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Abstract—Generalized Rademacher functions, constructed as a 
sequence of elements of Galois fields are intended to find the 
spectral representation of signals with levels. These functions form 
a complete basis on the interval corresponding to -1 discrete time 
intervals and for   passing into the classical Rademacher functions. 
The advantage of such spectra obtained using Galois Fields 
Fourier Transform is that the range of variation of the spectrum 
amplitudes remains the same as the range of variation of the 
original signal, which is modeled on discrete time functions taking 
values in the Galois field. 
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I. INTRODUCTION 

ALSH functions, which form a complete set of "digital" 

orthogonal functions, are one of the main tools for 

spectral analysis of digital signals [1-3]. Their construction was 

originally an attempt to implement a "digital" analogue of 

harmonic functions most widely used for spectral analysis of 

analog signals. 

Various options for improving digital signal processing tools 

based on the use of the Walsh function are well known in the 

current literature [4-6]. Various modifications of the 

Rademacher functions are also known, for example [7,8], on the 

basis of which the Walsh function is constructed. However, the 

approaches proposed in the cited works do not allow to 

completely overcome the main drawback of these "digital 

bases" (more precisely, orthogonal systems of piecewise 

constant functions), which is associated with the problem of 

their completeness. "Digital" analogs of harmonic functions, 

which would be used as widely as the classical Walsh function, 

have not yet been proposed, which, among other things, is 

associated with methodological problems. We emphasize once 

again that the Walsh functions can only partially be regarded as 

an analogue of harmonic functions, which, in particular, follows 

from their aperiodic nature. 

At the same time, the need to develop "digital" functions that 

could play the same role as harmonic functions has long been 
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ripe, which does not require extensive evidence - the vast 

majority of signals that are exchanged between modern devices 

are precisely digital. 

In various branches of information theory, in particular, in the 

theory of coding and decoding, as well as for the purposes of 

pattern recognition, Galois fields are widely used, both binary 

[9,10] and non-binary [11-13], and based on the latter have 

constructed and applied analogs of the Fourier transform [14-

16]. 

Nonbinary Galois fields can also be used to algebraize 

multivalued logic, for example, the Galois field GF (3) 

containing three elements can be used to construct algebraic 

operations, to which operations performed on variables of 

ternary logic are reduced - in the same way as classical the 

binary logic variables correspond to the Galois field GF (2). 

It is pertinent to emphasize that interest in multivalued logics, 

which goes back to the logic of Lukasiewicz [17], has recently 

been growing again [18-20]. This is due, among other things, to 

the problem of artificial intelligence [21, 22], since it is the 

multi-valued logics, which since the time of Lukasiewicz have 

been considered and are considered as an alternative to the logic 

of Aristotle, that allow revealing many features of the 

functioning of intelligence, which obviously turn out to be 

irreducible to binary logic.  

Establishing the relationship between multivalued logics and 

digital signal processing methods using non-binary Galois fields 

is of considerable interest, at least from a methodological point 

of view. Indeed, such a wide distribution of binary variables is 

determined, among other things, by the fact that there is a rigid 

connection between the methods underlying computing systems 

(digital electronics), methods of digital signal processing (for 

example, methods of error-correcting coding, the most famous 

of which is the code Hamming [23]) and the actual tools of 

mathematical logic, which also widely use binary variables. 

The literature contains works [24-26], which provide very 

strong arguments in favor of using ternary logic for applied 

purposes, but it has not yet received as widespread distribution 

as it deserves. This is largely due to, among other things, 

methodological problems. Constructions using Galois fields are 
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distinguished by a high degree of abstraction, i.e., providing 

visualization of the corresponding methods is also an important 

task, especially when we consider the possibilities of using 

ternary codes for artificial intelligence systems. 

This paper shows that such concepts of abstract algebra as 

"algebraic extension", "primitive element", etc. can be made 

quite descriptive if we introduce the concept of "logical 

imaginary unit". We emphasize that the functions of a complex 

variable have long become one of the main tools of radio 

engineering, therefore, the above concept creates, among other 

things, the prerequisites for overcoming interdisciplinary 

barriers that often arise when using abstract algebra tools in 

digital signal processing. 

This paper presents a method for spectral analysis of digitized 

signals, based on the use of the proposed interpretation of the 

concept of "logical imaginary unit" and ternary logic, which 

makes it possible to visualize the construction of generalized 

Rademacher functions. 

The advantage of this approach is that the spectrum 

components also correspond to logical variables that can be 

assigned to a specific Galois field. This provides a significant 

reduction in the amount of information required for the 

transmission of spectra over communication channels, and also 

creates the preconditions for the use of methods of error-

correcting coding in artificial intelligence systems using ternary 

logic (the connection between operations performed by neural 

networks and algorithms for error-correcting coding is shown in 

[27, 28]. 

II. GENERALIZATION OF RADEMACHER FUNCTIONS AND 

PREREQUISITES FOR USING THE TERM "LOGICAL IMAGINARY 

UNIT" 

The considered version of the generalized Rademacher 

functions can be constructed based on the fact that for any 

element ζ of an arbitrary Galois field containing 𝑛 + 1  

elements, 

𝜁𝑛 = 1                                (1) 

The meaning of relation (1) can be illustrated by the 

example of the field 𝐺𝐹(32),  which can be obtained, for 

example, by an algebraic extension of the field 𝐺𝐹(3) using the 

polynomial 

𝑓(𝑥) = 𝑥2 + 1,                          (2) 

which is irreducible over the field 𝐺𝐹(3). 

All Galois fields 𝐺𝐹(3) are isomorphic, but for the 

purposes of this work, it is convenient to use the representation 

[29] through three elements 1, 0, and -1, for which the following 

rules of addition and multiplication are satisfied. 

1 + 1 = −1; −1 − 1 = 1; −1 + 1 = 1 − 1 = 0, (3) 

 

−1 ∙ −1 = 1;  𝑎 ∙ 0 = 0; a + 0 = a          (4) 

The equation  

𝑥2 + 1 = 0                             (5) 

has no solutions in the field 𝐺𝐹(3), therefore, it is permissible 

to introduce into consideration its formal root, which can be 

interpreted as a logical imaginary unit 𝑖 due to the fact that 

𝑖2 = −1                                  (6) 

The algebraic extension of the field 𝐺𝐹(3) to the field 

𝐺𝐹(32) when representing the elements of 𝐺𝐹(3) through a 

triple (-1,0,1) in this case is a collection of elements represented  

 

in the form 

𝐴 = 𝑎0 + 𝑎1𝑖,                            (7) 

which formally coincides with the notation for complex 

numbers, with the difference, however, that in the notation (5) 

the coefficients 𝑎𝑖 belong to the field 𝐺𝐹(3) represented 

through the elements (-1,0,1). 

Table I explicitly indicates the powers of the element (1 −
𝑖), calculated in accordance with formula (4) and the rules of 

operating with the elements of the field 𝐺𝐹(3) = (−1,0,1). 

Correctly element(1 − 𝑖)  should be interpreted as a primitive 

root of one, i.e., an element whose degrees are given all 

elements of the considered field 𝐺𝐹(32). 

 
TABLE I 

Degrees of primitive element (1 − 𝑖) 

𝑛 2 3 4 5 6 7 8 

(1 − 𝑖)𝑛 𝑖 1 + 𝑖 −1 −(1 − 𝑖) −𝑖 −(1 + 𝑖) 1 

 

It can be seen that the 8-th power of the element (1 − 𝑖) is 

indeed equal to 1, which corresponds to the record (1), since the 

𝐺𝐹(32) field contains 9 elements. The same result is also true 

for the 8-th power of any other nonzero element of the field 

𝐺𝐹(32), since an arbitrary nonzero element of this field can be 

represented in the form 

𝐴 = (1 − 𝑖)𝑘; 0 ≤ 𝑘 ≤ 7,                 (8) 

Correctly, formula (7) is a consequence of the general 

conclusion about the structure of Galois fields, according to 

which its multiplicative group is cyclic. In particular, the eighth 

power of the element A in representation (8) is 

𝐴 = ((1 − 𝑖)𝑘)8 = ((1 − 𝑖)8)𝑘 = 1𝑘 = 1       (9) 

There is also a general theorem for the sum of degrees. 

1 + 𝜁 + 𝜁2 + ⋯+ 𝜁𝑛−1 = {
"n", 𝜁 = 1 
0, 𝜁 ≠ 1

      (10) 

where n - is the number of nonzero elements in the given 

Galois field. 

This theorem is applicable to any nonzero element from any 

Galois field, since there is a relation that follows from the 

formula for the geometric progression 

1 + 𝜁 + 𝜁2 + ⋯+ 𝜁𝑛−1 =
1−𝜁𝑛

1−𝜁
               (11) 

We emphasize that in the formula (10) the number "n" 

appears only formally, since the summation should be 

performed precisely in the sense of addition in this particular 

field, and "n" is far from necessarily its element. The number 

"n" in the formula (10), accordingly, is nothing more than a 

symbol implying the summation of "n" ones. 

Formula (11) can be directly used to construct generalized 

Rademacher functions. Let's show it. 

We construct the following sequences, starting from the 

powers of the element 𝜃 = (1 − 𝑖). Similar sequences, of 

course, can be built starting from any other primitive element, 

i.e., element whose degree up to the seventh inclusive is given 

by all elements of 𝐺𝐹(32) except for zero. We have 

𝑤1 = (1, 𝜃, 𝜃2, 𝜃3, … , 𝜃7) 

 

𝑤2 = (1, 𝜃2, 𝜃2∙2, 𝜃2∙3, … , 𝜃2∙7)                 (12) 

… 

 

𝑤7 = (1, 𝜃7, 𝜃7∙2, 𝜃7∙3, … , 𝜃7∙7) 
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As follows from (12), there are exactly seven such 

sequences, more generally, - n - 1. Let us supplement the set of 

these sequences with the sequence 

𝑤0 = (1,1,1,1, … ,1),                 (13) 

consisting only of units. 

When (13) is included in set (12), obviously, the number of 

sequences of the considered form will be equal to n - the number 

of nonzero elements of the considered Galois field (in the case 

under consideration, n = 8). 

We emphasize that, by virtue of (1), all degrees appearing 

in (12) de facto do not exceed 7. Otherwise, the products of 

integers (degrees) included in them are calculated by 𝑚𝑜𝑑8. 

The above is illustrated by Table II, which shows the 

sequences formed according to the rules (12) and (13). It can be 

seen that, as follows from the general theory of Galois fields, 

only 8 elements appear in this table, which are the powers of 

element 1 − 𝑖 listed in Table I. 

 
TABLE II 

Sequences formed according to rules (12) and (13), for the case 𝜃 = 1 − 𝑖 

 0 1 2 3 4 5 6 7 

0 1 1 1 1 1 1 1 1 

1 1 1 − 𝑖 𝑖 1 + 𝑖 −1 −1
+ 𝑖 

−𝑖 −1
− 𝑖 

2 1 𝑖 −1 −𝑖 1 𝑖 −1 −𝑖 
3 1 1 + 𝑖 −𝑖 1 − 𝑖 −1 −1

− 𝑖 
𝑖 −1

+ 𝑖 
4 1 −1 1 −1 1 −1 1 −1 

5 1 −1 + 𝑖 𝑖 −1 − 𝑖 −1 1 − 𝑖 −𝑖 1 + 𝑖 
6 1 −𝑖 −1 𝑖 1 −𝑖 −1 𝑖 
7 1 −1 − 𝑖 −𝑖 −1 + 𝑖 −1 1 + 𝑖 𝑖 1 − 𝑖 

 

Note that in Table II, in addition to the sequence with 

number 0, there are three sequences whose period differs from 

8. These are sequences with numbers 2, 4 and 6. This feature is 

associated with the fact that the multiplicative group of the field 

under consideration has subgroups, the number of elements in 

which is a divisor of the number of elements in this group (2 and 

4). 

For each of the sequences 𝑤𝑘 appearing in Table II, it is 

possible to choose a sequence 𝑤�̃�  from the same list that will 

hold 
(𝑤𝑘 , 𝑤�̃�) = (1,1,1,1, … ,1),               (14) 

where (𝑎, 𝑏) – direct product of two sequences a and b. 

 
(𝑎, 𝑏)  = (𝑎1𝑏1, 𝑎2𝑏2, … , 𝑎𝑛𝑏𝑛),           (15) 

Specifically, the value of �̃� is determined from the 

condition 

𝑘 ≡ �̃�(𝑚𝑜𝑑8),                      (16) 

Formula (15) also shows that in the list Table II, the number 

�̃� is determined by 𝑘 uniquely, i.e., the sequence 𝑤�̃� can be 

considered as conjugate to the sequence 𝑤𝑘, in the same way as, 

when using spectral representations in terms of harmonic 

functions, the function 𝑒𝑥𝑝(𝑖𝑘𝑡)  is considered as the conjugate 

with respect to the function 𝑒𝑥𝑝(−𝑖𝑘𝑡). The uniqueness of the 

choice of the number �̃� with respect to the number 𝑘 also 

follows from the fact that, in the Galois field, each nonzero 

element has an inverse element, which is unique. Accordingly, 

the second element of the sequence 𝑤�̃�  is the inverse element 

to the second element of the sequence 𝑤𝑘, which is uniquely 

determined; the same is true for the other elements by the 

construction of these sequences. 

The numbers of the original sequences and the numbers of 

the sequences conjugated to them are presented in Table III. 

 
TABLE III 

Numbers of k ̃ of sequences conjugate to sequences numbered k 

𝑘 0 1 2 3 4 5 6 7 

�̃� 0 7 6 5 4 3 2 1 

 

It can be seen that for the case under consideration the 

correspondence between the sequences 𝑤�̃� ̃ and the sequences 

𝑤𝑘 can be considered as an analogue of the correspondence 

between the complex representations of harmonic functions 

related to each other by the operation of complex conjugation 

𝑒𝑥𝑝(𝑖𝜔𝑡)  ↔  𝑒𝑥𝑝(−𝑖𝜔𝑡),                   (17) 

where 𝜔 – harmonic frequency, 𝑡 – time variable. 

Applying formula (11) to the sequences under 

consideration, one can see that 

∑ 𝑤𝑘
(𝑗)

𝑤
�̃�

(𝑗)𝑗=7
𝑗=0 = {

1, 𝑘 = �̃� 

0, 𝑘 ≠ �̃� 
                (18) 

In other words, in the interval containing 8 measures, the 

sequences shown in Table II form a complete basis. 

Based on formula (18), one can immediately go to the 

spectral representation of the signal in the form 

�⃗� = ∑ 𝑧𝑗�⃗⃗� 𝑗
𝑗=7
𝑗=0                            (19) 

where �⃗�  – the sequence of 8 elements of the Galois field 

𝐺𝐹(32), which can also be interpreted as a piecewise constant 

function that takes values in this field with the number of values 

equal to 8. 

Of course, this representation is valid only for functions that 

take a value in the Galois field 𝐺𝐹(32) and are specified on an 

interval of 8 clock cycles, but, as will be clear from what 

follows, it admits a generalization that provides the possibility 

of real practical use. 

The amplitudes of the spectral components, which are also 

elements of the Galois field, are expressed in terms of the 

function �⃗�  as follows. 

𝑧𝑘 = (𝑢,⃗⃗⃗  �⃗⃗� �̃�) = ∑ 𝑧𝑖(�⃗⃗� 𝑖 , �⃗⃗� �̃�)
𝑖=7
𝑖=0                (20) 

which follows directly from the formula (18). 

Thus, the obtained sequences can indeed be interpreted as 

generalized Rademacher functions, which constitute a complete 

basis on an interval of 8 clock cycles. 

We emphasize that the above procedure can also be applied 

to the Galois field 𝐺𝐹(3). In this case, the number of sequences 

of the form (12) is reduced to one, in which there are only 3-1 = 

2 values equal to -1 and 1, i.e., in this limit, the functions under 

consideration indeed transform into the classical Rademacher 

functions, which justifies the term "generalized Rademacher 

functions" used. 

Since all elements of the field under consideration are 

representable in the form 𝑎 = 𝑎1 + 𝑖𝑎2, it is permissible to 

speak about the real and imaginary parts of the functions �⃗� , 
which can be depicted graphically. 

Diagrams illustrating the behavior of these functions using 

such graphs are shown in Fig. 1 (the left column is the real part, 

the right one is imaginary). 
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In table II you can see that one of the sequences under 

consideration are constant, one has period 2, two have period 4. 

The period of other sequences can be considered equal to 8. This 

corresponds to the fact that the field under consideration 

contains only four primitive elements, the degrees of which are 

given by all elements fields. The same construction can be used 

to develop algorithms using fields 𝐺𝐹(𝑝2), where p is a prime 

number. Namely, the construction shown in Table II was based 

on a primitive element, the degree of which is given by the entire 

field. Finding such an element, generally speaking, is a 

nontrivial task. However, in the construction of generalized 

Rademacher functions, de facto, all elements of the field are 

used, more precisely, each of these functions is a power of one 

of the elements of the field. Therefore, it is not necessary to find 

such an element analytically; it can also be done by software, 

determining the frequency of the obtained functions. 

Thus, the use of the concept of "logical imaginary unit" is 

really expedient. At a minimum, the functions of a complex 

variable have been used in radio engineering for more than a 

long time. Against this background, the concept of algebraic 

extension looks much more abstract; it has not entered 

widespread use, which is especially true for specialists in the 

field of applied electronics. Consequently, the degree of clarity 

will certainly be higher if the theoretical constructions are closer 

to the conceptual apparatus that has already become commonly 

used. 

Let's take a look at how exactly these functions can be 

applied to digital signal processing. 

III. APPLICATION OF THE PROPOSED GENERALIZATION OF 

RADEMACHER FUNCTIONS TO DIGITAL SIGNAL PROCESSING  

First of all, we note that real digital signals always change 

in a finite range of amplitudes; moreover, they correspond to a 

finite number of levels. Consequently, it is always possible to 

choose the division of the range of variation of the amplitudes 

so that the discrete signal levels correspond to a certain Galois 

field. It is common practice to split the amplitude range into 

subranges that correspond to the binary representation of the 

signal, but this is no more than a matter of convention. 

Galois fields 𝐺𝐹(3𝑛) orrespond to the ternary 

representation of numbers, just as the fields 𝐺𝐹(2𝑛) correspond 

to their binary representation. Indeed, any integer can be 

represented in the form 

𝑎 …𝑏𝑐 ↔ 𝑎 ∙ 3𝑛 + ⋯+ 𝑏 ∙ 31 + 𝑐 ∙ 30          (21) 

where the letter designations correspond to one of the 

elements of the field GF (3), more precisely, to its mapping to a 

triple (-1,0,1). 

According to rule (21), a ternary number is converted to 

decimal. An example of such a conversion for a specific 

combination of symbols of ternary logic is given by the 

following entry: 

11̃01 ↔ 1 ∙ 33 − 1 ∙ 32 + 0 ∙ 31 + 1 ∙ 30 = 

= 27 − 9 + 1 = 35                        (22) 

where for convenience we have introduced the notation 1̃ 

for the field element «-1». 

Such a number record can be associated with an element of 

the Galois field, formed according to the rule: 

𝑎 …𝑏𝑐 ↔ 𝑎 + ⋯+ 𝑏 ∙ 𝜃𝑛−2 + 𝑐 ∙ 𝜃𝑛−1          (23) 

where is a primitive element of the field 𝐺𝐹(3𝑛), the 

degrees of which are generated by all elements of the given 

field. 

In particular, ternary numbers containing two digits are 

represented by the elements of the Galois field 𝐺𝐹(32), 

discussed above.  

𝑎𝑏 ↔ 𝑎 + 𝑖𝑏                           (24) 

Such ternary numbers correspond to the division of the 

amplitude scale into nine discrete levels. This, of course, is not 

enough for solving practical problems, but the proposed 

approach can be easily generalized to the fields 𝐺𝐹(3𝑛).  

Moreover, the number 𝑛 = 6 already gives 729 levels, which is 

sufficient for many practical applications. 

For clarity, we will restrict ourselves to considering a model 

signal corresponding to a division into 9 levels. Figure 2 shows 

the original time series (model "signal"), the values of which 
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represent the number of deaths from coronavirus infection per 

month in Illinois in 2020 (according to the website 

https://data.cdc.gov/). In accordance with the above, a time 

period of 8 months is considered.  

 

 
 

Fig. 2. The initial model signal is the dependence of the number of deaths 
from coronavirus infection per month in Illinois for 2020, the dates are 

indicated on the time axis 

 

In fig. 3 shows, the same time series reduced to a rough 

scale containing 9 levels. 

 

 
Fig. 3. Reducing the model signal to a scale of amplitudes corresponding 

to a division into 9 levels 

 

This signal can be represented through an algebraic form 

corresponding to formula (24), where the real part corresponds 

to the most significant bit of a two-digit ternary number, and the 

imaginary part corresponds to the lower one. 

The corresponding dependences, actually showing the 

dependence of the values of the most significant and least 

significant bits on discrete time, are shown in Fig. 4.  

Figure 4 shows the components of its "complex" spectrum 

in the Galois field 𝐺𝐹(32), obtained using formula (20). 

This figure clearly demonstrates the main advantage of 

spectra in Galois fields. Namely, unlike the spectra obtained 

using the Walsh function (or its analogs), the actual range of 

variation of the amplitudes of the spectral components remains 

the same as the range of variation of the original signal.  

Consequently, both the real and imaginary parts can take on 

only three possible values, i.e., the amount of information for 

each component of the spectrum is exactly 2 trit (a unit of the 

amount of information formed by analogy with the concept of a 

bit when using the binary representation of numbers). 

 

 

 
a) 

 
b) 

 

Fig. 4. Real (a) and imaginary (b) components of the model signal 
corresponding to its representation through the elements of the Galois field 

𝐺𝐹(32) 

 

From the point of view of communication theory, this 

means that when transmitting information about a signal in a 

spectral representation using the classical Walsh function, the 

amount of transmitted information increases significantly 

(compared to the amount of information contained in the 

original signal). 

Thus, the amount of information (expressed in trit) 

contained in the model signal shown in Fig. 3 is 

𝐼 = 8 log3 9 = 16                       (25) 

The same amount of information is contained in the 

aggregate and in the spectral representations (Fig. 5). On the 

contrary, taking into account the variation of the possible values 

of the amplitudes of the spectral components, the amount of 

information contained in the spectrum calculated using the 

classical Walsh function (Fig. 6) is approximately 

𝐼 ≈ 8 log3 27 = 24                    (26) 

In a similar way, spectra can be constructed in the fields 

𝐺𝐹(3𝑛), the transition to which makes it possible to work with 

sequences of length 3𝑛 − 1,  which for sufficiently large 𝑛 ≥ 6 

can already find practical application. 

Indeed, any element of the Galois field 𝐺𝐹(3𝑛), which is 

an algebraic extension of the ground field 𝐺𝐹(3), can be 

represented in the form 

𝑎 = 𝑎0 + ⋯+ 𝑎𝑛−2𝜃
𝑛−2 + 𝑎𝑛−1𝜃

𝑛−1         (27) 

where 𝑎𝑖are elements of the field 𝐺𝐹(3), θ is the primitive 

root of unity. 
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a) 

 
b) 

Fig. 5. Real (a) and imaginary (b) components of the spectrum of the 

reduced model signal corresponding to the signal representation in the Galois 

field 𝐺𝐹(32) 
 

 
Fig.6. The spectrum of the reduced model signal, calculated using the 

classical Walsh function 

 

The element θ is also the root of an irreducible equation, 

specifically the equations of the division field of a circle, which 

are obtained by expanding the polynomial  

𝑓 = 𝜃𝑝𝑛−1 − 1                          (28) 

by factors. 

In particular, for the field 𝐺𝐹(32) the equation that the 

primitive root of unity satisfies has the form 

𝜃3 = 𝜃 + 1                             (29) 

This equation, among other things, allows expressing the 

powers of the elements 𝜃𝑘, 𝑘 > 3 in terms of linear 

combinations of the form 

𝑎 = 𝑎0 + 𝑎1𝜃 + 𝑎2𝜃
2,                 (30) 

which makes it possible to construct sequences similar to 

those presented in Table II, according to the scheme described 

above. 

We emphasize that with the representation of signal 

amplitudes through Galois fields in the form (23), it is 

impossible to perform calculations as with real numbers, in 

particular, the product of numbers presented in this way will not 

be equal to their product in the classical sense. However, this 

circumstance does not negate the above advantage.  

Indeed, quite often transmission of a signal in a spectral 

form is preferred. In particular, this applies to a situation when 

a telemetry signal is recorded by several receivers spaced apart 

in space, and it is required to form a single frame (or a single 

video image). If the signal is transmitted directly (that is, 

without conversion to a spectral representation), then the 

obvious problem arises of splitting the image into frames and 

then combining them. 

This problem is far from as simple as it seems at first 

glance, especially if the image recorders are located at different 

distances from the base optical plane. In this case, it will be 

necessary to provide at least a homothetic transformation of one 

or several image fragments.  

The task is greatly simplified when information is recorded 

(or at least only transmitted) not about individual image 

fragments, but about fragments of their spectral representation 

(the digital spatial spectrum of a signal can be determined by the 

same methods as the spectrum of a time-dependent signal). This 

is due to the fact that each spectral component is calculated 

based on data about the entire image as a whole. 

However, if you use the transmission of information about 

the spectra obtained using the Walsh basis (or its modifications), 

then this advantage is lost due to the above amount of 

transmitted information. It is fully realized only when the 

transition to the spectral representation is not associated with an 

increase in the amount of transmitted information, which 

ensures the transition to spectra in Galois fields. 

IV. OTHER OPTIONS FOR CONSTRUCTING GENERALIZED 

RADEMACHER FUNCTIONS AND SOME METHODOLOGICAL 

ASPECTS OF THEIR APPLICATION 

Above, a generalization of the Rademacher functions was 

constructed starting from the main Galois field 𝐺𝐹(3𝑛). This, of 

course, is not required, sequences similar to those presented in 

Table II can be carried out for any other simple Galois 

field 𝐺𝐹(𝑝), where p is a prime number. 

The extension of any such field to 𝐺𝐹(𝑝2) can be 

constructed according to the same scheme, and the elements of 

such a field can be represented through a record that is no 

different from the representation of complex numbers. 

𝑎 = 𝑎1 + 𝑖𝑎2                           (31) 

The only difference is that operations on the elements 𝑎1 

and 𝑎2are performed in the sense of the Galois field 𝐺𝐹(𝑝). 

For example, for the case p = 5, the following multiplication 

(Table IV) is also valid. Examples of generalized Rademacher 

functions constructed with its help using the same technique as 

above are shown in Fig. 7. 
TABLE IV 

Multiplication table for elements of the Galois field 𝐺𝐹(5) in the 

representation 𝐺𝐹(5) = (−2,−1,0,1,2) 

 1 2 

1 1 2 

2 2 -1 

 

This representation is not the only one, for example, one 

can use mod5 multiplication. The advantage of the 

representation given by Table IV is that it naturally allows the 

use of negative numbers, which is essential for further 

expanding the term «logical imaginary unit». 
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However, it should be emphasized that there is an important 

nuance here. Table IV shows that the equation by which 

complex numbers are introduced into classical mathematics 

𝑖2 = −1                            (32) 

in this field is resolvable. Specifically, its solution is the 

field element "2" and also "- 2". 

Consequently, it is impossible to construct an algebraic 

field extension in this way. 

However, this difficulty is easily overcome if, instead of the 

field element "-1" in equation (32), another field element is 

used, at which this equation becomes unsolvable. Then it 

becomes possible to use the standard procedure of algebraic 

extension, which allows us to proceed further to the construction 

of generalized Rademacher functions. 

In particular, we can start from the unsolvable equation in 

the field GF (5) 

𝑖2 = −2                                 (33) 

the undecidability of which directly follows from Table IV. 

In this case, generalized Rademacher functions can indeed 

be constructed (Fig. 7). 

 

 

 
 

Fig. 7. Examples of generalized Rademacher functions for the field 

𝐺𝐹(52) 

 

CONCLUSION 

Thus, the representation of digital signals in terms of 

functions that take values in non-binary Galois fields is of 

interest from the point of view of digital signal processing by 

spectral methods. In this case, the function describing the 

spectrum of the signal also takes values in the same Galois field 

as the original signal. This provides, in particular, a reduction in 

the amount of information required for signal transmission in 

spectral representation. 

The use of Galois fields 𝐺𝐹(𝑝3) in this case allows 

interpretation through the concept of a logical imaginary unit, 

which is advisable to use in order to increase the degree of 

clarity when using the methods of abstract algebra for applied 

purposes. 
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