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Abstract—Skin Cancer is one of the most widely present forms 

of cancer. The correct classification of skin lesions as malignant or 

benign is a complex process that has to be undertaken by 

experienced specialists. Another major issue of the class imbalance 

of data causes a bias in the results of classification. This article 

presents a novel approach to the usage of metadata of skin lesions' 

images to classify them. The usage of techniques addresses the 

problem of class imbalance to nullify the imbalances. Further, the 

use of a convolutional neural network (CNN) is proposed to fine-

tune the skin lesion data classification. Ultimately, it is proven that 

an ensemble of statistical metadata analysis and CNN usage would 

result in the highest accuracy of skin color classification instead of 

using the two techniques separately. 

 
Keywords—classification; Convolutional Neural Networks; 

Ensemble Learning; machine learning; metadata 

I. INTRODUCTION 

KIN lesions are among the significant causes of death and 

mental stress in the world [1, 2]. The main reason behind 

this is the false classification by experts or deprivation of access 

to an expert's advice. There is a limitation to accurate 

classification of skin lesions even by experts due to lack of 

expertise or skin reflections. With the increasing population, 

there is more pressure on doctors to perform tests faster, which 

further leads to mistakes. A cost-effective method for diagnosis 

would help medical testing and reduce stressful situations for 

patients suffering from various kinds of skin lesions.  

Malignant melanoma, if appropriately treated at an early stage, 

could be cured. But distinguishing malignant melanoma from 

benign melanoma at an early stage is time-consuming for an 

expert. In this digital world, having a mobile app/ computer 

software that could read an image of a skin lesion and with some 

preliminary data viz., age, the position of a skin lesion on the 

body, etc., and classify the lesion into a skin disease class, would 

be beneficial. This could help doctors perform their operations 

faster. People with smartphones can check if they have any 

severe skin disease or not. NGOs or other organizations working 

in underprivileged places can check citizens for any illnesses 

and provide them the required medical attention.  

Another major issue in the efficient classification of skin 

lesions is the impact of class imbalances. This occurs due to the 

availability of more images belonging to a particular class A of 

skin disease and the unavailability of the same number of 

images in another class B. The resulting drawback is that while 

training the CNN model, more images of class A are 
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encountered instead of class B. This leads to the 

misclassification of many instances of class B disease image 

samples as class A images.  

Further, along with image data, there is a plethora of metadata 

IS available. No considerable effort has been made to mine this 

metadata. Therefore, an effort must be made to perform a 

statistical study on this metadata to perform classifications of 

skin lesions. 

In this regard, our article aims at:  

• Configuring, training, and testing classification models 

using the variables selected from statistical study of 

metadata of skin lesions. Using chosen variables, deep 

learning classification models are built.  

• Using data replication, under-sampling, and class 

weighting to reduce class imbalance effects in 

classification models based on metadata.  

• Choosing an appropriate CNN model configuration for 

training and testing to classify skin lesion images. 

This article has been divided in the following manner. Section 

II describes the available literature in our research area. Section 

III details the statistical methods applied to the metadata of skin 

lesions' images and the results obtained. Section IV focuses on 

the issue of class imbalance and techniques to solve it. Section 

V presents the classification of image data using CNN. Section 

VI gives the results of using the ensemble model of statistical 

metadata classification and image classification using CNN. 

The final section concludes the article and presents the scope for 

future work. 

II. RELATED WORK 

Kiran Pai et al. [3] have used VGGNet CNN architecture to 

predict and classify skin lesions into seven classes. They also 

developed a website that can predict the three most probable 

types of skin lesions for a loaded image. MNIST: HAM10000 

dataset [15], which contains 10000 images of 7 classes, is used 

for the experiment. Adams optimizer with an initial learning rate 

of 0.001 has been used. Agnieszka Mikołajczyk et al. [4], in 

their research paper, have focused on solving the problem of 

lack of data and class imbalance using augmentation techniques.  

Balazs Harangi [5] has used an ensemble of four CNNs, namely 

GoogLeNet, AlexNet, ResNet, and VGGNet. This improves 

skin lesions classification accuracy into three classes, viz., 

melanoma, nevus, and seborrheic keratosis. Enes Ayan et al. [6] 

have used a CNN architecture and then compared its 
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performance with and without augmentation. Keras' Image Data 

Generator API was used for the augmentation of images.  

Nils Gessert et al. [7] have compared the ability of 

oversampling, balanced batches, loss weighting,  and diagonal 

weighting methods in solving class imbalance problems. They 

have used 224×224×3 images for training and testing.Khalid M. 

Hosny et al. [8] have presented an article for the automated skin 

cancer lesions classification. They have used the concept of 

transfer learning and a pre-trained neural network. Nazia 

Hameed et al. [9] have showcased the usage of Deep CNN and 

SVM to classify skin diseases into multiple classes. Five classes 

of skin diseases have been used, viz., healthy, acne, eczema, 

benign melanoma, and malignant melanoma. Efficient 

classification of skin lesions using CNN with a novel regularizer 

has been performed by Marwan Ali Albahar [10]. An accuracy 

of 97.49% has been obtained in the classification of skin lesions 

as benign or malignant.  

Achim Hekler et al. [11] have presented an article on the usage 

of human and artificial intelligence to classify images for skin 

cancer. A combination of human and artificial intelligence 

techniques has led to an accuracy of 82.95%, which was higher 

when using human intelligence separately.H. Kittler et al. [12] 

have presented a comprehensive article on how dermoscopy 

increases the accuracy of diagnosis for melanoma instead of 

using the naked eye for experienced examiners. M. 

Maragoudakis et al. [13] have showcased using an ensemble of 

classification techniques comprising of Random Forest with 

Markov Blanket notion. J. Kawahara et al. [14] have 

demonstrated the usage of pre-trained CNNs and images of 

different resolutions to create a novel CNN architecture for the 

classification of skin lesions.  

On a comprehensive note, there are many approaches to the 

classification of skin lesions. However, there is virtually no 

effort related to the classification of this dataset using the 

metadata available. Our research work aims at performing an 

ensemble of statistical analyses of the metadata. It uses it along 

with CNN for the classification of images of skin lesions with 

higher accuracy. The following section of our article presents a 

theoretical background of our research. 

III. STATISTICAL ANALYSIS OF METADATA AND 

RESULTS OBTAINED 

The main motive of this research article is to classify images 

of skin lesions into different classes of skin diseases. However, 

with the extensive availability of metadata (data about data) viz., 

age of the person, sex of the person, and localization of skin 

lesion, an attempt is being made in our research to build a 

classification model using this metadata. The propelling factor 

to do so is to be able to build an application that could be easily 

usable and understandable by the layman for coarse 

classification before he approaches a skin specialist for further 

examination. Other metadata parameters, such as family history, 

the past occurrence of infection, etc., could also be considered 

for further research.  

The parameters of age, sex, and localization are three different 

kinds of parameters and need to be handled differently in any 

programming language. Age is a single value continuous data, 

whereas localization is a single value categorical data. Sex is 

taken to be a binary variable. On the other hand, images of the 

skin lesion are 3-dimensional datasets that comprise of the width 

and height of the image, and the third dimension corresponds to 

the RGB values of the image. The following paragraphs 

describe the methods to handle different forms of data for age, 

sex, and localization. Using categorical data for machine 

learning: Models could be built for three types of data viz.,  

• categorical input- continuous output  

• continuous input-categorical output  

• categorical input- categorical output data. 

But libraries available in programming languages restrict the 

ways in which categorical or any other type of data is used. If 

data involves words, then it is not possible to directly feed that 

data to a model. Models require data to be in numerical form. 

Hence, few changes need to be made before using that data. 

Categorical data can be dealt with using ordinal encoding, one-

hot encoding, or learned to embed.  

In our research, localization and sex data are encoded using 

one-hot encoding. Since sex data has only two categories, i.e., 

male and female, we can encode them with a vector with two 

dimensions, [0 1] and [1 0], or vice versa. The localization data 

is taken to have 14 categories (abdomen, back, chest, ear, face, 

foot, genital folds, lower extremity, hand, palm, neck, scalp, 

trunk, and upper extremity), which correspond to 14 dimensions 

in the one-hot encoded vector. One value will be '1' in each 

vector, and the rest would be '0'.  The Kaggle Skin Cancer 

MNIST: HAM10000 dataset15 is used in this research. Using 

this dataset, an analysis is performed on the metadata to find any 

dependencies that exist between variables and skin lesion 

classes. Normality tests and significance tests are performed on 

the data. Normality tests are used to check whether a distribution 

is approximately normal or not normal. 

Significance tests are used to check if there exists any 

significant relationship between variables.  

The dataset being used for this research has images of skin 

lesions with labels. A metadata file has sex data, localization 

data, and age data of these patients. 10015 instances are 

available in the dataset, and a brief summary of it is given in 

Table I. For all tests, a significance level (α) of 5% is being used. 

Significance level limits type 1 error in the long run. Type 1 

error is, we believe and accept that one variable has a significant 

effect on another variable, but it is just a random effect that we 

are observing in reality. In this case, we are limiting this error 

rate to 5%. Therefore, if we reject the null hypothesis based on 

our observations, then we could be wrong only 5% of the time 

or less than that. 

The various statistical tests performed in this research and 

their corresponding results are described further. 

TABLE I 

DESCRIPTION OF THE DATASET USED 

Disease Label Instances Abbreviation 

Actinic keratoses 0 327 akiec 

Basal cell carcinoma 1 514 bcc 

Benign keratosis-like 

lesions 

2 1099 bkl 

Dermatofibroma 3 115 df 

Malignant Melanoma 4 1113 mel 

Melanocytic nevi 5 6705 nv 

Vascular lesions 6 142 vasc 
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A. NORMALITY TESTS 

Since age data is continuous, the approach towards analysis of 

age data is different from categorical data like sex and 

localization data. Statistical tests vary, depending on whether 

data is normally distributed or not. Therefore, the following 

normality tests are performed to check if age data for different 

skin lesion classes are normally distributed or not.  

Following this, numerical tests for normality have been 

performed. There exists a null hypothesis and an alternate 

hypothesis. Based on the test results, either the null hypothesis 

would be accepted or rejected. Here the null and alternative 

hypotheses are as follows: 

H0: Age data is normally distributed 

H1: Age data is not normally distributed 

   The significance level (α) is taken as 5%. The p-values are 

checked for the test results. The p-values are obtained from the 

distribution of a statistic calculated for input data and are 

compared with the significance level. If a p-value is less than 

the required significance level, it signifies that we have enough 

proof to reject the null hypothesis. Therefore, the null 

hypothesis is rejected for that data at the required significance 

level. 

Different types of tests like the Shapiro-Wilk test [16],  

D’Agostino’s K-squared test [17], and Anderson-Darling test 

[18] have been used to measure the normality of a given dataset. 

Table II illustrates the results obtained for the Shapiro-Wilk 

test. The p-values of tests for all skin lesion classes are lower 

than 0.05(significance level); hence there is enough data proof 

to reject the null hypothesis. That means age data is not normally 

distributed for any of the skin lesion classes. 

TABLE II 

 RESULT OF SHAPIRO-WILK TEST 

Skin lesion class Statistic  p-value H0 

Actinic keratoses 0.9615  < 0.0001 Reject 

Basal cell carcinoma 0.9258  < 0.0001 Reject 

Benign keratosis-like 

lesions  

0.9424  < 0.0001 Reject 

Dermatofibroma  0.9690  0.0091 Reject 

Malignant Melanoma  0.9665  < 0.0001 Reject 

Melanocytic nevi 0.9821  < 0.0001 Reject 

Vascular lesions 0.9518  0.0001 Reject 

 

We have enough evidence available to reject the null 

hypothesis for all skin lesion classes using the D'Agostino's K-

squared and Anderson-Darling test. It is concluded that age data 

is not normally distributed for any of the skin lesion classes. All 

three tests suggested that the age distributions are not normal. 

With this conclusion, it is decided to use non-parametric tests 

for the statistical analysis of data. 

B. NON-PARAMETRIC TESTS 

Non-parametric tests don't make any assumptions about the 

underlying distribution of the data. Distributions are defined 

using a set of parameters, and since no assumption is made 

regarding the distribution in this test, there are no parameters to 

define it.  

B.1 Kruskal-Wallis test [19] 

In this test, the following are considered as the null and 

alternative hypotheses.  

H0: Age distributions for all skin lesion classes are the same. 

H1: Age distribution is different of one or more skin lesion 

classes. 

The significance level (α) is considered to be 5%. For a 

statistic of 2270.9222, the attained p-value is < 0.0001, which is 

smaller than the α-value. Therefore the alternate hypothesis that 

age distribution is different for one or more skin lesion classes 

(H1) is accepted.  

    This result doesn't tell us which skin lesion classes have a 

significant difference in their age distributions. But for machine 

learning purposes, we need to know the differences that exist so 

that we can decide on whether to use this attribute in our model 

or not. This requirement leads us to our next step. Now we need 

to compare the age distributions of all 'pairs' of skin lesion 

classes. Therefore, in the next section, multiple comparison tests 

for the age distribution of skin lesion classes are performed in 

pairs. 

C. PAIR-WISE COMPARISON TESTS 

C.1 Mann Whitney U test [20] 

The following is the null and alternative hypothesis chosen for 

the Mann-Whitney U test at a significance level (α) of 5%.  

H0: Age distributions are equal. 

H1: Age distributions are not equal. 

 

Table III gives the results of the test. 

TABLE III 

RESULTS OF THE MANN WHITNEY U TEST 

Lesion 1 Lesion 2 Statistic p-value H0 

akiec bcc 79270.0   0.0808 Accept 

akiec bkl 165359.0   0.0244 Reject 

akiec df 8700.0   <0.0001 Reject 

akiec mel 142324.5   <0.0001 Reject 

akiec nv 321411.5   <0.0001 Reject 

akiec vasc 13253.0   <0.0001 Reject 

bcc bkl 248389.0   0.0001 Reject 

bcc df 13834.0   <0.0001 Reject 

bcc mel 216221.5   <0.0001 Reject 

bcc nv 558760.5   <0.0001 Reject 

bcc vasc 20861.0   <0.0001 Reject 

bkl df 34819.5   <0.0001 Reject 

bkl mel 520990.0   <0.0001 Reject 

bkl nv 1394999.5   <0.0001 Reject 

bkl vasc 50046.0   <0.0001 Reject 

df mel 44446.5   <0.0001 Reject 

df nv 289341.0   <0.0001 Reject 

df vasc 8077.0   0.4411 Accept 

mel nv 1864221.0   <0.0001 Reject 

mel vasc 59998.0   <0.0001 Reject 

nv vasc 378023.5   <0.0001 Reject 

 

Table III shows that except for two pairs out of 21 pairs of skin 

lesion classes' age distributions differ significantly at 5% 

significance level. We perform a few more pairwise comparison 

tests on age data to support the obtained result. 
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C.2 Wilcoxon test [21] 

The results of the Wilcoxon test are the same as the results of 

the Mann-Whitney U test. Only two pairs out of 21 show no 

significant difference. However, there is a significant difference 

among age distributions of different skin lesion classes in the 

Wilcoxon test as opposed to the Mann-Whitney U test. 

C.3 Kruskal-Wallis test with Bonferroni's correction 

The Kruskal-Wallis test with Bonferroni's correction is 

performed with a corrected α value of  0.0024. Even from this 

test, we get results identical to the previous two non-parametric 

tests, i.e., Wilcoxon and Mann-Whitney U test. Therefore, it is 

concluded that all non-parametric tests have shown that there is 

a significant difference among age distributions of skin diseases. 

C.4 Z-test [22] 

The Z-test results match the results of tests performed under 

non-parametric tests, i.e., only for two pairs of skin lesions; the 

null hypothesis has been accepted. 

C.5 T-test [23] 

The T-test results are the same as the results of the Z-test 

performed previously. Only for two pairs of skin lesions, the 

null hypothesis is accepted, and for the rest of the pairs, there 

exists a significant difference between age distributions. 

C.6 Tukey's Honestly Significant Difference (HSD) test [24] 

In this test, the null hypothesis for an additional pair of lesions 

viz., akiec and bkl is accepted. The rest of the results remain the 

same as the Z and T-tests described above. 

D. PARAMETRIC TESTS 

Parametric tests are used when the underlying distribution of 

the data is known. Since a set of parameters defines distribution, 

these tests are called parametric tests. In this case, the data is 

assumed to have a normal distribution, and the corresponding 

parameter of the normal distribution is used. 

D.1 ANOVA [25]  

After performing the ANOVA test, it is observed that since 

the p-value is smaller than α, we have enough evidence to reject 

the null hypothesis. Therefore, there is a significant difference 

in the age distributions of one or more skin lesion classes. 

D.2 ANOVA after Bonferroni's Correction 

The ANOVA after Bonferroni's correction method is used 

after a corrected α value of 0.0024. The result is the same as that 

of using Bonferroni's method with the Kruskal Wallis test. 

Therefore, in conclusion, after analyzing both non-parametric 

and parametric tests performed in the previous sections, we can 

see that the results and conclusions have been very similar. 

Hence, even though the normality tests suggested that age 

distributions are not normal for any of the seven diseases, we 

can now say that the population from which samples have been 

taken is approximately a normal distribution. With the increase 

in sample size, sample distribution also approaches a normal 

distribution.  

The following section focuses on removing class imbalances 

in images of the seven classes of skin lesions used for testing. 

IV. THE ISSUE OF CLASS IMBALANCE 

The Class imbalance problem arises when we have a dataset 

that has a big difference in the number of instances of different 

classes. The summary of the dataset being used in this project is 

given below in Table IV. 
TABLE IV 

DATA DISTRIBUTION ABOUT SKIN LESION CLASSES 

Disease Label Instances 

(original) 

After 

removing 

unknown 

values 

Abbreviation 

Actinic keratoses 0 327 327 akiec 

Basal cell 

carcinoma 

1 514 509 bcc 

Benign keratosis-

like lesions 

2 1099 1076 bkl 

Dermatofibroma 3 115 115 df 

Malignant 

Melanoma 

4 1113 1101 mel 

Melanocytic nevi 5 6705 6501 nv 

Vascular lesions 6 142 142 vasc 

 

In Table IV, it is observed that there is a big difference 

between the number of instances of the class Melanocytic nevi 

and the number of instances of other classes. For simplicity, let 

us consider only two classes, Melanocytic nevi, and 

Dermatofibroma. We can observe that Melanocytic nevi have 

6590 more instances than Dermatofibroma. This difference is 

termed as Class imbalance, which causes undesirable effects on 

classification models trained on this data. Suppose we trained a 

model on data from the above specified two classes for 

classifying an instance as either Melanocytic nevi or 

Dermatofibroma. In that case, the model will have a tendency to 

classify Dermatofibroma instances as Melanocytic nevi 

instances.  

Let us consider two models, 

1. Model 1 classifies 60 out of 100 Dermatofibroma instances 

into the Melanocytic nevi class and 10 out of 100 

Melanocytic nevi instances into the Dermatofibroma class. 

2. Model 2 classifies 60 out of 100 Dermatofibroma instances 

into the Melanocytic nevi class and 60 out of 100 

Melanocytic nevi instances into the Dermatofibroma class. 

    Even though Model 1 classifies a lesser number of instances 

incorrectly compared to Model 2, Model 2 is better compared to 

Model 1 as it gives equal importance to both classes. Therefore 

Model 2 is less biased. If there are a greater number of patients 

with Dermatofibroma than Melanocytic nevi, then during 

classification, Model 2 will have better performance compared 

to Model 1. The problem associated with Model 1 is due to class 

imbalance.  

A. PERFORMANCE MEASURE FOR DATA WITH 

IMBALANCES 

Since the data is highly imbalanced, accuracy does not 

provide much information about the model's actual 

performance. Accuracy is a measure of a model's overall 

performance, and it does not consider different classes present 

in the data separately. We need to compare the performance of 

the model for all classes present in the data. A model with good 

performance for majority class and poor performance for 

minority class shows high accuracy, but we cannot consider it 

as a good model as it shows poor performance for minority 

class, and the model will fail if more number of instances from 
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minority class is fed to it and accuracy drops suddenly. 

Therefore, some new measures evaluate a model's performance 

and understand how good a model is. Hence, we use three 

additional metrics to measure the model viz., Precision, Recall, 

and F1-score. 

B. SKIN LESION CLASSIFICATION AFTER RESOLVING 

CLASS IMBALANCE EFFECTS  

The classification process is performed using the parameters 

above of Precision, Recall, F1-score, and accuracy on the data 

concerning the age and localization of skin lesions' images. 

B.1 Classification using Age data 

Since age distributions of few skin lesion classes overlap, it 

is impossible to distinguish between a few of the skin lesion 

class pairs solely using age data. But age data does show good 

performance while distinguishing between few other pairs of 

skin lesion classes. Tensorflow library of Python is used to build 

the deep learning models. While building a machine learning 

model, weights are updated automatically, but the model 

requires tuning on the number of layers of neurons, the number 

of neurons in each layer, and the learning rate.  

The configuration of 1-20-20-7 is used where 1 is the 

number of input neurons followed by two hidden layers of 20 

neurons each and an output layer with 7 neurons corresponding 

to 7 skin lesion classes in the dataset. Since there is an overlap 

of the age distributions for some skin lesion classes, building a 

classification model for all classes at once yields poor results. 

Therefore, training and testing for two skin lesion classes at a 

time are performed. The model is trained for 100 epochs. 80% 

of the data is used for training, and 20% is used for testing. Table 

V illustrates the original data model with class imbalances and 

its result of classification. A recall value of more than 50% is 

considered a correct classification. 

Table V shows that there are only two class pairs with both 

recall values greater than or equal to 50%. The mean 

performance of the models is bad. This is due to the class 

imbalance effect and the smaller number of samples in some of 

the skin lesion classes. 

 
TABLE V  

ORIGINAL DATA MODEL WITH CLASS IMBALANCES 

L1 L2 Number of instances 

in the training 

dataset 

Precision Recall F1 score Accuracy 

L1 L2 L1 L2 L1 L2 L1 L2 

akiec bcc 258 410 0.00 0.59 0.00 1.00 0.00 0.74 0.59 

akiec bkl 260 862 0.00 1.00 0.00 0.76 0.00 0.86 0.76 

akiec df 259 94 0.77 0.50 0.99 0.50 0.86 0.09 0.76 

akiec mel 263 879 0.00 0.78 0.00 1.00 0.00 0.87 0.78 

akiec nv 265 5189 0.00 0.95 0.00 1.00 0.00 0.98 0.95 

akiec vasc 264 111 0.73 0.67 0.92 0.32 0.92 0.32 0.72 

bcc bkl 411 857 0.00 0.69 0.00 1.00 0.00 0.82 0.69 

bcc df 405 94 0.83 0.00 0.97 0.00 0.89 0.00 0.81 

bcc mel 395 893 0.00 0.65 0.00 1.00 0.00 0.78 0.65 

bcc nv 416 5184 0.65 0.94 0.12 1.00 0.20 0.97 0.94 

bcc vasc 402 118 0.85 0.60 0.96 0.25 0.90 0.35 0.83 

bkl df 862 90 0.90 0.00 1.00 0.00 0.94 0.00 0.90 

bkl mel 859 882 0.52 0.53 0.55 0.50 0.54 0.52 0.53 

bkl nv 853 5200 0.61 0.88 0.21 0.98 0.31 0.92 0.86 

bkl vasc 865 109 0.88 0.83 1.00 0.15 0.94 0.26 0.88 

df mel 96 876 0.00 0.92 0.00 1.00 0.00 0.96 0.92 

df nv 95 5189 0.00 0.98 0.00 1.00 0.00 0.99 98 

df vasc 94 111 0.62 0.64 0.24 0.90 0.34 0.75 0.63 

mel nv 855 5218 0.63 0.85 0.07 0.99 0.12 0.91 0.84 

mel vasc 872 122 0.92 0.00 1.00 0.00 0.96 0.00 0.92 

nv vasc 5198 108 0.97 0.00 1.00 0.00 0.99 0.00 0.97 

After removing the class imbalances using under-sampling, the 

model's performance is better compared with the model trained 

on original data. There are 14 class pairs with recall values for 

both classes greater than or equal to 50%. Many classes are very 

close to this threshold value. Next, class imbalances are 

removed using the method of allocating class weights. Weights 

are assigned based on how many instances are present in each 

class. There are 13 class pairs with recall values for both classes 

greater than or equal to 50%. 

B.2 Classification using Localization data 

The neural network used for classification using localization 
data has the configuration 14-20-20-7 where 14 is the number 
of input neurons that correspond to the 14 localization classes, 
two 20 neurons correspond to two hidden layers, and at the end, 
7 stands for 7 output classes corresponding to 7 skin lesion 
classes. Models based on the localization data also follow the 
same performance pattern as in age data. However, the 
localization data is better at classifying skin lesions in terms of 
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recall value. The original imbalanced data has 8 class pairs with 
recall values for both classes greater than or equal to 50%. The 
class imbalance is removed, and classification based on 
localization data is performed. After classification, there are 18 
class pairs with recall values for both classes greater than or 
equal to 50%. On removing class imbalances by weighting, 
there are 14 class pairs with recall values for both classes great 
than or equal to 50%. 

On combining the results of models based on age data and 
localization data, 13 class pairs have recall values greater than 
50% with the original data, and 17 class pairs have recall values 
higher than 50% after removing the class imbalance effects.  

As it is evident from the above tables, results have improved 
after combining the two models' predictions for age and 
localization data. For models considering two classes 
simultaneously, the number of class pairs having an average F1 
score and recall greater than or equal to 50% has increased. If 
models with all classes are considered, there is not much 
difference in the original data model results, but for increased 
data models and weighted class models, the average F1 score 
and average recall have increased from the previous models. 
     A summary of the classification results obtained from 
resolving the class imbalance effects is illustrated in Table VI. 

TABLE VI 

SUMMARY OF CLASSIFICATION USING METADATA OF AGE AND LOCALIZATION 

Metadata Type of data Pairs with Recall 

> 50% 

Using Age data Class imbalanced data 2 

Class balanced data 

using undersampling 

14 

Class balanced data 
using class weights 

13 

Using Localization 

data 

Class imbalanced data 8 

Class balanced data 
using undersampling 

18 

Class balanced data 

using class weights 

14 

V. CLASSIFICATION OF IMAGE DATA USING CNN 

Borders, curves, shapes, colors and color changes, brightness 
and brightness variation, and many more features make up an 
image. These features of an image are useful in recognizing or 
classifying that image. The higher the image's resolution, the 
better the model's performance as there will be a greater number 
of features to analyze and use. Bigger datasets consume too 
much memory space. Greater computational power is required 
to deal with big datasets. Too much time is also consumed while 
dealing with bigger datasets. These disadvantages also result in 
higher costs. Therefore, it is imperative to reduce image size 
before using them. The tradeoff is a loss of features for the lesser 
cost of processing the image. 

For our research of classification of skin lesions, images are 
downloaded from Kaggle into Google Colab. All images are of 
the shape 450×600×3. Image augmentation is used to increase 
the number of images of the minority classes. The Gaussian 
filter and Bilateral filter were used to de-noise the images. 

The DenseNet201 model imported from Keras in Python 
was used as the CNN model for our classification. For the output 
layer, the softmax activation function with categorical cross-
entropy loss function was used. Adam optimizer was used to 
optimize the results. The initial learning rate was 0.001, and it 
decayed after every 5 steps by 0.5 (half of the present value). 

Callbacks are used to achieve this. The CNN results for the 
original class imbalanced data model are shown in Table VII. 

The class imbalance is improved by using image 
augmentation. The results of classification using CNN after 
image augmentation are shown in Table VIII. 

TABLE VII 

CNN RESULTS ON THE ORIGINAL DATA MODEL 

Lesion Number of 

instances 

Precision  Recall 

value  

F1 

score  

akiec 255 0.53 0.49 0.51 

bcc 402 0.63 0.67 0.55 

bkl 875 0.71 0.51 0.59 

df 94 0.57 0.47 0.52 

mel 860 0.58 0.53 0.55 

nv 5207 0.89 0.94 0.91 

vasc 115 0.70 0.80 0.74 

Average 0.66 0.63 0.64 

Accuracy 0.81 

 

TABLE VIII 
 CNN RESULTS ON DATA AFTER IMAGE AUGMENTATION TO REMOVE CLASS 

IMBALANCES 

Lesion Number of 

instances 

Precision Recall 

value 

F1 

score 

akiec 255 0.59 0.56 0.57 

bcc 402 0.65 0.71 0.68 

bkl 875 0.64 0.63 0.63 

df 94 0.63 0.50 0.56 

mel 860 0.48 0.63 0.54 

nv 5207 0.92 0.88 0.90 

vasc 115 0.83 0.83 0.83 

Average 0.68 0.68 0.67 

Accuracy 0.80 

 

The recall value is 0.68 and has improved when compared to 

the original data model. 

VI. ENSEMBLE OF STATISTICAL CLASSIFICATION 

AND IMAGE CLASSIFICATION MODELS 

The final step in this research is to combine the statistical 

metadata model results and the image classification model.  
 

TABLE IX 

 CLASSIFICATION USING STATISTICAL DATA AND IMAGE DATA USING CNN 

Lesion Number of 

instances 

Precision Recall 

value 

F1 

score 

akiec 254 0.60 0.53 0.56 

bcc 411 0.64 0.70 0.67 

bkl 857 0.59 0.65 0.62 

df 92 0.63 0.60 0.62 

mel 854 0.53 0.68 0.60 

nv 5229 0.92 0.87 0.90 

vasc 119 0.75 0.68 0.71 

Average 0.67 0.67 0.67 

Accuracy 0.87 
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Table IX shows and an ensemble of the statistical classification 

of localization and age data as well as the CNN image data. 

As is evident from Table IX, the ensemble model gives the 

highest accuracy and overall best recall values, precision, and 

F1-scores. 

CONCLUSION AND FUTURE WORK 

This article presented a comprehensive analysis of using 

statistics of metadata of images and conventional image 

classification methods for skin lesions. The effect of class 

imbalances was explored, and methods to mitigate the same was 

implemented. They were combining metadata models with 

image data models resulted in performance improvement.  

However, due to the limitation of the RAM space, images of 

175×175×3 were used in this research. However, using images 

of larger size, i.e., the conventional 224×224×3, would yield 

better results. Further, there needs to be a mechanism to remove 

errors caused due to skin reflections.  

As time passes, with advancements in technology, 

mathematics, statistics, machine learning, and complex 

programming languages, there will be numerous opportunities 

for us to explore and improve upon the present models. 

REFERENCES 

[1] R. L. Siegel, K. D. Miller, S. A. Fedewa, D. J. Ahnen, R. G. S. Meester, 

A. Barzi, A. Jemal, “Cancer statistics,” CA: A cancer journal for 

Clinicians, 67(1), 7–30, 2017. https://doi.org/10.3322/caac.21395  

[2] Z. Apalla, D. Nashan, R. B. Weller, X. Castellsague´, “Skin Cancer: 

Epidemiology, Disease Burden, Pathophysiology, Diagnosis, and 

Therapeutic Approaches,” Dermatology and Therapy, 7(1), 5–19,   2017. 

http://dx.doi.org/10.1007/s13555-016-0165-y 

[3] K. Pai, A. Giridharan, “Convolutional Neural Networks for classifying 

skin lesions,” Proceedings of TENCON 2019 IEEE conference, 1794-

1796, 2019. https://doi.org/10.1109/TENCON.2019.8929461 

[4] A. Mikołajczyk, M. Grochowski, “Data augmentation for improving deep 

learning in image classification problem,” Proceedings of 2018 

International Interdisciplinary PhD Workshop (IIPhDW), 117-122, 2018. 

http://dx.doi.org/10.1109/IIPHDW.2018.8388338 

[5] B. Harangi, “Skin lesion classification with ensembles of deep 

convolutional neural networks,” Journal of Biomedical Informatics, 86, 

25-32, 2018. http://dx.doi.org/10.1016/j.jbi.2018.08.006 

[6] E. Ayan, H. U. Ünver, “Data Augmentation Importance for Classification 

of Skin Lesions via Deep Learning,” Proceedings of 2018 Electric 

Electronics, Computer Science, Biomedical Engineering Meeting(EBBT), 

10-15, 2018. http://dx.doi.org/10.1109/EBBT.2018.8391469 

[7] N. Gessert, T. Sentker, F. Madesta, R. Schmitz, H. Kniep, I. Baltruschat, 

R. Werner, A. Schlaefer, “Skin Lesion Classification Using CNNs with 

Patch-Based Attention and Diagnosis-Guided Loss Weighting,” IEEE 

Transactions on Biomedical Engineering, 1-1, 99, 2019. 

http://dx.doi.org/10.1109/TBME.2019.2915839 

[8] K. M. Hosny, M. A. Kassen, M. M. Foaud, “Classification of skin lesions  

using transfer learning and augmentation with Alex-net,” PLOS One, 17-

20, 2019. http://dx.doi.org/10.1371/journal.pone.0217293 

[9] N. Hameed, A. M. Shabut, M. A. Hossain, “Multi-Class Skin Diseases 

Classification Using Deep Convolutional Neural Network and Support 

Vector Machine,” Proceedings of 12th International Conference on 

Software, Knowledge, Information Management and Applications 

(SKIMA), 23-30, 2019 http://dx.doi.org/10.1109/SKIMA.2018.8631525 

[10] M. A. Albahar, “Skin Lesion Classification Using Convolutional Neural 

Network With Novel Regularizer,” IEEE Access, 7, 2019. 

http://dx.doi.org/10.1109/ACCESS.2019.2906241 

[11] A. Hekler, J. S. Utikal, A. H. Enk, “Superior skin cancer classification by 

the combination of human and artificial intelligence,” European Journal 

of Cancer, 120, 114-121, 2019.  

http://dx.doi.org/10.1016/j.ejca.2019.07.019 

[12] H. Kittler, H. Pehamberger, K. Wolff, M. Binder, “Diagnostic accuracy of 

Dermatoscopy,” Lancet Oncology, 3(3), 159-165, 2002. 

https://doi.org/10.1016/s1470-2045(02)00679-4 

[13] M. Maragoudakis, I. Maglogiannis, “Skin lesion diagnosis from images 

using novel ensemble classification techniques,” in Information 

Technology and Applications in Biomedicine (ITAB), 2010 10th IEEE 

International Conference , 1–5, 2010.  

http://dx.doi.org/10.1109/ITAB.2010.5687620 

[14] J. Kawahara, G. Hamarneh, “Multi-resolution-tract CNN with hybrid 

pretrained and skin-lesion trained layers,” in International Workshop on 

Machine Learning in Medical Imaging. Springer, 164–171, 2016. 

http://dx.doi.org/10.1007/978-3-319-47157-0_20 

[15] P. Tschandl, C. Rosendahl, H. Kittler, “The HAM10000 dataset, a large 

collection of multi-source dermatoscopic images of common pigmented 

skin lesions,” Scientific Data, 5, 180161, 2018.  

http://dx.doi.org/10.1038/sdata.2018.161  

[16] S. S. Shapiro, M. B. Wilk, “An analysis of variance test for normality 

(complete samples) ,” Biometrika, 52(3–4), 591–611, 1965.  

https://doi.org/10.2307/2333709  

[17] B. Ralph, D. E. E. Cureton, “Test of Normality Against Skewed 

Alternatives,” Psychological Bulletin, 78, 262-265, 1972. 2 

https://dx.doi.org/10.1037/h0033113  

[18] M. A. Stephens, “EDF Statistics for Goodness of Fit and Some 

Comparisons,” Journal of the American Statistical Association. , 69: 730–

737, 1974. https://doi.org/10.2307/2286009  

[19] W. H. Kruskal, W. A. Wallis, “Use of ranks in one-criterion variance 

analysis,” Journal of American Statistics Association, 583–621, 1952. 

https://doi.org/10.2307/2280779  

[20] N. Nachar, “The Mann-Whitney U: A test for assessing whether two 

independent samples come from the same distribution,” Tutorials in 

Quantitative Methods for Psychology, 4(1), 13-20, 2008. 

http://dx.doi.org/10.20982/tqmp.04.1.p013  

[21] S. W. Scheff, “Chapter 8- Nano-parametric Statistics,” Fundamental 

Statistical Principles for the Neurobiologist-A Survival Guide, 157-182, 

2016. 

[22] K. K. G. Lan, Y. Soo, C. Siu, M. Wang, “The use of Weighted Z-tests in 

Medical Research,” Journal of Biopharmaceutical Statistics, 15(4), 625-

639, 2005. http://dx.doi.org/10.1081/BIP-200062284  

[23] H. Yusop, F. F. Yeng, A. Jumadi, A. Mahadi, M. N. Ali, N. Johari, “The 

Effectiveness of Excellence Camp: A study on Paired Sample,” Procedia 

Economics and Finance, 31, 453-461, 2015.  

https://doi.org/10.1016/S2212-5671(15)01174-0  

[24] H. Abdi, L. J. Williams, “Tukey’s Honestly Significant Difference 

(HSD) Test”, Encyclopedia of Research Design., 2010. 

[25] D. Fraiman, R. Fraiman, “An ANOVA approach for statistical 

comparisons of brain networks,” Scientific Repository, 8, 4746, 2018. 

https://doi.org/10.1038/s41598-018-23152-5  

 

https://doi.org/10.3322/caac.21395
http://dx.doi.org/10.1007/s13555-016-0165-y
https://doi.org/10.1109/TENCON.2019.8929461
http://dx.doi.org/10.1109/IIPHDW.2018.8388338
http://dx.doi.org/10.1016/j.jbi.2018.08.006
http://dx.doi.org/10.1109/EBBT.2018.8391469
http://dx.doi.org/10.1109/TBME.2019.2915839
http://dx.doi.org/10.1371/journal.pone.0217293
http://dx.doi.org/10.1109/SKIMA.2018.8631525
http://dx.doi.org/10.1109/ACCESS.2019.2906241
http://dx.doi.org/10.1016/j.ejca.2019.07.019
https://doi.org/10.1016/s1470-2045(02)00679-4
http://dx.doi.org/10.1109/ITAB.2010.5687620
http://dx.doi.org/10.1007/978-3-319-47157-0_20
http://dx.doi.org/10.1038/sdata.2018.161
https://doi.org/10.2307/2333709
https://dx.doi.org/10.1037/h0033113
https://doi.org/10.2307/2286009
https://doi.org/10.2307/2280779
http://dx.doi.org/10.20982/tqmp.04.1.p013
http://dx.doi.org/10.1081/BIP-200062284
https://doi.org/10.1016/S2212-5671(15)01174-0
https://doi.org/10.1038/s41598-018-23152-5

