of hidden layers.

Keywords—5G, 6G, channel prediction, channel state infor-
mation, sub-6 GHz, millimetre waves, neural network, artificial
inteligence, narrow-band, wide-band, ultra-wide-band

I. INTRODUCTION & MOTIVATION

THE Adaptive System (AS) development is one of the
leading researchers’ interests in recent years [1] and it is

also reasonable to employ it in mobile communication, e.g.,
for adaptive wireless transmission. However, the application
of AS in the fast fading channels is challenging because
the Channel State Information (CSI) is outdated in most of
the communication systems [2], [3]. While considering the
Ultra-Reliable Low-Latency Communication (URLLC) or the
fragile communication in milimetre waves (mmWaves), the
knowledge about CSI before sending the information seems to
be very meaningful and can protect from losing information.
Thus, the author analyses the opportunity to predict channels
in sub-6 GHz and mmWave bands considered in 5G and 6G
mobile communication networks. The analyses are expected
to be applicable for adaptive control of mutliconnectivity that
simultaneously employs sub-6 GHz and mmWaves, e.g., in
remote surgery or robot control. In these applications, the sub-
6 GHz is considered for robustness and mmWave for high data
throughput.
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The fading channel prediction deep analysis was provided in
2007 [3]. The author presents the State-of-The-Art of currently
available techniques for fading prediction and provides some
simulation results. However, the analyses are considered for
Rayleigh and Rician fading, and they are usually not directly
applicable to mmWave communication. Furthermore, the pa-
per does not cover the Artificial Intelligence based prediction
methods which are available now. Another paper, [4], provides
an overview of the applicability of Recurrent Neural Network
(RNN) for CSI prediction. However, the paper highlights
the applicability of RNN for fading prediction rather than
provide a survey of available methods (e.g., Convolutional
Neural Network - CNN - approaches are not presented). In
[5], authors present some predictors of fading channel in 5G.
In contrast to [5], we consider two types of channels: sub-
6GHz and mmWave. Furthermore, we answer one of the
authors’ conclusions and provide the results of employing
prediction on the measurement data. In this paper, we present
the comprehensive overview of sub-6 GHz and mmWave
prediction with some results of applying the methods to the
measurement data. To the best of the author’s knowledge,
there is no up-to-date overview that provides all available
methods and discusses various frequency bands, sub-6 GHz
and mmWave, which are considered in 5G and 6G systems.

The paper is organised as follows. In Section II., the fast
fading channel is described. Section III. provides the prediction
methods. In Section IV., the available solutions are discussed.
Section V. presents our results. Section VI concludes the
paper.

II. FAST FADING CHANNEL

The fading is caused by multipath propagation [3]. While
sending the unmodulated carrier at the frequency fc via fading
channel, the received noiseless complex signal is as follows:

c(t) =

K∑
k=1

Ane
j(2πfkt+ϕk) (1)

where K, Ak, fk and ϕk are the number of reflectors (scat-
terers), the amplitude, the Doppler frequency shift and phase
(ϕk = k0d : k0 = 2π

λ - the wavenumber, d - the distance
between transmitter and receiver [6]), respectively. It is worth
to notice that the variables Ak, fk and ϕk fluctuate slowly
in comparison to variation of c(t) [7]. The fading statistics
depends on the frequency band and the received signal is
different for various bandwidths.
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The mmWaves communication is considered between 6
GHz and 100 GHz. The channel differs from channels in
sub 6 GHz wireless communication [8]. The mmWaves are
more affected by blockage, clustering and ground reflection
than sub-6 GHz bands [9]. The propagation phenomena are
strengthened with frequency growth. The scattering is larger
in mmWave frequencies than in sub-6 GHz because scattering
appears on objects with a size similar to wavelength (act as
a point source). The diffraction is impaired in mmWaves,
and thus, the shadowing effect enhances. The objects that are
much larger than mmWave length cause reflections. Hence, the
objects that cause scattering in sub-6 GHz provide reflections
of mmWaves. The mmWaves entails different fading statistics
parameters and, usually, different statistical models.

The future 5G and 6G communication are expected to
employ various bandwidths depending on the scenario. Thus,
it is necessary to consider narrow-band (NB), wide-band
(WB) and ultra-wide-band (UWB) communication in analyses.
The description of fading varies between the systems. In the
NB system, only one bin is considered and all Multipath
Components (MPCs) are there [10]. In the WB system, several
bins are considered and we can describe the statistic in each
bin. In UWB systems not all bins are filled with MPCs and
signal distortion shall be considered (further reading: [10]).

III. PREDICTION

The goal of the prediction is to predict c(t) from (1) in the
n-th period [3]. The prediction range is expected from one
millisecond to a few milliseconds and is much larger than
channel estimation (the long-range prediction). The predic-
tion Mean Square Error (MSE) usually rates the prediction.
Nonetheless, the prediction MSE does not reflect system
performance in all adaptive systems, e.g., in the transmission
antenna selection [11], and another rating shall be considered,
e.g., bit error rate. The currently available prediction methods
can be distinguished into five categories Classical-estimation-
based methods, AR-model-based methods, SOS model-based,
Basic Expansion Techniques and AI-based methods.

1) Classical-estimation-based Methods: The prediction of
the stochastic process can be considered as one of the esti-
mation problem [12, p. 12.7]. The estimator can be directly
applied and the estimation of future sample can be found.
One of the application is shown in [13], where Minimum
MSE estimator is used. The main drawback of the classical-
estimation-based methods is that the autocorrelation has to be
known. For more information, please see [12, p. 12.7] and
[13].

2) AR-Model-Based/ARMA-Model-Based Methods: In the
AR-Model-Based Methods, the autoregressive model of or-
der P is employed [12] and the prediction is provided by
ĉ[n] =

∑P
k=1 dk[n]c[n−k] [3], where c[n−1], . . . , c[n−P ] are

the previous channel gains, and d1[n], . . . , dP [n] are the slowly
time-variant coefficients. The coefficients can be calculated
by employing the MMSE criterion [14]. Please notice that
if the channel gains are jointly Gaussian (e.g., Rayleigh
fading process), the predictor is the Linear MMSE (LMMSE)
predictor, and it is the optimal MMSE [12], [15] . In the

AR methods, knowledge about the channel gain correlation
function is necessary and is employed to calculate the coef-
ficients [3]. In general, the function is not known [16] and
has to be found by using the noisy channel observations. The
AR model parameters can be estimated by one of the block
data algorithms or the sequential data algorithms which are
also used in spectral analyses [16]. The block data algorithms
take a fixed block of time samples, and they are convenient
for the scenarios where we do not know which AR model
order is best, and there is an opportunity to examine various
orders. The most popular block data algorithms are : Yule-
Walker Method, which is the correlation function estimation
method, [17, sec.I.], [18, ch.3.4.1], [16, ch.8.3]; Burg Method,
which is the reflection coefficient estimation method, [19,
p.47-58], [20, Alg. 1]; Modified Covariance Method (MCM),
which employs the combined minimization of the forward and
backward linear prediction squared errors, [16, ch.8.5.2]; two
methods, which use the separate minimization of the forward
and backward linear prediction squared errors: Covariance
Method (nonwindowed - only available data samples are used)
[16, ch.8.5.1] and Autocorrelation Method (windowed - uses
available and future data - unavailable data is set to zero) [16,
ch.8.5.1]. The sequential data algorithms operate on the data
sequentially and are advantageous in scenarios that include
continuous tracking or adaptation of a slowly varying process.
The three most common sequential data algorithms types are
as follows: Least-Mean-Square (LMS) Methods, which is one
of the gradient adaptive AR methods [16, ch 9.3]; Recursive
Least Squares (RLS) Methods, e.g., Classical RLS method,
Fast RLS methods, which uses RLS to estimate prediction
parameters [16, p. 9.4]; Fast Lattice AR Methods, which
employs lattice filter and reflection coefficients [16, ch 9.5].
The scenario shall drive the algorithm choice.

The AutoRegressive Moving Average (ARMA) model,
which is the widely known model that describes time series
(e.g. used in economy [21]) , is also the powerful tool for
channel prediction [22], [23]. It is also possible to assume
the channel impulse response as a sum of damped oscillators,
and merge the AR part and Moving Average (AM) part to end
with an ARMA innovation model (details in [24, ch 2.5]). The
study of linear channel prediction by AR and ARMA models
is provided in [24] which was published in 2002, and many
hints for future prediction applications can be found.

3) SOS Model-Based or Parametric Radio Channel Model
Prediction: The parametric radio channel (RC) model employs
a physical propagation process approximation and is described
by the transfer function T (t, fc) = T (t) =

∑d
i=1 γie

j2πvit

[25], where γi, vi and d are the complex path weight, the
Doppler Shift and the number of the most dominant multipath
components, respectively. The most widely known spectral es-
timation methods are MUltiple SIgnal Classification (MUSIC)
and Estimation of Signal Parameters via Rotational Invariance
Technique (ESPRIT) [3]. In the MUSIC, an autocorrelation
matrix and the eigenvalues are used [26]. There is also
the modified version of algorithm, Root-MUSIC. For more
information, please refer to [26, ch. 8.6.3] or [18, ch 4.5].
The application of the MUSIC and Root MUSIC methods
for channel prediction are shown in [25], [27]–[31]. ESPRIT
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is based on the rotational transformation [18, ch.4.7]. The
ESPRIT has similar accuracy to the MUSIC [18]. There are
some modifications of ESPRIT as, e.g., Unitary-ESPRIT [32]
or reduced complexity ESPRIT [28]. Another approach is to
employ compressing sensing technique, as e.g., Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) [33]. The FISTA
algorithm spread the arrival signal into multipath components
in the delay domain.

4) Basic Expansion Techniques: Basis Expansion Model is
a deterministic model useful in scenarios with significant mul-
tipath signals [34]. The bases or base waveforms together with
constant parameters (time-invariant) can describe the channel.
Some papers [35]–[37] employ the band-limited stochastic
process [3]. Another paper [38] uses the modal expansion
method where the wave propagation physical equation is
considered.

5) AI-based methods: The AI methods are applicable to
wireless communication [39] and can be used to predict the
wireless channel quality.

Neural Network Based Methods: The channel prediction
problem is usually considered as a regression problem solved
by learning-based reconstruction algorithm [39]. The problem
can be analysed as the reconstruction of the signal propagation
in an environment or a reconstruction of a time series.

The former concept requires information about scenario,
e.g., transmitters, receivers, buildings, frequencies, and radio
measurements. The solution effectiveness is verified in [39].
However, selecting the features, and the training algorithm is
not trivial. The example of the solution is shown in [40], where
the CNN is used. Although, the NN methods based on the
signal propagation in an environment are not further discussed
in this paper as it requires more data than the methods which
consider CSI as a time series. For further reading, please refer
to [39, ch. 3.3.1.2].

In the latter concept, we only require recent data of the
time series we want to predict, e.g., SNR or CIR, and design
the efficient NN method. The feature engineering is much
easier as the input features are the time series old samples
(only the number of features or their delays can be chosen).
However, we still need to select the training algorithm and
its parameters. The commonly used channel prediction NN
is RNN. The opportunity to employ the RNN to predict the
samples of time series is shown in [41]. In [2], the RNN
prediction schemes are further discussed. Author rates the
RNN as the efficient but the high computational complexity
approach to predict future CSI. However, the computational
burden is expected to be doable for an available commercial
off-the-shelf hardware.

Another approach that employs time series concept is the
application of Feed Forward Neural Network (FFNN) as pro-
posed in [42]. However, the application of FFNN for prediction
is not commonly used concept.

Support Vector Machine Based Methods: The Support
Vector Machine (SVM) based methods find the mathematical
function that described the channel [39]. The main advantage
is that there are no local minima in the optimization process.
Another benefit is the opportunity to control the error rate and
the opportunity to find sparse solutions. The idea is to recon-

struct the map of the signal propagation based on the function.
Although, it is a very complex task. More information about
this concept can be found in [39, ch. 3.3.1.1.].

Matrix Completion Based Methods The matrix comple-
tion methods are based on the concept of map reconstruction
of the considered area [39]. The precision of the approaches
is high. However, the cost is high complexity and issues with
scalability. Some of the available algorithms are nuclear-norm-
based algorithms, alternating projection methods. The methods
are described in [39, ch. 3.3.1.3.] and the discussion is also
provided.

IV. SOLUTIONS & PERFORMANCE

The solutions and results are analysed depending on their
usability in future communication real applications. The anal-
yses are divided into sub-6 GHz, mmWaves and separately for
wide-band & ultra-wide-band systems.

1) Sub-6 GHz: In [29], authors analyse the simulation
and performance bounds for NB fading channel real-time
prediction for fc = 1.92 GHz and fc = 5.9 GHz. It is
shown that the updates of fast fading parameters are necessary
because the error grows when the statistic is outdated [29, Fig
2.]. The authors also presents the maximum prediction range
based on Cramer Rao Lower Bound (CRLB) [29, Fig 3.]. They
state that the prediction is feasible for NB fading channels.

[43] provides the results of the Rayleigh channel modelling
by AR and SoS. The results show the impact of the AR model
configuration and present a comparison of the aforementioned
methods. From the perspective of the future system design,
it is worth notice that the relation between model order and
prediction MMSE is σ2

p ∼ k[sin(πfdT )]
2p where σ2

p - one-
step prediction MMSE, k - constant, p - model order, fd –
Doppler frequency, T – sampling period. It is shown that the
SoS method is more complex than AR method.

In [25], authors examine some classical prediction ap-
proaches on Jakes’s Model at the centre frequency 900 MHz
and for measured real channel envelopes at the centre fre-
quency 5.2 GHz (600 MHz bandwidth). In the Jakes’s Model
based analyses [25, Fig 1.], it is provided that the Unitary-
ESPRIT has the best performance. It is also interesting that
the performance for different prediction ranges is similar. In
contrast to RC methods, the results of AR methods vary for
different prediction ranges, and a shorter prediction range
entails better performance. The best performance is achieved
by the MCM for the AR model. However, the performance is
still worse than the performance of Unitary-ESPRIT. Please
notice that the MCM is usually used for the AR model but
can also be used for the parametric radio channel model.
While comparing the methods’ envelope prediction range for
different scenarios (based on Dersch’s model) [25, Fig. 2], the
MCM are efficient for almost all scenarios, and the Unitary-
ESPIRIT performs well only for rural areas. [25, Fig. 2] is
very interesting in terms of designing the system in the desired
scenario.

Authors propose the technique for the channel estimation
and long-range prediction for adaptive-orthogonal-frequency-
division-multiplexing (AOFDM) in [44]. The frequency-
selective wireless fading channel is described by the first-order
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AR model (the tapped-delay-line-filter is employed). The AR
coefficients are tracked by the generalised-variable-step-size
LMNS (GVSS-LMS) based algorithm. The fading compen-
sation is provided by a modified-Kalman-filter (MKF) based
approach. The prediction is provided by numeric-variable-
forgetting-factor RLS (NVFF-RLS) algorithm. The approach
is compared with modified-Kalman-filtering [45], fixed-step-
size LMS [26] algorithm with Fixed-Forgetting-Factor RLS
(FFF-RLS) prediction [46] (MKF-FSS-LMS/FFF-RLS). The
freshly designed MKFF-GVSS-LMS/NVFF-RLS outperforms
MKF-FSS-LMS/FFF-RLS. The paper shows that there is still
the opportunity to improve the classical methods.

In [47], the method to predict the NB channel is proposed
and the impact of the training method on performance is
examined. The Fully Connected RNN (FCRNN) is used to-
gether with three learning methods separately: the Real-Time
Recurrent Learning (RTRL), the Global Extended Kalman
Filter (GEKF) and the Decoupled Extended Kalman Filter
(DEKF). It is shown that the RTRL complexity is reasonable
in this application [37]. However, it uses the gradient method
with first-order derivatives, and the convergence speed might
be slow while comparing to the second-order derivatives based
methods [48]. The basis of the second-order methods is formed
by the Extended Kalman Filter (EKF). The main concept is to
estimate the covariance matrix (which contains the second-
order information about the training problem) and update
it. The EKF is considered as a basis of computationally
efficient NN training techniques (e.g., GEKF, DEKF) that
enables FNNs and RNNS in various applications, e.g., pattern
classification, channel equalization, control. It is shown that
GEKF and DEKF converge faster than RTRL. The training is
crucial in NN methods.

Authors in [49] propose to employ the Long Short-Term
Memory (LSTM) based method, which is one of the RNN,
for channel prediction in vehicular communication. The mea-
surement samples of the IEEE 802.11p transmission with a
centre frequency equal to 5.86 GHz are used for experiments.
It is shown that the LSTM based approach outperforms the
classical AR approach in both scenarios. It is worth noticing
that the rapidly varying fading (high Doppler shift, dynamic
scenario) is considered in the experiment.

In [50], authors develop another LSTM based predic-
tion approach for vehicle-to-everything (V2X) communication
system. The system is presented as an efficient approach
for spatio-temporal channel parameters correlation analyses.
The extensive simulations are performed, and the good per-
formance of the approach is shown. Authors consider the
Rayleigh fading. The analyses of the impact of speed of
vehicle, SNR and Doppler frequency shift are shown. The
speed of the vehicle and sampling rate do not affect the result
significantly. The LSTM and ARIMA are more SNR sensitive
than the SVR algorithm. All the methods’ performances de-
pend on the maximum Doppler frequency shift. However, the
NMSE does not grow rapidly in all cases. In all results, we
see that the LSTM outperforms other methods.

[42] compares the proposed BackPropagation Neural Net-
work (BPNN) with Discrete Wavelet Transform – AR – Linear
Regression (DWT-AR-LR, extension of AR model method)

method, SVM method and Echo State Network (ESN) method.
The BPNN outperforms the other methods, while holding
low complexity. It is also shown that the method works
best for Jakes’s model while comparing to SCM Model and
Clarke/Gan Model. It is also shown that the DWT-AR-LR
prediction is more accurate than the prediction by classical
AR model. The proposed method can be used together with a
short pilot which matters in a resource-limited system.

2) mmWave: [51] provides the prediction of the mmWave
channel downlink effective rate by employing Maximum Like-
lihood Estimator (MLE). They calculate the channel error
covariance and use it to predict the future channel rate. The
concept is verified by 28 GHz mmWave outdoor channel
model-based simulations. The approach improves the effective
downlink rate by reducing pilot transmissions.

In [52], authors analyse the channel prediction in the
ground-to-air link under blockage in mmWave bands. The
AR model with the Euclidean distance-based algorithm is
used, and the ray-tracing simulations are performed. The
comparison of the new prediction approach to the AR only
based methods and RNN is provided. In terms of MSE and
MAPE (Mean Absolute Percentage Error), the new prediction
approach outperforms AR only and RNN methods. RNN
performs better than AR only method. The cost of the new
approach is increased complexity while comparing to other
methods.

Authors provide LSTM based method for predicting multi-
directional link quality in mmWave systems in [53]. The multi-
connectivity is considered. The method is examined on the
simulated data at 28 and 140 GHz and measurement data at
60GHz. In the prediction for one base station (BS) and a single
trajectory at 28 GHz, LSTM outperforms the MA prediction.
Furthermore, LSTM is less sensitive to modification of carrier
frequency than the MA method. The received power is consid-
ered in analyses based on measurement data. The mean RMSE
of LSTM is lower in all considered cases in comparison to the
MA method results. The authors state that the prediction of
mmWave link requires predicting link quality from multiple
cells and multiple directions. The complex dependencies in
time and across links shall be considered. Thus, the classical
methods are challenging to apply.

The LSTM network for CSI prediction for a vehicular user
is employed in [54]. The results are based on the ray-tracing
simulation at 60 GHz, and the speeds between 10 m/s and 30
m/s are considered. The solution is used in Cloud/Centralized
Radio Access Network (C-RAN). The vector of channel
estimates of each BS is predicted, and the prediction values
are used for beamforming. It is shown that the LSTM-based
approach provides accurate prediction and provide a similar
result to the traditional beam training scheme with lower pilot
overhead.

In [55], authors examine Blind CSI Prediction Method based
on NN (BCPMN, which employs CNN and LSTM) in Vehicle-
to-Infrastructure (V2I) scenario. The paper employs Rician
channel model, fc = 62.5 GHz and v = 320 km/h. The
weakness of the classical methods, e.g., ARIMA algorithms, is
highlighted. The coherence time decreases with the increasing
speed [56], and the mmWaves bands (high frequency) entails
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high Doppler spread. Thus, the classical approaches cannot
track the rapidly changing channel impulse response. One of
the main advantages of the BCPMN is that it does not need a
pilot sequence to build channel statistics and predict the future
CSI (it uses raw receive signal). The comparison to methods
proposed in another papers (LSTM [49], [50]; OCEAN [57])
is shown. BPMN performs better than other methods, and
the OCEAN method is still better than the LSTM method.
Furthermore, for low SNR the difference in performance is
smaller than for high SNRs. The prediction is feasible for the
vehicle driving with 60 km/h, 120 Km/h and 320 km/h speed.

Authors in [57] discuss the CSI prediction for future 5G
mobile communication systems (fc ∈< 3, 300 > GHz). They
propose an online CSI prediction scheme (called OCEAN,
which employs CNN and LSTM) and design a learning
framework. The transmission and scenario parameters that
have a major impact on the CSI and, in consequence, the
prediction performance are highlighted (frequency band, lo-
cation, time, temperature, humidity, weather). The parameters
are considered in OCEAN design. The training approach is
also proposed: the offline-online two-step training mechanism.
The OCEAN method is examined in four case studies: a
free space environment, outdoor environment with obstruction,
workroom and building. The measurement data contains CSI
data in 2.4 GHz and 5 GHz frequency bands (WiFi). The
OCEAN method is almost as good as the ML-based algorithm
in prediction accuracy and needs less computing time to
predict the CSI for multiple channels. The MMSE-based
method is much more accurate than OCEAN and ML-based
approaches, but it needs more processing time.

3) Wide-band & ultra-wide-band: In [58], authors analyse
the prediction in WB communication. The statical channel
model is used and the velocity is constant. The ESPIRIT-type
methods are employed and the results show that the prediction
is more accurate than the prediction over a single frequency.

The SOS method is used in [33] for channel prediction of
WB OFDM system. The simulation is based on 28 GHz non-
light-of-sight model. Authors employ FISTA and compare the
results to commonly used Inverse Discrete Fourier Transform
(IDFT). It is shown that for bandwidth equal to 200 MHz and
400 MHZ both methods performs similarly. In the 800 MHz
scenario the FIST method outperforms significantly IDFT
method.

The analyses of UWB prediction is provided in [59]. The
authors propose an efficient prediction framework for UWB
and compare the performance to ITU-R UWB-CIR model. The
prediction of CIR is provided by RLS algorithm. The analysis
is based on measurement data of 2.2 GHz bandwidth at 3.1-5.3
GHz (outdoor environment). The proposed method achieves
15% lower prediction rate, and it is 12 times less complex
than employing IRU-R UWB-CIR model.

Authors in [4] employ the prediction for a frequency-
selective WB communication system. 3GPP Extended Vehic-
ular A (EVA) and Extended Typical Urban (ETU) channel
models are considered. The proposed RNN is expected to be
used in MIMO-OFDM system. The Monte-Carlo simulations
are used to examine the approach. The solution is effective,
able to conduct multi-step prediction and more robust to

Fig. 1. The MSE for various number of LSTM input features; LSTM: 4 layers:
sequence input, LSTM, fully connected, regression output; Adam (epochs:
300, grad. thresh.: 1, init. train. rate: 0.05, drop after 200 epochs, dropping
factor: 0.2), init. weight: zeros, bias: one.

interpolation errors while comparing to the Kalman filter.
However, the computational complexity is higher.

V. OUR RESULTS: LSTM
It was shown that the LSTM outperforms AR for both sub-6

GHz [49], [50] and mmWave frequencies [53]. The structure
and description of LSTM can be found in [50, Fig.3] and [60].
The number of LSTM layers, the number of hidden units, the
time step length of prediction is already compared for sub-
6 GHz measured data [49]. The impact of the Tx/Rx speed,
sampling rates, Doppler shifts and SNRs are analysed in [50]
for simulated data (Rayleigh channel). In [53], it is shown that
LSTM outperforms the MA method in the analyses based on
measurement data (60 GHz). However, the LSTM network
input size is constant in the aforementioned solutions, and
its impact on the results is not examined. While considering
the strongest correlation between consecutive samples (which
might be not pointed enough in short memory), it is reasonable
to use the last several samples for future values prediction.
Thus, we examine the impact of the number of samples on
results for both sub-6 GHz and mmWave bands. Moreover,
we tested the impact of the number of hidden units in the
mmWave band, which was not checked yet.

a) Sub-6 GHz: The measurement from University of
California Santa Barbara is used [61]. The signals were
measured in the building at 2.4 GHz (WiFi). The details about
measurements can be found in [62]. We test the impact of
input feature number and number of hidden units in LSTM.
We expect to employ the robot’s communication. It is assumed
that the robot measures the short period of signal and then uses
LSTM to predict the Signal-Noise-Ratio (SNR) for adaptive
transmission to send crucial instructions.

The MSE varies for the different number of input features
(Fig. 1, top).The lowest MSE is achieved for ten input fea-
tures (0.0194). The second-best result is achieved for eight
input features (0.0195). The MSE for single feature is higher
(0.0224).
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Fig. 2. The MSE for various number of LSTM hidden layers; network is
same as for 1 and: features - mmWave: 5, features - sub-6 GHz: 10.

The MSE decreases when the number of hidden units grows
over three (Fig. 2, top). The best result is achieved for 400
hidden units (0.0189). The MSE for one hidden unit is 0.0441.
The second achieved result is for 100 hidden units (0.0202).
It shall be considered that the training time increases while
increasing the number of hidden units and the maximum is
set to 500.

b) mmWave: The measurement from NG CMA database
[63] is used. The measurement is provided by Department of
Information Technology, Ghent University & IMEC, and was
recorded in the working engine room of the vessel [64]. The
carrier frequency is 60.48 GHz, and the transmission is based
on IEEE802.11ad. More details can be found in [64] and in the
measurements’ folder on NG CMA website [63]. The impact
of feature number and hidden units number are examined. We
assume that the channel is measured for a short period, and
then the SNR is predicted by LSTM to send the crucial data.

The MSE is different for the various number of features in
Figure 1 - mmWave. It can be seen that one feature is not
the best choice, and it is reasonable to improve the number of
features. Figure 1 shows that the best choice for our scenario
is 5 features (0.1807). It can also be seen that even if we
increase the number of features to 2 (0.1828), the performance
increases (1 feature: 0.291).

The hidden units are examined with constant training epochs
number (300) to assume the limited time for training. The
MSE varies for different number of hidden units (Figure
2,bottom). Some of the numbers yield very low performance
(4: 0.336; 50: 0.5922, 400: 2,655). Three lowest MSE are:
0.1766 (20 hidden units), 0.1807 (100 hidden units), 0.2102
(5 hidden units).

VI. CONCLUSIONS

In this paper, a comprehensive overview of currently avail-
able prediction methods is provided. The analysis contains
sub-6 GHz, mmWaves and various bandwidths. In most of
the simulations, the RNN methods outperform other methods.
The LSTM seems to be the most promising method for CSI

prediction in sub-6 GHz and mmWaves. The employment
of RNN is also reasonable in the wide-band communication
system. However, classical methods are still most common
in this application. The wide-band/ultra-wide-band is still
not well investigated, and there is a potential to provide
more experiments. Sub-6 GHz and mmWaves experiments are
mainly carried out on the simulation data. More analyses on
the measured data (especially for mmWave channel prediction)
are expected to be beneficial for future system design.
In this paper, author used sub-6 GHz (2.4GHz) and mmWaves
(60.48 GHz) measurement data and drew two conclusions. The
performance of the LSTM can be improved by using more than
one input feature in both bands: sub-6 GHz and mmWaves,
and the number of hidden units have significant impact on the
performance in sub-6GHz and mmWaves.
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