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Integration of Remote Sensing Data in a Cloud
Computing Environment
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Abstract—With the rapid development of remote sensing
technology, our ability to obtain remote sensing data has been
improved to an unprecedented level. We have entered an era of
big data. Remote sensing data clear showing the characteristics
of Big Data such as hyper spectral, high spatial resolution, and
high time resolution, thus, resulting in a significant increase in the
volume, variety, velocity and veracity of data.This paper proposes
a feature supporting, salable, and efficient data cube for time-
series analysis application, and used the spatial feature data and
remote sensing data for comparative study of the water cover and
vegetation change. In this system, the feature data cube building
and distributed executor engine are critical in supporting large
spatiotemporal RS data analysis with spatial features. The feature
translation ensures that the geographic object can be combined
with satellite data to build a feature data cube for analysis.
Constructing a distributed executed engine based on dask ensures
the efficient analysis of large-scale RS data. This work could
provide a convenient and efficient multidimensional data services
for many remote sens-ing applications.

Keywords—Remote Sensing; Data integration; Cloud Comput-
ing; Big Data;

I. INTRODUCTION

S INCE Landsat-1 first started to deliver volumes of pixels
in 1972, the amount of archived remote sensing data stored

by data centers has increased continuously [1, 2]. According
to incomplete statistics, the total amount of data archived by
the Earth Observing System Data and Information System
(EOSDIS) reached 12.1 petabytes (PBs) around the year 2015
[3]. Up until August 2017, the archived data volume of
the China National Satellite Meteorological Center (NSMC)
reached 4.126 PBs [4], and the China Center for Resources
Satellite Data and Application (CCRSDA) archived more than
16 million scenes of remote sensing images [5, 6]. Such large
amounts of remote sensing data have brought great difficulties
for data integration of each data center.
Due to various satellite orbit parameters and the specifications
of different sensors, the storage formats, projections, spatial
resolutions, and revisit periods of the archived data are vastly
different, and these differences have resulted in great diffi-
culties for data integration. In addition, the remote sensing
data received by each data center arrives continuously at an
ever-faster code rate. It is preferable to ingest and archive
the newly received data in order to provide users with the
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latest data retrieval and distribution service [7]. Therefore, a
unified metadata format and a well designed data integration
framework are urgently needed.
Hence, for data integration across a distributed data center
spatial infrastructure, we proposed an International Standard-
ization Organization (ISO) 19115-based metadata transform
method, and then adopted the internationally popular data
system framework object-oriented data technology (OODT)
[8] to complete the distributed remote sensing data integration.
The rest is organized as follows: Section 2 provides an
overview of the background knowledge and related work;
Section 3 describes the distributed multi-source remote sensing
metadata transformation and integration; Section 4 introduces
the experiments and provides an analysis of the proposed
program; and Section 5 provides a summary and conclusions.

II. BACKGROUND ON ARCHITECTURES FOR REMOTE
SENSING DATA INTEGRATION

This section briefly reviews the distributed integration of
remote sensing data, as well as the internationally popular data
system framework OODT.

A. Distributed integration of remote sensing data

The most widely used data integration models include [9]:
(1) The data warehouse (DW)-based integration model, which
copies all data sources of each heterogeneous database system
into a new and public database system, so as to provide users
with a unified data access interface. However, due to the
heterogeneity of each independent database system, vast data
redundancy is generated, and a larger storage space is also
required. (2) The federated database system (FDBS)-based
integration model, which maintains the autonomy of each
database system and establishes an association between each
independent database system to form a database federation,
then providing data retrieval services to users. However, this
pattern cannot solve the problems of database heterogeneity
or system scalability [10]. (3) The middleware-based inte-
gration model, which establishes middleware between the
data layer and the application layer, providing a unified data
access interface for the upper layer users and realizing the
centralized management for the lower layer database system.
The middleware not only shields the heterogeneity of each
database system, providing a unified data access mechanism,
but also effectively improves the query concurrency, reducing
the response time. Therefore, in this paper, we will adopt the
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middleware-based integration mode to realize the distributed
remote sensing data integration.

B. OODT: a data integration framework

An FS or DBMS alone are not suited for the storage and
management of remote sensing data. In a DBMS-FS mixed
management mode”, remote sensing images are stored in
the file system and their metadata are stored and managed
by the DBMS. Typical examples are the European Space
Agency (ESA) [11], Tiandi Maps of China, the CCRSDA, the
NSMC, the China National Ocean Satellite Application Center
(NSOAS), and so on. The mixed management mode both
effectively solves the quick retrieval and metadata management
problems and maintains the high read/write efficiency of the
file system. This has been a longtime issue addressed by
NASA, whose the Office for Space Science decided to fund the
OODT project in 1998. Apache OODT [12] is an open-source
data system framework that is managed by the Apache Soft-
ware Foundation. OODT focuses on two canonical use cases:
big data processing [13] and information integration [14]. It
provides three core services: (1) a file manager is responsible
for tracking file locations and transferring files from a staging
area to controlled access storage, and for transferring their
metadata to Lucene or Solr; (2) a workflow manager captures
the control flow and data flow for complex processes, and
allows for reproducibility and the construction of scientific
pipelines; and (3) a resource manager handles allocation of
workflow tasks and other jobs to underlying resources, based
on the resource monitoring information from Ganglia or other
monitoring software. In addition to the three core services,
OODT provides three client-oriented frameworks that build
on these services: (1) a file crawler automatically extracts
metadata and uses Apache Tika or other self-defined toolkits to
identify file types and ingest the associated information into
the file manager; (2) a pushpull framework acquires remote
files and makes them available to the system; (3) a scientific
algorithm wrapper (called the Catalog and Archive Service
Production Generation Executive, CAS-PGE) encapsulates
scientific codes and allows for their execution, regardless
of the environment, while capturing provenance, making the
algorithms easily integrated into a production system (Figure
1).

III. DISTRIBUTED INTEGRATION OF MULTI-SOURCE
REMOTE SENSING DATA

With distributed multi-source remote sensing data integra-
tion, i.e., based on a unified standard, the remote sensing meta-
data in the distributed center will be gathered into the main
center continuously or at regular intervals, either actively or
passively. In this study, the unified satellite metadata standard
refers to the ISO 19115-2:2009-based geographic information
metadata standard. All of the remote sensing metadata in
the distributed sub-centers should be transformed into the
ISO 19115-based metadata format before integration to enable
uniform data retrieval and management. The distributed sub-
centers are mainly responsible for the storage of remote
sensing images, and provide an open access interface for the

main center based on the HTTP/FTP protocols. The main
center is primarily responsible for the ingestion and archiving
of the metadata and thumbnails of remote sensing images, and
enables uniform query and access for the integrated remote
sensing data.

A. The ISO 19115-based metadata transformation

Remote sensing metadata represent descriptive information
about remote sensing images, as well as data identification,
imaging time, imaging location, product level, quality, the
spatial reference system, and other characteristic information.
At present, the metadata forms of different remote sensing
data vary greatly. For example, Landsat 8 collects images of
the Earth with a 16-day repeat cycle, referenced to the World-
wide Reference System-2 [15]. The spatial resolution of the
Operational Land Imager (OLI) sensor onboard the Landsat
8 satellite is about 30 m; its collected images are stored in
GeoTIFF format, with Hierarchical Data Format Earth Obser-
vation System (HDFEOS) metadata [16, 17]. The Moderate-
Resolution Imaging Spectroradiometer (MODIS) instruments
capture data in 36 spectral bands ranging in wavelength from
0.4 µm to 14.4 µm and at varying spatial resolutions (2 bands
at 250 m, 5 bands at 500 m, and 29 bands at 1 km). Most of
the MODIS data are available in the HDF-EOS format, and it
is updated every 1 to 2 days [18]. The chargecoupled device
(CCD) sensor, which is carried by the Huan Jing (HJ)-1 mini
satellite constellation, has an image swath of about 360 km,
with blue, green, red, and near infrared (NIR) bands, 30-m
ground pixel resolution, and a 4-day revisit period. Its collected
images are stored in GeoTIFF format, and their customized
metadata are in eXtensible Markup Language (XML) format
[19]. These different metadata formats have resulted in great
difficulties for data integration and management, which could
be solved by transforming them into a uniform metadata
format for uniform retrieval and management [20, 21]. ISO
19115-2:2009 is the geographic information metadata standard
which was published by the International Standardization Or-
ganization (ISO). It mainly defines the metadata schema of ge-
ographic information and services, including the identification,
quality, space range, time horizon, content, spatial reference
system, distribution, and other characteristic information [22].
Currently, ISO 19115-2:2009 has been integrated into the
Common Metadata Repository (CMR) as one of the most
popular standards for data exchange [23], data integration,
and data retrieval across international geographic information
organizations and geographic data centers. On the basis of
the ISO 19115-2:2009 geographic information standard, we
proposed a uniform remote sensing metadata format. All of
the remote sensing metadata in the distributed sub-centers
should be transformed into this uniform format before data
integration. In this paper, the transformational rules we es-
tablished are mainly aimed at NASA EOS HDF-EOS format
metadata (Aster and Landsat series satellites included) and the
customized XML-based metadata of the CCRSDA (HJ-1A/B,
GF and ZY series satellites included) (see Table I).
It should be noted that in Table I, the strike-through (-)
shows the field does not exist, and it will be assigned a
null value after metadata transformation. In the ISO metadata
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Fig. 1. An object-oriented data technology (OODT) framework

TABLE I
THE ISO 19115-2:2009-BASED UNIFORM METADATA FORMAT AND TRANSFORMATIONAL RULES. ISO: INTERNATIONAL STANDARDIZATION

ORGANIZATION; CCRSDA: CHINA CENTER FOR RESOURCES SATELLITE DATA AND APPLICATION; HDF-EOS: HIERARCHICAL DATA FORMAT EARTH
OBSERVATION SYSTEM.

column, the term spatialResolution describes the ability of
the remote sensor to distinguish small details of an object,
generally in meters, thereby making it a major determinant of
image resolution. Hence, the spatialResolution is mapped to
NadirDataResolution in the HDFEOS metadata column and
pixelSpacing in the CCRSDA metadata column.

The terms scenePath and sceneRow are orbit parameters
of the satellite in the Worldwide Reference System (WRS),
just mapping to WRS PATH and WRS ROW in the HDF-
EOS metadata column. The term imageQualityCode is a
characteristic of a remote sensing image that measures the
perceived image degradation, and has the same meaning as
the overallQuality in the CCRSDA metadata column. The term
processingLevel denotes the type of the remote sensing data,

and is mapped to the DATA TYPE in the HDF-EOS metadata
column and productLevel in the CCRSDA metadata column.
TABLE I: The ISO 19115-2:2009-based uniform metadata
format and transformational rules. ISO: International Standard-
ization Organization; CCRSDA: China Center for Resources
Satellite Data and Application; HDF-EOS: Hierarchical Data
Format Earth Observation System.

B. Distributed multi-source remote sensing data integration

Distributed multi-source remote sensing data integration
refers to the process of validating, inserting, updating, or
deleting metadata in the main center metadata management
system; it affects only the metadata for the distributed data
providing sub-centers. The metadata management is mainly
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realized by the components of OODT, including the OODT
crawler, OODT push-pull, and OODT file manager [24] (see
Figure 2). In the main data center, the push-pull daemon
will be launched automatically by using its daemon launcher
at the defined time interval. The daemon will wrap one of
two processes: (1) RemoteCrawler, or (2) ListRetriever. The
RemoteCrawler process crawls remote sites for files in the
distributed subcenters. Meanwhile, the RemoteCrawler process
also automatically extracts metadata and transforms them into
the ISO 19115-2:2009-based uniform metadata format. The
ListRetriever retrieves known files from remote sites in the
distributed sub-centers (that is, the path and file name to each
file is known and has been specified in a property file, and a
parser for that property file has been specified). After crawling
or retrieval, the push-pull framework will be responsible for
downloading remote content (pull), or accepting the delivery
of remote content (push) to the main center for use by the
LocalCrawler for ingestion into the file manager. Here, the
remote content includes the metadata file and thumbnail of
remote sensing data. It is worth mentioning that the Local-
Crawler is developed in the main center, and is primarily
responsible for crawling the local client system for files in
the main center. The file manager component is responsible
for tracking, ingesting, and moving metadata and thumbnails
between a client system and a server system in the main
center. Finally, the remote sensing metadata will be indexed
by the SolrCloud, and their corresponding thumbnails will
be archived in the file system. Both the RemoteCrawler and
LocalCrawler have an incremental control mechanism in order
to avoid duplicate data ingestion. In the intervals between
crawling and data ingestion, the RemoteCrawler executes a
Message Digest 5 (MD5) file verification process between the
remote sites’ files in the sub-center and the archived files in
the main center. If the file has been archived in the main
center, data ingestion will be stopped; otherwise, data ingestion
continues. The LocalCrawler implements the second MD5 file
verification process between the files in the client system (files
from sub-centers downloaded to the main center) and the
server system (archived files in the main center). If the files
have been ingested and moved into the server system, the data
ingestion will be stopped; otherwise, it continues.
In addition, there is also the DaemonManager, in which
the DaemonLauncher will register each daemon it creates.
The DaemonManager ensures that no two Daemons are ever
running at the same time. If a daemon is running when another
requests permission to run, permission will be denied and the
daemon will be added to the wait queue until the current
running daemon and all other daemons ahead of it in the queue
complete their tasks [30].

IV. EXPERIMENT AND ANALYSIS

In order to verify the availability of our proposed solution,
a virtual multidata center environment was set up based on
the OpenStack cloud computing framework. The main data
center was composed of three Linux virtual machines. All
of the three machines were developed with the SolrCloud
environment, responsible for metadata index and retrieval.
One of them was developed with OODT system framework,

responsible for data ingestion and thumbnail archiving. The
distributed sub-center was composed of eight Linux virtual
machines, corresponding to eight satellite data centers. Each
machine was mounted with a one-terabyte (TB) cloud drive
so as to provide image storage space. In addition, all the
machines in the main and sub centers were configured with
4 gigabytes (GBs) of RAM and 2 virtual processor cores.
The framework of the virtual multi-data center environment
is shown in Figure 3.

The experimental images of the distributed integration
test mainly include Landsat 8 OLI TIRS, Landsat 7
ETM+, Landsat 5 TM, Landsat 15 MSS, Aster L1T,
CEBERS-1/2 CCD, HJ-1A/B CCD, HJ-1A HSI, and
FY- 3A/B VIRR images, which were freely downloaded
from the USGS (https://earthexplorer.usgs.gov/) , NSMC
(http://satellite.nsmc.org.cn/portalsite/default.aspx) and
CCRSDA (http://www.cresda.com/CN) websites. A total of
3380 files were downloaded. These images were distributed
in the eight sub-centers according to data type. The total
number of our experimental images are shown in Table II.

The distributed data integration experiment mainly includes
remote sensing data polling, metadata extraction, thumbnail
generation, file transferring, thumbnail archiving, metadata
indexing, and other processes. The experimental results are
primarily with respect to the already-crawled data volume
and total time consumption from the RemoteCrawler launch
to metadata being indexed by SolrCloud/Lucene. Because no
two push-pull daemons ever run concurrently, the distributed
data integration experiment was carried out one sub-center at
a time. The experiment procedures and results are shown in
Table III.
As can be seen in Table III, the number of main center-

integrated remote sensing images is equal to the total number
of each sub-center’s stored images. That is to say, there is no
information lost during the process of data integration. More-
over, our designed ISO 19115-2:2009-based uniform metadata
model includes all fields of integration by participating remote
sensing metadata, and the SolrCloud indexed metadata can
also maintain the metadata information of each remote sensing
image perfectly. As for the transfer rate, it mainly depends
on the window size for the OODT-push-pull component. In
our experiment, the window size was set at 1024 bytes, and
the average transfer rate is between 9.8 and 13.8 MB/s. This
is enough to satisfy the demands of metadata and thumbnail
transfer across a distributed data center spatial infrastructure.
Therefore, the experimental results showed that our OODT-
based distributed remote sensing data integration was feasible.

V. CONCLUSIONS

In view of the current issues of remote sensing data integra-
tion, we proposed an OODT-based data integration framework.
Specifically, aiming at heterogeneous features of multi-source
remote sensing data, we proposed an ISO 19115-2:2009-
based metadata transform method to achieve unity of metadata
format in the distributed sub-centers. In order to achieve
efficient, stable, secure and usable remote sensing data integra-
tion across a distributed data center spatial infrastructure, we

https://earthexplorer.usgs.gov/
http://satellite.nsmc.org.cn/portalsite/default.aspx
http://www.cresda.com/CN
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Fig. 2. The process of distributed data integration

TABLE II
A SUMMARY OF THE EXPERIMENTAL IMAGES

TABLE III
EXPERIMENTAL RESULTS OF DISTRIBUTED DATA INTEGRATION

adopted the OODT framework based on its stable, efficient,
and easy-to-expand features, to implement remote sensing
data polling, thumbnail generation, file transfer, thumbnail
archiving, metadata storage, etc. In addition, in order to verify

the availability of our proposed program, a series of distributed
data integration experiments was carried out. The results
showed that our proposed distributed data integration program
was effective and provided superior capabilities.
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Fig. 3. The framework of the virtual multi-center data environment

However, the unified metadata conversion rule was pre-
configured, and the metadata transformation was done manu-
ally. This was convenient and easy to operate, but less efficient.
In particular, with an increase of data types, a great burden
would be brought to data integration. Future studies based
on deep learning algorithms using semantic matching and
unified format conversion of remote sensing metadata will be
performed.
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