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Amplitude spectrum correction to improve speech
signal classification quality

Stanislaw Gmyrek, Robert Hossa, and Ryszard Makowski

Abstract—The speech signal can be described by three key
elements: the excitation signal, the impulse response of the
vocal tract, and a system that represents the impact of speech
production through human lips. The primary carrier of semantic
content in speech is primarily influenced by the characteristics of
the vocal tract. Nonetheless, when it comes to parameterization
coefficients, the irregular periodicity of the glottal excitation
is a significant factor that leads to notable variations in the
values of the feature vectors, resulting in disruptions in the
amplitude spectrum with the appearance of ripples. In this
study, a method is suggested to mitigate this phenomenon. To
achieve this goal, inverse filtering was used to estimate the
excitation and transfer functions of the vocal tract. Subsequently,
using the derived parameterisation coefficients, statistical models
for individual Polish phonemes were established as mixtures of
Gaussian distributions. The impact of these corrections on the
classification accuracy of Polish vowels was then investigated. The
proposed modification of the parameterisation method fulfils the
expectations, the scatter of feature vector values was reduced.

Keywords—automatic speech recognition, robust parameteri-
zation, amplitude spectrum correction, inverse filtering

I. INTRODUCTION

HERE is a need in automatic speech recognition (ASR)
systems to compensate for the influence of many factors
such as recording conditions, interpersonal differences, con-
textuality, etc., which adversely affect the performance of the
system. One group of such methods is robust parameterization,
which should make the parameter vector resistant to diversity
in the aforementioned factors, or at least reduce their impact.
A widely accepted model of speech production is of the

form:
s(n) = x(n) x h(n) xr(n) (1)

where z(n) is the excitation, h(n) is the impulse response of
the vocal tract, r(n) is the impulse response characterizing
the sound emission by the lips, n is the discrete time, and
* is the convolution operator [I]. The semantic information
contained in speech is mainly shaped by the vocal tract. On the
other hand, the quasiperiodicity of glottal excitation is one of
the factors contributing to the significant scatter in the values
of their resulting coefficients, by introducing ripples into the
amplitude spectrum (see Section II).
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This paper presents a method to mitigate the impact of glot-
tal excitation through a filtering process. First, the excitation
signal z(n) is estimated, and then the basis for determining the
Human Factor Cepstral Coefficients (HFCC) is the magnitude
of the vocal tract transfer function. The estimation of excitation
is achieved through known inverse filtering algorithms, which
involve removing the effects of components h(n) and r(n)
based on their parametric models determined through Linear
Predictive Coding analysis (LPC). Ensuring a reliable vocal
tract model is crucial in this approach, and there are various
methods to achieve this [2] [3] [4] [5]. Notably, options include
(i) the Closed Phase Inverse Filtering (CPIF) algorithm, which
focuses on analyzing only the closing phase of the vocal
cord vibration cycle, and (ii) iterative approaches and syn-
chronization mechanisms like Iterative Adaptive Inverse Filter-
ing (IAIF) and Pitch Synchronous Iterative Adaptive Inverse
Filtering (PSIAIF) [6]. In addition to inverse filtering, there
are parametric techniques and algorithms that use the mixed-
phase model of the speech signal [7]. In this approach, the
IAIF algorithm was employed. To evaluate the performance
of the proposed parameterization methods, statistical models
for individual phonemes in Polish speech were developed
using a mixture of Gaussian distributions (GMM model). The
purpose of the considered corrections was to narrow the GMM
distributions of the amplitude spectrum and simultaneously
increasing the distance between them [8]. In general, according
to detection theory, it minimizes the classification errors. The
assessment of the proposed correction effectiveness was car-
ried out by comparing Frame Error Rate (FER) measurements
before and after execution of the correction algorithm. [9].

II. THEORY
A. Signal parametrization

From the numerous parameterization techniques found
in the literature, the approaches utilizing time-frequency
transforms and cepstral representations are recognized as
some of the most extensively employed and efficient meth-
ods [10] [I1]. These include Mel Frequency Cepstral
Coefficients (MFCC), Human Factor Cepstral Coefficients
(HFCC), Basiliar-membrane Frequency-band Cepstral Coeffi-
cient (BFCC), and Gammatone Cepstral Coefficient (GTCC).
In this study, the HFCC representation was selected. This
method is particularly valuable when working with noisy or
adverse acoustic conditions and has found applications in areas
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such as speech and speaker recognition, speech synthesis and
acoustic scene analysis [12] [13]. The parameterization results
in the cepstral coefficient vectors ¢(t,m), that is

J
c(t,m) = ZYl(t,j)cos (m (j - ;) ;) im=1,...,. M
j=1

2
where Y;(¢, j) is the logarithm of the signal spectrum Y (¢, j),
expressed in Equivalent Rectangular Bandwidth (ERB) scale
and obtained from the amplitude spectrum S(¢, f) under
correction, t is the frame number, j is the ERB-scaled fre-
quency band number, J is the number of frequency bands,
and M is the number of HFCC coefficients. Moreover HFCC
parametrization scheme utilizes bank of uniformly distributed
ERB-scale triangular filters which is designed to mimic the
non-linear frequency perception of the human auditory system.
It groups the spectral energy into frequency bands to reflect
human hearing characteristics. The logarithm of the energy
within each frequency band is taken to replicate the logarith-
mic perception of loudness by the human auditory system.
The Human Factor Cepstral Coefficients approach to speech
features extraction has been proposed and described in details

in [14].

B. The influence of fundamental frequency on HFCC coeffi-
cients

For reasons of illustration Fig. 1 shows the amplitude
spectra of consecutive frames of phoneme ”a” selected from
longer utterances by the same speaker, recorded under identical
conditions, differing in fundamental frequencies fy. The key
distinction among these spectral representations is the various
locations of the local maxima, which are multiples of the fre-
quency fy. Due to the presence of ripples, the formants are not
clearly visible, although their frequencies are approximately:
800 Hz, 1.3 kHz, 2.4 kHz, and 4.0 kHz. In these figures, filters
with center frequencies corresponding to the mel scale (as in
the HFCC parameterization) are also indicated by dotted lines.

The consequence of the different positions of the local
maxima of the spectrum is the different energy per successive
frequency band, which leads to different ERB-scale spectra
at different fy. This is confirmed by the plots of ERB-scale
spectra presented in Fig. 2. Particularly large differences occur
for band 4. As a consequence, there are significant variations in
the cepstral coefficients for the two considered cases presented
in Fig. 3

C. Spectrum correction

Theoretically, the excitation signal, for each voiced frame,
can be determined using inverse filtering procedure [15] [16],
i.e.

z(n) = s(n) x (h(n) xr(n)) ", 3)

where (.)~! denotes the inverse in the convolution sense.
Introducing w(n) = x(n)xr(n), i.e. as the convolution of the
excitation signal and the function describing the lips radiation,
the quantity w(n) can be determined from the relation

w(n) = s(n) x h(n)*. (4)
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Fig. 1. Amplitude spectra S(t, f) of consecutive frames of phoneme a with
applied filterbank (dotted line); the fundamental frequency a) about 130Hz b)
about 195Hz.

The relation (4) describes the problem of blind deconvolution.
It requires the estimation of the impulse response h(n) and
then the determination of the inverse in the convolution sense
of this quantity. In general, in this situation, the problem of
stability arises. Fortunately a stability condition is guaranteed
if the impulse response A(n) is minimum-phase or an algo-
rithm, which enforces minimum phase property, is taken into
account in experimental studies. The most popular solution
in this case is mean-square filtering [1] which is used in the
applied IAIF filtering.

The TAIF block diagram, slightly modified for the purposes
of the work, is presented in Fig.4. In the first step, a pre-
liminary estimator of the filter is determined that models the
combination of glottal excitation and lip radiation using an
LPC filter of order m;. In the second step, after compensating
for the influence of G1(z) on the signal s(n), a preliminary
estimator H,1(z) of the vocal tract is determined with LPC
filter of order my. The resulting estimator H,;(z), in Step 3, is
used to filter out the influence of the vocal tract from the signal
s(n). In this step, the influence of the lip emission properties is
also eliminated by integration, and a more accurate parametric
model G(z) is calculated with the LPC filter of order m;.
In the fourth step, using G3(z), by means of inverse filtering,
integration, and LPC analysis, the parameters of the H,s(z)
model of the vocal tract of order ms are determined. The result
of the last operation is used to calculate the HFCC coefficients



AMPLITUDE SPECTRUM CORRECTION TO IMPROVE SPEECH SIGNAL CLASSIFICATION QUALITY 571

40

30

20 -

10

filter output

-10

0 10 20 30
a) band number

40

30

20

filter output
=

O L
-10 +
-20 : :
0 10 20 30
b) band number

Fig. 2. Spectra of consecutive ERB-scale frames of phoneme a; the funda-
mental frequency is a) about 130Hz, b) about 195Hz.

after compensating for the influence of glottal excitation. This
method is called cHFCC for the purpose of this paper.
Two facts are worth keeping in mind:

« the results are obtained under the assumption of minimum
phase property of all elements of the relation (1),

« since the phase of the signal is not taken into account in
the HFCC parameterization, it is hoped that modeling the
elements of the relations (1) using the LPC model, will
yield the expected results.

D. Correction quality measure

In order to assess the performance of the proposed methods
of modifying the parameterization of HFCC, a study was car-
ried out on Polish speech vowels occurring in the section III.
The implementation of the concept introduced above required
the prior development of acoustic models of these vowels
in the form of GMM probability distributions. Moreover the
single frame recognition error measure was used to evaluate
the effectiveness of compensation.

The GMM acoustic models used at the frame recognition
stage are a mixture of K=7 multivariate normal probability
distributions with a diagonal covariance matrix ¥ determined
based on the Expectation-Maximization (EM) algorithm:

K
pf(o) = Z wfiN(Ov mf,iu Ef,i)v (5)
=1
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Fig. 3. Cepstra of consecutive ERB-scale frames of phoneme a; the
fundamental frequency is a) about 130Hz, b) about 195Hz.

where wy;, my,; denotes the mixture ' component weights

and means for f*" phoneme. The EM algorithm was described
in detail in [17].

Frame Error Rate (FER) is typically used to evaluate the
quality of speech recognition at the individual frame level and

is defined as

TE’I‘T

FER = -100% (6)

where T is the number of all frames to be recognized and
Terr is the number of frames incorrectly recognized.

III. EXPERIMENTS

The set of recordings constituting the database for the
experiments consists of 36 adult male voices recorded in
different Polish cities. For each speaker, 150 words of Polish
were recorded, of which speech fragments containing vowels
from 43 words were used in the experiment. The sampling
rate of the signals was 12 kHz. The results presented here
are for noisy signals with a signal-to-noise ratio of 35 dB.
All these recordings were manually segmented and labeled,
and the phonetic unit in the labeling is the phoneme. The
frame length was 30 ms and the pitch 10 ms. The number of
cepstral coefficients was N = 14. The speakers were divided
into groups, and the criterion for division was based on the
cepstral coefficients of the vowels. The division method using
the universal backgraund model is described in the paper [18]
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A. Examplary results

The section presents example results of the cHFCC method
for three consecutive frames of the a phoneme, whose statistics
are presented in Figs. 1-3. Fig. 5 presents successively (a)
amplitude spectra of the signal frames, (b) moduli of coarse es-
timators G1(f), (¢) transmittance moduli of coarse estimators
Hy1(f), (d) moduli of estimators Ga(f) and (e) transmittance
moduli of estimators H,(f).
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Fig. 5. Example results of the cHFCC method for 3 consecutive frames of
phoneme a: (a) amplitude spectra of the signal frames, (b) moduli of coarse
estimators G1(f), (¢) transmittance moduli of coarse estimators Hy1(f),
(d) moduli of estimators G2(f) and (e) transmittance moduli of estimators

Hv2(f)-

Cepstral coefficients were calculated based on the results,
examples of which are presented in Fig. 4e). Comparison

of graphs (a) with graphs (e) shows the effectiveness of the
proposed method for eliminating ripples caused by the quasi-
periodicity of glottal excitation.

B. The impact of selected parameters on correction efficiency

The efficiency of the presented algorithm is affected by the
values of the processing parameters. One of them is the order
of the LPC estimation filter H ;;-parameter m,. The classical
preemphasis is an order-1 model, but an order-2 model is also
used. Fig. 6 presents FER plots for vowels for m; = 1 and
mi = 2.
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Fig. 6. FER for one of the speakers. mg =
diagonal matrix Sigmay;, K=7

10, m3 = 8, m1 changes,

Fig. 6 shows that a value of m; = 1 results in smaller FER
values after spectrum correction. The effectiveness of spectrum
correction can be expected to vary for different speakers in
a group. Fig. 7 presents FER plots for the same values of
processing parameters for 3 speakers of the same group, before
and after correction.

—O—speaker 1 before correction
- % -speaker 1 after correction
—O—speaker 2 before correction
- % -speaker 2 after correction
speaker 3 before correction
speaker 3 after correction

60

phoneme

Fig. 7. Global FER values for Polish speech vowels. m; =
10, m3 = 8, diagonal matrices > fis K=17
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The next parameter to consider is the number of elements
of the mixture of normal distributions from which the acoustic
models of phonemes are built - the number K in the formula
5.1In fig. 8 presents FER plots for Polish speech vowels, before
and after correction, for values of X =7 and K = 10.

—O—Dbefore correction - 7 GMM comp.
"|-©-after correction - 7 GMM comp.
—H—Dbefore correction - 10 GMM comp.
- -after correction - 10 GMM comp.

50 T

FER

phoneme

Fig. 8. Global FER values for exemplary speaker. Parameters: m1 = 1, ma =
10, m3 = 8, diagonal matrices Efi, K changes

The graphs in Fig. 8 show that FER errors take smaller
values for K=10. However, this is not favorable for reasons
of computational efficiency. A larger number of observations
is also required, which is not always possible, especially for
consonants.

C. Global error analysis

In Fig. 9 the results of the FER measure in one-to-one
recognition for Polish speech vowels are presented in the
form of a table. The upper values indicate the FER before
correction and the lower values after correction. The selective
color indicates situations for which there was a decrease in
FER and the red color indicates an increase.

i y e a o u
: 1.22 0.95 0.00 0.00 1.69
0.62 0.95 0.00 0.04 1.40
5.10 8.35 115 1.70 2.32
y 411 4,07 0.00 0.90 0.29
. 364 15.07 372 1.85 1.79
172 14.05 3.26 1.66 153
a 0.84 212 7.87 4.69 1.19
0.69 2.02 8.32 4.48 0.78
o 1.06 164 3.23 6.74 4.43
0.67 167 2.93 7.56 4.07
" 152 2.19 2.63 0.00 334
152 2.67 0.52 0.00 453

Fig. 9. FER values for Polish speech vowels in one-to-one recognition. The
upper/lower values denotes FER before/after correction. Green color indicates
the error decrease, red color - the increase.

The results presented in Fig. 9 show that in most cases there
was a reduction in the recognition errors of single frames.

The average values of FER for 2 groups of speakers (as the
sum of errors in one-to-one recognition) were presented in Fig.
10-11 The group size of Fig. 10 is 6 and that of Fig. 11 is equal
to 10. The values of the spectrum correction parameters are
as follows: the order of the LPC filter of excitation spectrum
estimation mi=1, the order of the coarse vocal tract transfer
function estimation mo= 10, the order of the finer filter of the
vocal tract transfer function estimation mg= 8, the covariance
matrices are diagonal, the number of GMM mixture elements
K=7.
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Fig. 10. Global FER values for two groups of Polish speakers. The group
size is 6 speakers.
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Fig. 11. Global FER values for two groups of Polish speakers. The group
size is 10 speakers.

For the majority of Polish speech vowels, spectrum cor-
rection allows a reduction in FER values. These are not
usually large changes, but in speech recognition systems with
high complexity, any improvement in recognition quality is
important and desirable.

Another experiment carried out was to compare the perfor-
mance of speech signal frame recognition for GMM models
composed of normal distributions with diagonal covariance
matrix or full covariance matrix. The results of this experiment
are presented in Fig. 12. In general, the use of full covariance
matrices results in smaller frame recognition errors. However,
this is disadvantageous due to a much more difficult compu-
tational process and higher computational complexity.

IV. CONCLUSION

The proposed in this paper modification of the HFCC
parameterization fulfills the expectations. Through estimation
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and inverse filtering, it is possible to realize the minimization
of the influence of the quasi-periodicity of glottal excitation

on
the

the determination of the HFCC coefficients. Consequently,
scatter of feature vector values is reduced. This conclusion

is confirmed by the results obtained in experimental studies
based on the classification errors of individual frames. As
a result, such a modification of the HFCC parameterization
should result in an increase of the efficiency of the complete
ASR system. At the same time, it should be kept in mind
that the variability of the components of the feature vector, in
addition to the influence of the quasi-periodicity of the glottal
tone, is affected by a number of other factors such as:

(1]
(2]

(3]

[4]

interpersonal variability

intrapersonal variability

contextual variability

the influence of recording condition etc.
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