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Abstract—First sections of the paper contain some 

considerations relevant to the reversibility of quantum gates. The 

Solovay-Kitayev theorem shows that using proper set of 

quantum gates one can build a quantum version of the non-

deterministic Turing machine. On the other hand the 

Gottesmann-Knill theorem shows the possibility to simulate the 

quantum machine consisting of only Clifford/Pauli group of 

gates. This paper presents also an original method of designing 

the reversible functions. This method is intended for the most 

popular gate set with three types of gates CNT (Control, NOT 

and Toffoli). The presented algorithm leads to cascade with 

minimal number CNT gates. This solution is called optimal 

reversible circuits. The paper is organized as follows. Section 5  

recalls basic concepts of reversible logic. Section 6 contain short 

description of CNT set of the reversible gates. In Section 7 is 

presented form of result of designing as the cascade of gates. 

Section 8 describes the algorithm and section 9 simple example.  

 

Keywords—reversible logic; reversible circuits; reversible 

gate; CNT set of the gates  

I. REVERSIBILITY TRANSFER TO QUANTUM DOMAIN 

ESIGNING of reversibility functions, as presented 

below, is a basic requirement for quantum gates and 

circuits [23]. The asked questions concerning the transfer 

between classical and quantum domains are: what are 

similarities and differences, how reversibility transfers 

between the domains, how to manage non-reversibility in 

quantum, simple and complex gate equivalence, gate synthesis 

and decomposition, gate redundance and ancilla, gate 

agnostics to technology, Hermitian self-inverse and non-self-

inverse gates, skew-Hermitian, extension of classical 

universal CNT set to quantum, Pauli/Clifford quantum gates, 

non-Clifford gates, etc. The questions finally aim at 

realization of reversible unitary quantum gates and circuits 

which cannot be simulated by classical computation [24].  

 All quantum gates are reversible. The mapping of a gate's 

input to its output is a bijection. All multi-gate systems and 

scalar and Kronecker products of unitary gates are unitary and 

reversible. Quantum logic functions can be synthesized as 

complex gates or sequences of gates. Irreversible functions 

necessary to implement a specific quantum system can be 

transformed into reversible ones by adding ancilla qubits to 

the input, output or both sides. After performing the 
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calculations of the required function, the ancilla redundant 

qubits are un-calculated (reverse calculated) or left in the 

system. Leaving ancilla entangled qubits in the system can 

lead to measurement errors. A function operating on n qubits 

has dimension 2nx2n. A qubyte, a register of 8 qubits, is 

represented by a matrix of 28x28 elements. 

 Here we take a closer look at quantum gates and ideal 

systems, but going a little deeper into the detailed properties 

of matrix gate operators and their equivalences, such as 

unitarity, reversibility, self-reversibility and non-self-

reversibility, also known as Hermitian and non-Hermitian, 

indempotent, involutive, separable and non-separable 

operators. multi-qubit, in other words pseudo-quantity and 

true quantum, in other words locality and non-locality (skew 

Hermitian), technological agnosticity, etc. Some of these 

properties (in some sense treated as types of symmetry) are 

absolutely required for classical quantum gates (for a quantum 

Turing machine) such as unitarity and reversibility, and some 

not necessarily, such as Hermitian. Most allowed quantum 

gates, unitary and reversible, are non-Hermitian [25]. The 

more symmetry a gate has, the more fundamental it is, such as 

the Pauli group and some of its transformations and 

extensions to the Clifford group. 

 Quantum gates are operators that act on qubits. Qubits meet 

certain criteria, sometimes called the DiVincenzo criteria, to 

enable the gate construction of a quantum computer (or rather 

processor) with their help. A qubit is a well-defined two-level 

quantum object. Qubits are addressable, meaning it is possible 

to set any very simple, often fundamental, quantum state 

before using them to conduct functional activities. Qubits are 

controllable, which means that it is possible to program their 

quantum states with the help of dedicated external 

interactions. Qubits are decoherently isolated from unwanted 

interactions, i.e. they have a decoherence time long enough 

for computational needs. Qubits are organizable, which means 

they can be set into various types of registers containing many 

separate qubits. 

 Quantum gates build the ideal logical structure of a 

quantum computer, provided they form a sufficient group, 

called a universal set. Not all quantum gates form universal 

sets. The significant natural symmetry of a particular quantum 

gate allows for a greater number of equivalences with related 

gates. The symmetries of individual gates in a quantum 

system have a significant impact on the final properties of the 

system, e.g. the possibility of grouping basic gates into logical 

qubits and higher order logic gates, resistance to decoherence, 

resistance to the generation and uncontrolled multiplication of 
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errors, etc. Some gate symmetries facilitate the multiplication 

of quantum errors , hence the systems use a mixture of gates 

with various degrees of symmetry that have preventive 

features. Quantum gates also differ in the type of quantum 

resources they build in the form of superposition and 

entanglement. Superposition and entanglement can be 

stronger or weaker. Some gates reach maximum values of 

quantum resources, such as those determined by Bell states. 

Different types of entanglement may be transferred or not 

transferred between each other, e.g. between W and GHZ 

gates. Quantum gates may be more or less resistant to 

decoherence. A quantum system cannot be built from a 

completely arbitrary set of gates. It must contain a minimum 

universal set, or only such a mandatory set may be 

supplemented with permitted arbitrary goals. 

 What is the most important gate for quantum computing? 

Those using public quantum clouds know this well. At the 

beginning of a quantum system, which we read from left to 

right and which connects the gates with quantum wires 

representing qubits, it is necessary to set the input state. It is 

good to have as much quantum resources as possible from the 

beginning in the form of coherence and entanglement. The 

immediate choice is, for example, parallel one-qubit 

Hadamard gates that set the same ket probability on all 

required qubit lines, and then two-qubit quantum XOR (CX) 

gates that strongly entangle two selected lines to the two-qubit 

Bell state. 

 The simplest system for obtaining a strongly and uniformly 

entangled Bell state consists of one Hadamard gate on the 

control line and then a CX gate. Such a system of gates in the 

signal line encodes a qubit from the base state to a qubit with 

quantum resources of superposition and real entanglement, or, 

in the reverse order, decodes the encoded qubit to the initial or 

simpler quantum state. At the same time, such a system can 

correct quantum errors arising during processing. Using a bit 

of quantum programming lingo, we can also say that the 

Hadamard gate is very compatible with the S phase gate (or its 

inverse S†), which is an extension of the H gate in order to 

obtain complex superposition. The S gate maps the X→Y 

axes and is a rotation about the Z axis by π/2. For the inverse 

S-1=SϮ, due to Hermitian self-adjoint, the mapping is X→-Y 

and the rotation is -π/2. 

 A reversible XOR gate is a individually controlled NOT 

gate, also known as CNOT, or a controlled Pauli gate CX, 

with a fixed rotation around the X axis by an angle π in the 

unitary Bloch sphere. The CX gate generates and manipulates 

entanglement, and is used very often in various computational 

systems, as well as, for example, quantum error correction 

systems. The CX gate combined with single-qubit gates 

creates the simplest universal set, one of the possible universal 

sets. In such a universal set, it plays a fundamental, 

irreplaceable role. In Toffoli notation, the top a qubit is the 

source (or control) and the bottom b is the purpose (signal). 

The CX gate transforms the base state of the two-qubit input 

ket into the output |a,b>→|a,a b>, where  is the XOR 

operation. When the input qubits are not in a state of 

superposition between |0> and |1>, i.e. they behave like 

classical bits, the quantum XOR gate has a truth table 

identical to the truth table of the classical I/O gate: 00-00, 01-

11,10 -10,11-01. The 4x4 matrix gate operator 

CX=[1,0,0,0/0,0,0,1/0,0,1,0/0,1,0,0] acts on a columnar four-

amplitude state vector [00,01, 10,11] giving the output state 

vector [00,11,10,01]. 

 If the control qubit of the CX gate is not in the base state, 

but in the uniform superposed state |+>=(1/√2)(|0>+|1>), i.e. 

after passing through the H|0> gate, then at the gate input CX 

we have, for example, the state  |0>

|+>=|0+>=(1/√2)(|00>+|01>). This state, after passing through 

the CX gate, gives an entangled state, one of the Bell states: 

CX|0+>=(1/√2)(|00>+|11>). The probability of states after 

measurement |00> and |11> is 50%, and the states |01> and 

|10> are 0%. This entangled quantum state is not separable. 

 Unitary multi-qubit gates have operators in the form of 

frame matrices, where some frames are functional and the 

remaining parts are permutational, e.g. in multiply controlled 

and other complex gates. The single-qubit gate G, i.e. the 

unitary operator bra, affects qubit k written in the form of ket 

<G|k>. The two-qubit gate G2 acts on two qubits written in 

the form of a ket of the product of these qubits <G2|k1k2>. In 

the equivalent matrix form, it is the scalar product of a matrix 

unitary gate operator of dimensions 2x2 and 4x4 respectively 

and a column vector of one qubit and two qubits. Among two-

qubit (also multi-qubit) gates, we distinguish separable 

(separable) into two qubits (different groups of qubits) and 

non-separable (not separable), due to the sufficiently strong 

entanglement of the qubits.  

II. UNITARY, REVERSIBLE OPERATORS IN QUANTUM 

A quantum gate is a unitary linear transformation of U. 

There are uncountable many quantum gates. Basic quantum 

gates are described by very simple unitary matrices 

(operators) U. The determinant of a unitary matrix is a 

complex number with norm 1. Unitarity ensures that if U 

exists, then U-1 also exists, so quantum gates are always 

reversible. Unitarity requires reversibility, but does not require 

self-reversibility, i.e. the U=U-1 condition. So quantum gates 

can be self-reversible (Hermitian) and non-self-reversible 

(non-Hermitian). The unitary operator U satisfies the 

condition: U-1=UϮ. The Hermitian operator h satisfies the 

condition: h=hϮ. Hence it follows that not all unitary operators 

are Hermitian, and not all Hermitian operators are unitary. If 

the unitary operator U is Hermitian then U-1=UϮ=U, or U=U-

1is self-reversible. CX gate is self-reversible and therefore 

Hermitian. 

Among the classical gates, there is a group of reversible 

gates, which in a sense precede quantum systems and belong 

to one classical-quantum group of reversible gates. Classical 

reversible gates are essentially permutation gates. Quantum 

gates are unitary operators with respect to a certain basis in 

Hilbert space. Hilbert space is a linear, unitary, complete 

space, here with respect to qubits, over the field of complex 

numbers. A Hilbert space is a metric space with the metric 

given by the dot product. The basis in linear space is an 

extension of the idea of the Cartesian coordinate system in 

Euclidean space. In relation to qubits, a computational basis is 

used, referring to a certain coordinate system or labelling 

orthogonal basis vectors, of which there are d-1 for a d-level 

qubit. Unitary symmetry is a type of symmetry related to the 

group of unitary matrices. The unitary group of degree n, 

denoted as U(n), is a group of unitary matrices of dimension 

nxn with the group operation being matrix multiplication. The 
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unitary group U(n) is a real Lie group of dimension n2. The 

group of unitary matrices with determinant 1 is denoted as 

SU(n). In the case of a group of 2x2 quantum gates, we talk 

about SU(2) symmetry.  

The unitary operator is a generalization of the unitary 

matrix. The unitary operator is a normal operator whose 

composition with its conjugate operator is identity. The 

unitary operator preserves geometric quantities (norms, 

metrics, angles, orthogonality, lengths) and the dot product 

(inner product) in the unitary space. A unitary space is a linear 

space with the dot product of vectors defined in it, which is 

alternatively denoted as <x,y>, (x,y), <∙|∙>, etc. The dot 

product is semi-linear, linear due to one and anti-linear 

because of the second argument. Formally, the choice is free. 

In the Dirac bracket notation, popularly used in quantum 

computing, antilinearity is assumed with respect to the first 

argument, i.e. bra denoting a continuous linear functional in 

the Hilbert complex space (and in relation to a qubit, a unitary 

operator, i.e. a quantum gate). Linearity is assumed towards 

ket, i.e. the unitary column vector denoting the quantum state 

of the qubit.   

Not all gates are Hermitian, i.e. described by the Hermitian 

operator (self-adjoint, self-reversible). Most unitary gates are 

non-self-reversible, i.e. non-Hermitian. Hermitian gates are 

the basic, elementary group of quantum gates. A Hermitian 

(self-adjoint) matrix is a complex square matrix equal to its 

transposed complex conjugate. Hermitian matrices are normal 

matrices. The Hermitian matrix is a complex extension of the 

symmetric matrix. Pauli matrices are Hermitian matrices. The 

3x3 Gell-Man matrices are traceless Hermitian matrices. Most 

of the most commonly used quantum gates such as Pauli 

XYZ, H,CX, SWAP, Toffoli, Fredkin are Hermitian. Most of 

the single-qubit and two-qubit gates used are Hermitian. Most 

allowed quantum gates are non-Hermitian. 

As the quantum gate dimension increases, fewer and fewer 

gates are Hermitian. Gate hermiticity plays a significant role 

in reversible gates and quantum systems. In classical logic 

systems, hermiticity does not play such a role and most of the 

classical gates used in practice are non-Hermitian, even in 

reversible systems. Square Hermitian matrices are unitary 

diagonalizable with real eigenvalues. All square unitary and 

Hermitian matrices are normal matrices. The normality of the 

U matrix is equivalent to the existence of an orthonormal 

basis in which PUP-1 is a diagonal matrix and P is a 

transformation matrix to the orthonormal basis. A 

generalization of a normal matrix is a normal, linear operator, 

limited in Hilbert space, which commutates (is commutative) 

with its conjugate. Any normal matrix can be diagonalized 

(spectral theorem). These properties of operators translate into 

the characteristics of quantum gates.  

The unitary operator is a surjective bounded linear operator 

and represents an isomorphic linear transformation between 

topological normalized Hilbert vector spaces. The product of 

the unitary operator with its Hermitian conjugate is 

commutative and is an identity operator. The unitary operator 

is both isometry and coisometry, or in other words surjective 

isometry. Unitary operators are automorphisms of Hilbert 

spaces. The Hermitian coupling of a bounded linear operator 

is involutional, reversible in the case of operator reversibility, 

isomorphic in the case of operator isomorphicity, injective in 

the case of surjectivity of the operator, dense in the case of 

operator injectivity, antilinear, and anti-separable.  

Hermitian operators build observables in quantum 

computing in terms of real eigenvalues. The sum of Hermitian 

operators is a Hermitian operator. The product of the 

Hermitian operator by a real number is the Hermitian 

operator. Every Hermitian operator defined on the entire 

Hilbert space is bounded. Hermitian operators unconstrained 

as observables, e.g. operators of physical quantities, are 

defined on some Hilbert subspace. The properties of the 

unitary and Hermitian operators collected and recalled here 

translate into the properties of quantum gates and their 

behavior in quantum systems. 

 A special place in quantum computing is occupied by the 

Hermitian operator and the 2x2 one-qubit Hadamard gate with 

a unitary and involutional matrix analogous to Pauli gates 

H=(1/√2)[1,1/1,-1] and having no classical reference, and 

therefore not having truth table. This is a 'pure' quantum gate. 

In general, the Hadamard matrix is an nxn square matrix filled 

only with ±1 numbers, in which the rows are mutually 

orthogonal. Each pair of rows represents perpendicular 

vectors. Finding the H matrix of significant dimensions is a 

computationally difficult problem. A single-qubit H gate maps 

the underlying starting kets |0> and |1> into a uniform 

superposition of states |0> and |1> with equal probability 

(1/√2)(|0>±|1>). Such states are marked as kets |+> and |->, 

and then the gate H is written as the sum of the inner products 

ket and bra H=|+><0|+|-><1|. The H gate rotates the qubit 

state by an angle of π radians with respect to the diagonal axis 

in the x-z plane, i.e. (x+z)/√2, which is equivalent to 

assembling a Pauli gate X and then rotating by π/2 with 

respect to the Y axis, therefore the following conditions are 

satisfied the following identities decompositions: identity 

HH=I, H=XRy(π/2)=X√Y, and H=Ry(π/2)Z=√YZ, H=Z/√Y= 

√-1YX. The H gate can be treated as a unitary transformation 

mapping qubit operations in the Z axis to the X axis and vice 

versa, therefore the following dependencies, decompositions, 

factorizations are met: X=HRZ, S=√Z=H√XH, 

RZ(φ)=HRZ(φ)H. The Hadamard gate can be represented, 

factorized using a phase gate π/2, S=P=P(π/2) and a rotation 

gate Rx relative to the X axis by an angle π/2 as follows: 

H=PRx(-π/2)P. 

 Clifford quantum gates are elements of the broader Clifford 

group, which is the set of discussed mathematical 

transformations of Pauli operators, in the form of 

permutations and other unitarity-preserving transformations. 

The Clifford group contains single-qubit Pauli gates, their 

unitary transformations, arbitrary rotations, phase shifts, two-

qubit permutations in the form of controlled Pauli gates CX, 

CY, CZ, CS, etc. such as the controlled Hadamard gate CH, 

multi-qubit permutations in the form of higher-order 

controlled gates, e.g. .C2X=CCX (Toffoli gate), CnX, CnY, 

CnZ, etc. The general expression for the unitary matrix U(2) is 

used here, 2x2 U=[a,b/-eiφb*,eiφa*], |a|2+|b|2=1, det(U)=eiφ,, 

from which some Clifford gates are recruited. If additionally 

det(U) of such a matrix is 1, then the matrix and the gate 

belong to a special unitary group, the Lie group, SU(2). 
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III. MULTIVARIABLE QUANTUM GATES  

Two-qubit (and multi-qubit) gates are required to handle 

entangled quantum states. Single-qubit gates cannot handle 

such states. Not all two-qubit gates result in appropriate 

entangled states (not classically simulated). Basic two-qubit 

gates include controlled gates. Controlled gates CX,CY,CZ 

have operators in the form of frame matrices and contain an 

operator frame, e.g. X,Y.Z, and a permutation part. Control 

can be extended to any number of qubits in the gate. The 

control function of a quantum gate plays a different role when 

analyzed from the point of view of measuring the quantum 

state. Before measurement, it acts on all superposed states that 

meet the operating conditions of the control line. After the 

measurement, we assume that the control function was 

performed or not depending on which base state was 

measured. The group of controlled gates includes the 

controlled phase shift gate P(φ)=[1,0/0,eiφ] denoted as 

CP(φ)=CPHASE. The 4x4 CP frame matrix operator contains 

a P frame in the lower right corner and a permutation in the 

upper left corner (always relative to the standard 

computational basis). The CP gate shifts the phase by φ only 

if it acts on the |11> state. A special case of the general gate 

CP(φ) is CZ=CP(φ=π). Notation of the controlled gate 

operator is a CU with a frame matrix with U frames and a 

permutation CU=[1000/0100/00u00u01/00u10u11].  

 The dot product of the gates C=XY=iZ means their series 

connection. Similarly, the Kroneker (tensor) product of two 

quantum gates means their parallel connection C=X Y. If we 

denote a one-qubit Hadamard gate as H, then in principle it 

can and should be denoted as H1, because H2=H H is 

Hadamard transform. The series connection HH=I is identity. 

The nth-order Hadamard transform Hn=H n performs a 

transformation operation on a register of n-qubits. If Hn is 

applied to a register of n qubits initialized to |0>, i.e. H|0>=

H|0>=( H)( |0>), then the quantum register is in a state of 

uniform superposition with equal probabilities in each of its 2n 

possible quantum states. The condition of uniform 

superposition of quantum states of qubits at the input of a 

quantum gate system is required in many quantum algorithms 

and calculations such as amplitude amplification, quantum 

phase estimation, etc. Such a state is obtained and often used 

as the first step in many complex quantum algorithms. 

Another form of converting the H gate into a two-qubit 

form (i.e. also supporting quantum entangled states) is HI=H

I, where I is the (quantum) identity gate (quantum wire). So 

it is an H gate connected in parallel with the quantum wire. 

The HI gate has a 4x4 matrix operator of the form 

HI=(1/√2)[1010/0101/10-10/010-1]. The HI gate can be 

applied to one of the Bell states HI[(√-12)(|00>+|11>] 

generating a base probability distribution of states, e.g. 

(1/2)[|00>+|01>+ |10>-|11>. The unitary inversion operation 

of the probably most popular system of input gates HI and CX 

is as follows: (CX∙HI)†=HI
†∙CX†=HI∙CX. 

 A SWAP gate switches two qubits. It is sometimes denoted 

as S, which can be easily confused with a phase gate 

P(φ=π/2)=S, unless the context of application in a specific 

gate system is analysed more closely. The SWAP frame 

operator includes the X operator placed symmetrically and 

permutations up and down the diagonal (of course with 

respect to the computational base |00>,|01>,|10>,|11>). The 

square root √SWAP gate performs half of the SWAP function 

on two qubits. The √SWAP gate is universal, i.e. together 

with single-qubit gates, it creates a universal set of gates from 

which any set of other gates, including multi-qubit gates, can 

be built. The √SWAP gate is not maximally entangled. 

Generation of the Bell state requires the use of at least two 

√SWAP gates. A related SWAP gate is the imaginary SWAP 

gate, denoted as iSWAP. The difference in the frame operator 

of the iSWAP gate compared to the SWAP gate is the 

exchange of real ones 1 in frame The iSWAP gate has its 

square root version √iSWAP with a cage matrix [√-12,i√-

12/i√2,√-12]. The iSWAP gate has equivalent relationships 

with the Ising Rxx and Ryy coupling gates. 

 A controlled CSWAP gate, called a Fredkin gate or 

abbreviated as F or CS, is a three-qubit gate and performs a 

controlled SWAP operation. In classical computing, it is a 

universal gate and has a character analogous to the quantum 

version, i.e. both have the same truth tables (for the base state 

of the quantum version). The Fredkin quantum gate has a 

cagey 8x8 matrix operator. A Fredkin gate maintains the 

number of I/O states |0> and |1>. The Fredkin gate was 

implemented in a photonic version and is a candidate for 

implementation in the form of a PIC integrated circuit. 

Fredkin gates are an element of the implementation of, for 

example, Shor's algorithm. 

 The Toffoli gate is a three-qubit, double-controlled NOT=X 

gate, i.e. Toff=CCX=CCNOT. It is equivalent to the Deutsch 

gate for the angle π/2, i.e. Toff=D(π/2). The Toffoli gate is 

universal for classical computations, but not for quantum 

ones. The classical and quantum Toffoli gates have the same 

structure, they are analogous, they both have the same truth 

table, except for the 8x8 framed matrix operator containing 

the CX frame and the permutation residue. The Toffoli gate 

achieves universality in combination with a single-qubit H 

gate. In the simplest system of input states |0> and |1>, the 

Toffoli gate operates on the third qubit when both control 

qubits are |1>. 

 The three-qubit unitary Deutsch gate D(φ), is a quantum 

generalization of the Toffoli gate, transfers the state |a,b,c>→i 

cos(φ)|a,b,c>+sin(φ)|a,b,1-c > only for a=b=1. The D gate is a 

universal quantum gate. Operator D is a generic U(2) 8x8 

matrix with a double-controlled cage structure with the cage 

matrix [u11,u12/u21,u22] in the lower right corner and the 

rest in permutation form. The D gate, as well as other multi-

qubit gates, are subject to scalar product decomposition into 

simpler gates, e.g. two-qubit individually controlled gates and 

one-qubit gates. 

Two-qubit and multi-qubit gates are either separable, i.e. 

decomposable into single-qubit gates, or entangled and cannot 

be separated into single-qubit gates. Two-qubit gates that 

cannot be constructed as the tensor product of two one-qubit 

gates are entangled gates, and are called true two-qubit or true 

two-qubit gates. True two-qubit gates are important because 

only one of these gates is needed, e.g. the frequently used CX 

gate, which, when combined with single-qubit gates, creates a 

universal set of gates. Functional completeness in the Boolean 

logical domain is created, for example, by a set of gates: X, 

CX and Toffoli. Of the possible basic 24 two-qubit gates in 

the computational database, 4 are separable and 20 are non-

separable.  
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IV. MULTIGATE SETS 

The Clifford set alone is not a universal quantum gate set. It 

can be simulated according to GKT. Quantum systems 

consisting of Clifford gates entering the universal set, called 

the primitive gate set, can be efficiently simulated in 

polynomial time by a probabilistic classical computer, as 

proven by the Gottesmann-Knill GKT theorem. Other unitary 

operators, discussed above, that are outside the primitive set 

can be synthesized or approximated by combining primitive 

gates into a quantum system. The required additional unitary 

gate can be factorized into a scalar or tensor product of the 

available primitive gates from the universal set. The U(2n) 

group is the symmetry group for quantum gates acting on n 

qubits. Factorization is equivalent to the problem of finding a 

path in the U(2n) group from the set generating primitive 

gates.  

The Solovay-Kitayev SKT theorem shows that given a 

universal set of primitive gates, there is an efficient 

approximation to every quantum gate. Formally, if a set of 

single-qubit quantum gates (such as Clifford) generates a 

dense subset of the SU(2) group, then this set fills the SU(2) 

group quickly, which means that any additionally required 

gate can be approximated by a fairly short sequence of gates 

generating this set. However, for large numbers of qubits in a 

quantum system, the problem of synthesizing any gate 

becomes impossible. A quantum system with n qubit gates 

can be approximated to an accuracy of e, in the operator norm, 

by a quantum system with O(m logc(m/e)) gates from the 

required finite set of universal gates. The SKT theorem 

guarantees that a quantum processor requires the 

implementation of a relatively small number of gates to 

perform virtually all quantum operations.  

The GKT theorem states that stabilizer systems can be 

effectively simulated classically in O(n log n) time. The 

Clifford group is a normalizer of the Pauli qubit group. The 

centralizer (commutator) and the normalizer (stabilizer), as 

well as the idealizer, are special subgroups of a given group, 

having universal applications in its study. The normalizer 

meets weaker conditions than the centralizer. Centralizers and 

normalizers, as well as idealizers, also apply to Lie algebra 

and Lie groups (unitary group U(n)). The Clifford group can 

only be generated by using CX, H, S gates and stabilizer 

circuits can be built using these gates. The GKT theorem 

proves that quantum calculations based on the type of 

entanglement generated by stabilizer systems do not provide a 

computational advantage over classical calculations. This also 

means that even some highly entangled quantum states can be 

simulated classically. Many of the fundamental quantum 

algorithms use only Clifford gates, including entanglement 

distillation and quantum error correction algorithms. It is 

necessary to know exactly what type of entanglement we are 

dealing with in a specific gate system in a quantum processor 

[25, 27].  

V. INTRODUCTION TO DESIGN A REVERSIBLE FUNCTIONS 

The reversible functions are implemented by digital circuits 

with the same number of input and output bits (Fig. 1). These 

circuits could be lossless information circuits as well as 

reversible ones if mapping of the vector input into the vector 

output is mutually unambiguous. 

 

Fig. 1.a) Irreversible circuit, b) reversible circuit  

Landauer showed that the loss of information implies energy 
loss [1]. The result of this theorem is the possibility of 
construction of low energy circuits using reversible logic. The 
one of conditions of reversibility is a mutual unambiguity, i.e. 
for each input pattern is assigned different an output pattern, 
and vice versa [21]. Each of the Boolean functions included in 
the reversible function has the same number of the 0-s and 1-s 
minterms. The other conditions of reversibility are: no fan-
outs and no feed-backs [2]. Depend of the number of variables 
there are different number of reversible functions. In general 
case there are 2n! different function, where n is the number of 
variables. There are 24 reversible functions for 2 variables, 
40320 functions for 3 variables and more than 20x1012 for 4 
variables.  The base of the synthesis are the types of the 
gates used in this procedure. There are many types of the 
gates as: NOT, Controlled NOT, Toffoli, Fredkin, Kerntopf  
gates and others [7,8,9,10]. One of the most popular set of the 
reversible gates is the CNT set (Controlled NOT, NOT and 
Toffoli gates). 

VI. REVERSIBLE GATES  

The three variables CNT set of the gates containing 12 gates. 

All of them are presented in Table I where are the names of 

the gates, assigned number and diagrams. 

TABLE I 

THE CNT SET OF THREE VARIABLE REVERSIBLE GATES 

Gate numbers   

T0 - 8 

X2

X1

X0

Y2

Y1

Y2 

C0-1 – 7 

X2

X1

X0

Y2

Y1

Y2 

C0-2 – 6 

X2

X1

X0

Y2

Y1

Y2 

N0 – 9 

X2

X1

X0

Y2

Y1

Y2 

T1 – 5 

X2

X1

X0

Y2

Y1

Y2 

C1-0 – 4 

X2

X1

X0

Y2

Y1

Y2 
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C1-2 – 3 

X2

X1

X0

Y2

Y1

Y2

X2

X1

X0

Y2

Y1

Y2 

N1 – a 

X2

X1

X0

Y2

Y1

Y2 

T2 – 2 

X2

X1

X0

Y2

Y1

Y2 

C2-0 – 1 

X2

X1

X0

Y2

Y1

Y2 

C2-1 – 0 

X2

X1

X0

Y2

Y1

Y2 

N2 - bb 

X2

X1

X0

Y2

Y1

Y2 

 

It easy to show the logic gate operation. The operation of each 

gate consists of swapping of the pairs minterms in true table.  

For example if on the inputs of the gate T0 is identical 

function than on the outputs is the function Y2Y1Y0 presented 

in Table II. 

TABLE II 

EXAMPLE OF THE GATE T0 OPERATION  

Row 

No. 
X2X1X0 Y2Y1Y0 

0 000 000 

1 001 001 

2 010 010 

3 011 011 

4 100 100 

5 101 101 

6 110 111 

7 111 110 

 

The operation of the gate T0 consists of swapping of the pairs 

minterms 6 with 7. In this case Y2=X2, Y1=X1, Y0=X0X2·X1. 

 

TABLE III 

 SWAPPED MINTERMS FOR REVERSIBLE GATES 

Gate Swapped rows/values 

T0 6,7 

C0-1 2,3 & 6,7 

C0-2 4,5 & 6,7 

N0 0,1 & 2,3 & 4,5 & 6,7 

T1 5,7 

C1-0 1,3 & 5,7 

C1-2 4,6 & 5,7 

N1 0,2 & 1,3 & 4,6 & 5,7 

T2 3,7 

C2-0 1,5 & 3,7 

C2-1 2,6 & 3,7 

N2 0,4 & 1,5 & 2,6 & 3,7 

In Table III are presented operations (the pairs of minterm 

swapped by proper gate) for all gates. As we can see each gate 

swap minterm 7. The gates with XOR on line X2 swap 

minterm 7 with minterm 3. The gates with XOR on line X1 

swap minterm 7 with minterm 5. The gates with XOR on line 

X0 swap minterm 7 with minterm 6. 

VII. REVERSIBLE CIRCUITS  

To implement any reversible function the designer must find 

the string of the reversible gates which transform the identical 

function I into given function F. The solution of this problem 

is a cascade of reversible gates (Fig. 2) containing a minimal 

number of gates.  

 

Gate
   1

Gate
   2

Gate
   3

Gate
   4

Gate
   5

Gate
   6I F

 

Fig. 2. Cascade with 6 reversible gates  

Usually exist more then one solution of this problem. To 

implement the best solution of the synthesis other criteria need 

to be added. In this paper we miss it. 

VIII. ALGORITHM 

The algorithm of the synthesis the given reversible function 

consists in searching for subsequent gates that replace 

appropriate rows. In each step are selected the gates swapping 

these rows. The end of algorithm is when on the output of the 

gate in subsequent step appear the given function.  

1. The indictor of the appropriate rows which must be 

swapped is the XOR function Si = Yi  Xi. This function 

contain value 1 if the bits Yi and Xi in any row are different. 

Than this row must be swaps.  

2. On each line Xi must be selected the gate (gates) which 

swapped the minterms indicated by function Si.  

3. For each selected gates calculate the output functions and 

repeat points 1 and 2. 

4. The algorithm terminate when all Si = 0. 

IX.  EXAMPLE FOR 3 VARIABLE FUNCTION  

Let be given the reversible function specified by true table 

from Table IV. 

TABLE IV 

 EXAMPLE OF THREE VARIABLE REVERSIBLE FUNCTION 

No. X2X1X0 Y2Y1Y0 

0 000 000 

1 001 100 

2 010 010 

3 011 001 

4 100 110 

5 101 011 

6 110 111 

7 111 101 
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Due to first point of algorithm we designate the three 

functions Y2, Y1 and Y0. , 

Y2= X2  X0  X1 X0 

Y1= X2  X1  X1 X0  X2 X1 

Y0= X2 X0  X2 X1  X1 X0 

1. Now is easy to designated three functions Si. 

S2= X0  X1 X0, S1= X2  X1 X0  X2 X1 

S0= X2 X0  X2 X1  X1 X0 

2. The function S2 has ones in rows 1 and 5. To swap these 

minterms using gate with XOR on line X2 is needed gate 

C2-0. 

The function S1 has ones in rows 3, 4, 5 and 7. To swap 

minterms 3 and 4 using gate with XOR on line X1 is needed 

gate C1-0 or C1-2. 

The function S0 has ones in rows 1 and 6. To swap minterm 

1 using gate with XOR on line X0 is needed gate N0. To 

swap minterm 6 using gate with XOR on line X0 is needed 

gate T0. 

 These 5 functions are the result of first step of our 

algorithm. For each of these cases we need to execute the 

second step. In order to simplify our considerations we select 

only the gate C1-0 and it output function F1 for second step. 

1. The function S2 has ones in rows 3 and 7. To swap these 

minterms using gate with XOR on line X2 is needed gate T2. 

The function S1 has ones in rows 3 and 4. To swap these 

minterm the gates using gate with XOR on line X1 is needed 

gate C1-2 or C2-0. 

The function S0 has ones in rows 3 and 6. To swap these 

minterms using gate with XOR on line X0 is needed gate 

C2-0. 

2. In second step for first selected gate C1-0 exist four gates 

needed for swapping appropriate rows. It easy to see that on 

the line X2 the gate T2 ordering function Y2 (the function S2 

= 0). 

The double gates string (C1-0 i T2) has on the output function 

F2 for the third step..  

1. The function S2 = 0.  

The function S1 has ones in rows 4 and 7. To swap these 

minterm the gates using gate with XOR on line X1 is needed 

gate C1-2. 

The function S0 has ones in rows 6 and 7. To swap these 

minterms using gate with XOR on line X0 is needed gate T0. 

2. In third step we use the gate T0 ordering function Y0. 

In fourth step: 

1. The function S2 = 0.  

The function S1 has ones in rows 4 and 6. To swap these 

minterm the gates using gate with XOR on line X1 is needed 

gate C1-2. 

The function S0 = 0.  

2. In third step we use the gate T0 ordering function Y0. 

In fifth step:  

1. The function S2 = 0.  

The function S1 has ones in rows 6 and 7. To swap these 

minterm the gates using gate with XOR on line X1 is needed 

gate T1. 

The function S0 = 0.  

2. In third step we use the gate T1 ordering function Y0. 

This step terminate the algorithm. The result of synthesis is 

show in the Fig. 3.  

 

Fig. 3. The solution of the algorithm using 5 reversible gates  

X. CONCLUSIONS 

The most important issue in the area of comparisons 

between classical and quantum computations is probably the 

search for a reduction in the required computing resources 

between both classes of computers with a logical gate 

architecture in the computable area. In the non-deterministic 

polynomial subclass of NP, strict evidence for resource 

reduction is sought, usually expressed in asymptotic form and 

the capital O notation, i.e. NP=O(nx). In the exponential 

subclass, e.g. EXPTIME=O(Xn), for conventional 

calculations, problems reduced to NP in the quantum class are 

sought. The search is to find suitable quantum algorithms and 

prove asymptotic reduction in the demand for functional 

resources. Reductions of this type found arouse a lot of 

interest and are one of the main driving forces behind the 

development of quantum computing. The practical 

implementation of the most famous of them in the form of 

Shor, Groover, HHL algorithms, etc. is still a promise of the 

future and requires quantum computers with millions of logic 

gates.  

The other aim of this paper is to present the design of 

optimal reversible cascade which enables implementation of 

the given reversible functions. The presented examples 

illustrate the algorithm for the synthesis of the reversible 

functions of the three variables. Was showed how to find the 

reversible function implemented by the given cascade. This 

algorithm is scalable for more variables. In this case presented 

algorithm could be aided by computer program.  
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