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Abstract—This paper focuses on extracting and understanding the 

acoustical features embedded in the soundscape used in ASMR 

(Autonomous Sensory Meridian Response) studies. To this aim, a 

dataset of the most common sound effects employed in ASMR studies 

is gathered, containing whispering stimuli but also sound effects such 

as tapping and scratching. Further, a comparative analytical survey 

is performed based on various acoustical features and two-

dimensional representations in the form of mel spectrogram. A 

special interest is in whispering sounds uttered in different languages. 

That is why whispering sounds are compared in the language context, 

and the characteristics of speaking and whispering are investigated 

within languages. The results of the 2D analyses are shown in the form 

of similarity measures, such as Normalized Root Mean Squared 

Error (NRMSE), PSNR (peak signal-to-noise ratio), and SSIM 

(structural similarity index measure). The summary is produced, 

showing that the analytical aspect of the inherently experiential 

nature of ASMR is highly affected by the subjective, personal 

experience, so the evidence behind triggering certain brain waves 

cannot be unambiguous. 

 

Keywords—ASMR acoustic stimuli; soundscape; acoustic 

features; 2-dimensional signal representation; speech processing 

I. INTRODUCTION 

Y definition, soundscapes are an integral part of creating an 

immersive storytelling environment. They encompass a wide 

range of auditory components—from ambient noises and sound 

effects to musical patterns—all carefully curated to enhance the 

narrative experience. In the context of Autonomous Sensory 

Meridian Response (ASMR), the idea of soundscapes translates 

into a unique therapeutic role. ASMR involves specific auditory 

stimuli, such as whispering, tapping, scratching, or other soothing 

sounds, designed to evoke a sensation of relaxation and well-

being. These sounds can be thought of as creating a “narrative” of 

calm and comfort. 

ASMR is characterized by the onset of tingling sensations in 

response to specific auditory and visual stimuli. ASMR triggers 

are a variety of sensory inputs commonly referred to as ASMR 

triggers or stimuli. As already said, whispers, tapping sounds, and 

personal attention gestures are examples of such triggers [1]. 

Hence, for the purpose of our paper, we call them ‘soundscape.’  

Individual susceptibility to ASMR stimuli varies significantly, 

with acoustic triggers evoking distinctive responses according to 

personal preferences. Depending on the individual, some may find 

comfort in soft-spoken voices, while others may find comfort in 

tapping and scratching sounds [2]. The diversity of ASMR 

experiences underscores the multifaceted nature of ASMR 
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experiences and emphasizes the subjective nature of trigger 

preferences within the ASMR community [3]. 

A cross-correlation analysis revealed a strong relationship 

between estimates of ASMR and specific acoustic 

characteristics of auditory stimuli, such as volume, spectral 

centroid, and spectral width [4]. It appears that low-frequency 

sounds with a deeper tonal quality are more effective at 

inducing ASMR. Intriguingly, the peak ASMR experience 

occurred approximately two seconds after the change in these 

acoustic traits, indicating a delay consistent with the 

integration of multiple senses. In addition, they found that 

ASMR susceptibility appears to be closely related to an 

individual's emotional state, particularly anxiety feelings, 

rather than personality characteristics. 

According to Pablo et al. [5], they developed a framework 

for processing large quantities of whispered speech data 

within ASMR recordings. The framework effectively 

separated whispered signals from other audio elements 

typical of ASMR content by utilizing acoustic features 

identified as valuable in Whispered Audio Detection (WAD). 

As a result of the integration of recurrent neural networks 

(RNNs), WAD's capabilities were enhanced, particularly in 

the modeling of temporal dependencies. Edyson [6], an 

application for semi-automatic audio data labeling, was 

employed to optimize processing efficiency for vast datasets. 

Data augmentation techniques were also used to refine a clean 

whisper speech detector (CWAD) specific to ASMR speech 

style and acoustic triggers. This approach was presented as a 

generalizable method applicable to similar data scenarios, 

promising advancements in ASMR content analysis and 

interpretation. 

The purpose of this study is to extract and understand the 

acoustical features embedded in ASMR triggers. 

Understanding the acoustical features embedded in the 

‘soundscape’ used in ASMR is important for several reasons. 

Firstly, it allows for a deeper understanding of the 

mechanisms involved in ASMR experiences. Researchers can 

gain insight into how specific sounds interact with the brain 

and sensory pathways in order to evoke ASMR by dissecting 

the auditory components that elicit tingling sensations and 

relaxation responses. 

A second benefit of knowing acoustical features is the 

ability to create and curate effective ASMR content. In order 

to maximize their potential to induce ASMR experiences in 

viewers, content creators may leverage this understanding to 
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tailor their videos. Creators can enhance the effectiveness and 

appeal of their ASMR content by optimizing the auditory 

elements, such as whispers, tapping, and scratching sounds. 

In addition, understanding acoustical features can assist in the 

development of ASMR-related technologies and applications. 

Using machine learning algorithms, researchers and developers 

may be able to identify and classify ASMR stimuli within 

audiovisual content automatically. The creation of ASMR-specific 

search engines and recommendation systems could facilitate the 

discovery of personalized ASMR experiences. All the above form 

the objectives of our study. Therefore, the objectives of this 

research paper are twofold. First, by aligning soft-spoken speech 

with whispering, we aim to identify the commonalities and 

differences between whispered speech and normal speech. Second, 

we seek to extract and discern similarities between these speech 

features across different genders and languages. Additionally, we 

aim to extract common features between speech and other ASMR 

acoustic triggers. 

The paper includes the method, presents the material, and 

describes the acoustic features employed in the study. Further on, 

measures for the assessment of similarities and differences 

between acoustic stimuli, as well as tools used in ASMR stimuli 

recordings, are included. This is followed by analyses of 

soundscapes that are typically used in ASMR studies, focusing on 

commonalities between acoustic features. Next, measures for 

image quality assessment are used to compare ASMR 

soundscapes. Image quality measures quantify the overall 

difference between the image under test and a corresponding 

baseline. This Section also contains a discussion of the results 

obtained. Finally, concluding remarks are listed.  

II. METHODS 

A. Material 

Several notable ASMR-related datasets have been introduced 

for research purposes: 

1) YouTube-ASMR-300K Dataset [7]  

This dataset comprises approximately 300,000 10-second 

ASMR video clips with spatial audio sourced from YouTube. It 

also includes a curated subset of 30,000 clips from 30 ASMR 

channels featuring more spatially moving sound events. 

Introduced in a CVPR 2020 paper, it is available on the project's 

companion website. 

2) A-SIREN: GAN-synthesized ASMR audio clips [8] 

This dataset consists of recorded and GAN-synthesized ASMR 

audio clips, along with corresponding psychological survey 

results. It was introduced as part of a research project on ASMR 

audio synthesis. 

3) ASMR-WS (Autonomous Sensory Meridian Response 

Whispered-Speech) Database [9] 

This is a novel database containing 38 ASMR-related 

whispered speech audio clips in seven different languages 

(Chinese, English, French, Italian, Japanese, Korean, and 

Spanish). It was created to facilitate the development of ASMR-

specific unvoiced language identification systems. 

Despite the availability of those datasets, multiple problems 

were identified. Our primary objective was to compare the efficacy 

of whispers versus soft-spoken ASMR content across 

different languages. We encountered challenges in sourcing 

suitable content from platforms like YouTube due to the 

scarcity of ASMRtists who consistently produce content in 

multiple languages while maintaining identical themes and 

stimuli. For this reason, we created the dataset to meet our 

research needs. 

B. Recording process 

The sound studio recording process and setup followed 

strict standards to ensure accurate data acquisition. Before 

recording, speakers relaxed for 15 minutes to stay calm and 

consistent. The studio environment was controlled to reduce 

any outside noise. Professional-grade microphones and 

recording devices were used, like condenser microphones and 

digital recorders, which captured sound at a 48 kHz sampling 

rate. For all speakers and recordings, the recording 

environment in the sense of soundscape was the same. The 

microphone was set to different sensitivities for normal 

speech and whispering to catch all vocal nuances. This 

change in sensitivity led to more background noise in 

whispered recordings. This can be observed in the analysis of 

parameters like the harmonics-to-noise ratio. Despite this 

challenge, our studio setup ensured we got a high-quality and 

consistent recording [10]. 

C. Detailed dataset description 

In our methodology, we enlisted nine participants, 

comprising six males and three females, to individually 

record both whispering and soft-spoken speech in their native 

language as well as in English. Each participant provided 

recordings in their native language and then repeated the 

process in English, resulting in a total of 35 soft-spoken 

recordings and 32 whispering recordings across the following 

15 languages, i.e., Arabic, English, Spanish, Persian, French, 

Gujarati, Hindi, Indonesian, Italian, Polish, Portuguese, 

Russian, Telugu, Turkish. We utilized a sample text of ASMR 

and relaxation content comprising 67 words and 374 

characters. Such texts are commonly employed for the 

purpose of inducing relaxation or promoting a sense of 

calmness. 

This database serves as a valuable tool for exploring the 

nuances of ASMR triggers across languages and cultures. By 

examining interlanguage similarities and differences in 

whispered speech patterns, we aim to gain insights into the 

underlying mechanisms of ASMR experiences and their 

cultural variations. 

D. Acoustic Features 

By applying pure mathematic transformations and 

algorithms, numerical metrics are calculated. Those metrics, 

called acoustic features, represent various subjective 

characteristics of speech. The simplest example of such a 

metric is the average energy of the signal that corresponds to 

the loudness of the signal. Calculation and statistical analyses 

of such metrics for a rich set of ASMR examples is a way of 

trying to understand the nature of such signals. This is one of 

the approaches to understanding the commonalities and 

differences between whispered speech and normal speech. 
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Statistical methods may be applied to discern similarities between 

speech features across different genders and languages. Those 

scalar values may be compared with the results of psychological 

questionnaires regarding the patient’s well-being. Such analyses 

may be crucial to understanding the impact of ASMR on the 

subject’s state of mind. 

1) Shimmer and Jitter [11] 
Shimmer measures the variation in amplitude between 

consecutive periods of a signal, indicating the instability or 
roughness of the voice. It is commonly used in voice quality 
assessment, especially in diagnosing voice disorders. Higher 
shimmer values suggest increased voice instability or hoarseness. 

Jitter quantifies the variation in pitch period of consecutive 
cycles of a waveform, indicating the irregularity in pitch or 
frequency modulation. It is employed in voice analysis to assess 
vocal fold vibratory patterns. Increased jitter values are associated 
with voice disorders and vocal fatigue. It may be influenced by 
factors such as speaking rate and phonetic content. 

2) Harmonics-to-noise ratio (HNR) 

HNR measures the ratio of harmonics to noise in a signal, 

reflecting the clarity of the voice and the level of background noise 

[12]. It's commonly used in voice analysis to assess voice quality 

and signal-to-noise ratio. Higher HNR values indicate clearer 

voice production, while lower values suggest increased noise or 

breathiness. HNR may be affected by speech intensity and 

microphone characteristics. 

3) Spectral Tilt 
Spectral tilt describes the slope of a signal's spectral envelope 

[13]. The axis of the oscillation of the audio waveform is not 
required to be flat. For example, a trumpet signal registered by a 
microphone has a positive spectral tilt. This is a reflection of a 

strong airflow present in the acoustic wave. It indicates the 
distribution of energy across frequencies and is often related to the 
perceived brightness or warmth of the sound. Spectral tilt is used 
in speech and audio processing to characterize a sound's timbre. A 
flat spectral tilt indicates a balanced energy distribution, while a 
tilted spectrum may suggest variations in voice quality. 

4) Zero-crossing rate  
The zero-crossing rate counts the number of times a signal 

crosses the zero amplitude line, providing information about the 
rate of changes in the waveform. This information is useful for 
detecting fricatives and silence [11]. It is also used for feature 
extraction and segmentation. Higher zero-crossing rates indicate 
more rapid changes in the signal, such as in speech fricatives, 
while lower rates suggest longer periods of silence. The zero-

crossing rate is sensitive to noise. 

5) Formant Dispersion 

Formant dispersion measures the spacing between harmonic 

frequencies present in the speech signal. Their presence and 

density are determined by the characteristics of the speaker’s vocal 

tract. It is useful for identifying different phonemes and speech 

sounds [14],[15]. It can also provide insights into articulatory 

differences between speakers or speech sounds. Formant 

dispersion is sensitive to speech rate and dialectical variations. 

6) Spectrogram 

Spectrograms are visual representations of the frequency and 

amplitude components of a sound signal over time. They display  

how the intensity of different frequencies changes over time, 

providing insights into the characteristics of the sound. 

Spectrograms are being constructed from a waveform using a 

fast Fourier transform (FFT)  algorithm. As an outcome, a 2D 

representation of the registered sound is obtained. The x-axis 

corresponds to the time, while the energy in a particular 

frequency band is shown on the y-axis. The value of the point 

(or intensity of the pixel) is the energy level at a given 

frequency and time. 

7) Mel spectrogram 

A mel spectrogram is a spectrogram with frequency bands 

scaled according to the human perception of pitch. It provides 

a more perceptually relevant representation of a signal's 

frequency content. Mel spectrograms are commonly used for 

feature extraction and analysis in speech and audio 

processing. They capture important spectral characteristics of 

speech and music. 

E. Similarity Measures 

1) Normalized Root Mean Squared Error (NRMSE) 

RMSE quantifies the average difference between the 

corresponding values of two signals, indicating the overall 

deviation between them [16]. It's widely used in signal 

processing and regression analysis. Lower RMSE values 

indicate better agreement between signals but may not fully 

capture perceptual differences. 

2) Peak Signal to Noise Ratio (PSNR) 

PSNR measures the ratio between the maximum possible 

power of a signal and the power of noise present in the signal, 

providing a measure of signal fidelity [17]. Higher PSNR 

values indicate better signal quality but may not correlate 

perfectly with perceived quality. 

3) Structural similarity index measure (SSIM) 

SSIM assesses the structural similarity between two 

signals, capturing both pixel-wise and structural differences 

and providing a perceptually relevant measure of image 

similarity [16],[18]. Higher SSIM values indicate better 

structural similarity. It does not capture all aspects of 

perceptual quality and is sensitive to image content and 

distortion types. 

F. Tools 

To facilitate the analysis, we developed a Python toolbox 

capable of extracting acoustic features in bulk from files in 

widely used audio formats such as *.wav and *.mp3. We 

employed libraries like librosa [19] for audio manipulation, 

feature extraction, and signal processing, enabling tasks like 

spectrogram generation and mel-frequency cepstral 

coefficients (MFCC) extraction. Additionally, we utilized 

python-praat software to extract advanced phonetic features, 

particularly for speech analysis [20],[21]. To enhance 

visualization and gain insights into the underlying 

characteristics of sound, we utilized matplotlib. Similarity 

measures were computed using the scikit-image python 

package [22]. This toolbox allows for bulk analyses from 

directories based on folders and a metadata.csv file. Any type 

of metadata in tabular format is supported. The toolbox is 

available on the MIT license on GitHub. 
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III.  ANALYSES AND RESULTS 

This analysis involved analyzing speech signals. Both time-

domain and 2D time-frequency domain features were explored. 

A. Gender-centric acoustic features analysis 

Various acoustic features that are characterized by an interesting 

behavior are depicted in Fig. 1. Except for the spectral tilt, all 

features show significant differences when normal speech and 

whispering are compared. Shimmer and Jitter, depicted 

respectively in Fig. 1a and Fig. 1b, show an increase in whispering 

when compared to normal speech. These qualities are perceived as 

roughness, breathiness, or hoarseness in a speaker’s voice. Every 

natural speech includes some degree of jitter and shimmer, but 

quantifying them is a common method for identifying voice 

disorders. Personal behaviors like smoking or alcohol 

consumption may elevate the levels of jitter and shimmer in the 

voice. This is intuitive for both described features based on the 

general behavior of jitter and shimmer for normal speech. This 

may imply that whispered speech may be treated as a 

dysfunctional speech. This suggests that the measures and methods 

applied to dysfunctional speech can be applied with success to the 

shepherd speech signal.  

The average harmonics-to-noise ratio depicted in Fig. 1c for 

whispering differs both between the whisper and normal speech 

and between the genders. In general, the average harmonics-to-

noise ratio for males is lower than for females by approximately 

2.5 dB, which is a perceptually significant value. The acoustic 

environment for each recording session was identical. Higher 

HNR for female speakers when compared to men shows that 

female voice signals carry more harmonic (modal) information 

than men. The difference in HNR between the whisper recordings 

and normal speech recordings can be attributed to the microphone 

sensitivity settings, as any minor disturbance in the acoustic 

pressure of the recording room,  the soundscape, may be reflected 

in the spoken measure.  

In Fig. 1d, the spectral tilt for both males and females is 

negative. This is an expected behavior as the speakers were asked 

to relax before recording both normal speech and whisper. High 

spectral tilt is often assigned to high emotional states like joy or 

anger. None of the speakers were in the states described in the 

experiment.    

Fig. 1. Averaged acoustic features for normal speech and whispering 

in relation to the speaker’s gender. a) shimmer; b) jitter (local); c) 
Harmonics-to-noise ratio; d) spectral tilt 

B. Language-centric acoustic features analysis 

In-depth analyses of the whispering speech acoustic 

features for individual languages were performed. In Fig. 2a, 

the spectral tilt of the voice signal is shown. The relation of 

spectral tilt between normal speech and whispered speech is 

not consistent between languages. While the harmonics-to-

noise ratio, depicted in Fig. 2b, is significantly lower for all 

of the analyzed languages, no such behavior can be observed 

for the spectral tilt. HNR is sourced from both the quality and 

“musicality” of the speaker’s voice and the recording 

environment. In contrast, spectral tilt correlates with changes 

in the speaker’s sound pressure level. This underlines the 

importance of the recording methodology selection. 
 

Fig. 2. a) Average spectral tilt and b) average harmonics-to-noise ratio 

acoustic features with respect to speaker’s language (Turkish (TR), 
Portuguese (PT), Hindi (HI), Gujarati (GU), French (FR), Persian-Farsi 

(FA), Spanish (ES), English (EN), German (DE), Arabic (AR)) 
 

The negative spectral tilt can be attributed to the soft nature 

of spoken language. Notably, there is no consistency between 

the ratio of whispered speech and normal speech within 

language groups. As an example, German and English both 

belong to the Indo-European Germanic group. For German, 

firstly, the spectral tilt for normal speech is lower than that for 

whispering. Secondly, the delta between German whispering 

and normal speech is significantly higher when compared to 

the English language. Similar behavior may be observed for 

other languages from the Indo-European family. For 

example, Portuguese, French, and Spanish are all Romance 

languages. While Portuguese and Spanish share some 

similarities in terms of the average spectral tilt value, the 

value of spectral tilt for French is, in general, more zero-

centric. Moreover, the relation between the spectral tilt of 

normal speech and whisper speech for French has properties 

opposite to those of spoken features for Spanish and 

Portuguese. Again, a lack of consistency in spectral tilt 

acoustic feature is observed in the Hindi and Gujarati 

languages. The fact that two of those languages were recorded 
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by the same speaker in identical acoustic soundscapes really puts 

some light on the fact that whispered speech can be characterized 

by changes in the properties of the acoustic information carried by 

the recorded signal. Those characteristics vary not only when the 

gender of the speaker is considered but also with the differentiation 

of the speaker’s language. 

An average delta of approximately 8 dB is observed for each 

language when considering the HNR ratio. Portuguese is the only 

language with observed negative HNR for the whisper speech 

signal. Romance languages from the Indo-European family are all 

characterized by the value of HNR around zero.  

Fig. 3 depicts deltas of four acoustic features. They help to 

understand the difference between normal speech and whispered 

speech normalized by “normal speech values.” A negative delta 

value means that the given acoustic feature’s observed value for 

normal speech was smaller than the corresponding value for 

whispering speech. Normalization is applied to prevent the 

features' values from exploding. 

Fig. 3. Differences in chosen acoustic features normalized by the 
values for normal speech features  

 

Maximum local jitter differences were observed for the Turkish 

and Arabic languages. In general, the normalized value for local 

jitter oscillates around -2.0. This difference is not language or 

language-family-dependent. For example, the local jitter for 

French, Spanish, and Portuguese, languages in the same Indo-

European language family, is dispersed from the upper to the 

minimum part of the distribution. 

As depicted in Fig. 3, the change of the local shimmer shared 

similar properties to the jitter described in the previous paragraph. 

The values for Shimmer have a smaller standard deviation, 

focused around the normalized delta value of -1. Jitter and 

shimmer can both be used to measure the quality of the speaker's 

voice. Jitter and Shimmer are considered to resemble the condition 

of a speaker's vocal cords, with higher values mapped to the 

“unhealthy” cognition of those. This analysis suggests that this 

pair of features may be used to distinguish the whispered speech 

from normal speech.  

Zero crossing rate may be used to identify the voiced and 

unvoiced parts of the speech signal. In speech analysis, the 

distinction between voiced and unvoiced speech is significant. 

Voiced speech sounds, such as vowels, have a low zero crossing 

rate due to the regular vibration of the vocal cords, resulting in a 

smooth waveform with fewer zero crossings. In contrast, 

unvoiced speech sounds, like fricatives and plosives, exhibit 

a higher zero crossing rate. This is because unvoiced sounds 

are characterized by turbulent airflow, causing rapid signal 

amplitude changes and leading to more frequent zero 

crossings. Negative zero crossing rate data for languages 

from all languages except for German suggest that, in general, 

the whispered speech contains more voiced parts. Higher 

saturation of voiced parts in the speech signal may be one of 

the causes of the relaxing effect that ASMR speech has on the 

listener.  

Formant dispersion in speech acoustics refers to how the 

frequencies of formants change relative to each other across 

different speech sounds. Higher formant dispersion indicates 

greater variation in formant frequencies, often reflecting 

tongue position and articulation differences. This variation 

helps distinguish between different vowels and consonants, 

contributing to the perception of speech sounds. All analyzed 

languages share a similar normalized delta formant frequency 

behavior, where the feature value for noise is higher when 

compared to whisper. This implies that for all analyzed 

languages, the speaker's tongue has less positional whispering 

variance compared to normal speech. This may result in a 

softer, more static articulation.  

C. 2D time-frequency representations of sound 

comparison 

For the purpose of this analysis, metrics typically used for 

image comparison are used to identify differences between 

whispering and normal speech time-frequency 

representations. These representations, like MFCC, 

spectrograms, or mel spectrograms, may be treated as images, 

with time and frequency being treated as image dimensions 

and the power and phase components as color channels.  

To ensure fair and correct comparison, corresponding 

speech recordings were aligned. Dynamic Time Warping 

(DTW) was used to determine each speaker's alignment 

vector between whispering and normal speech recordings. As 

every speaker recorded the same passage, this alignment 

approach was considered valid. Next, based on the alignment 

vector, time stretching was applied. Depending on the vector 

value, the original signal was either locally stretched or 

compressed. An example of the described operation is shown 

in Fig.  4. 

In this study, we employ three key similarity metrics—

Mean Structural Similarity Index (MSSIM), Normalized 

Root Mean Squared Error (NRMSE), and Peak Signal-to-

Noise Ratio (PSNR)—to compare mel spectrograms of 

normal and whispered speech. Mel spectrograms serve as 

visual representations of the frequency content of speech 

signals over time. Differences between various speech modes 

can be observed using these representations. A summary of 

averaged distance measures for normal (reference) and 

whispered (test) speech is presented in Fig. 5.  

Whispered speech, characterized by reduced voicing and 

increased aspiration, presents distinct acoustic features 

compared to normal speech. By utilizing MSSIM, we assess 

the structural similarity between the corresponding 

spectrograms. Low MSSIM indicates that there is a 

substantial structural difference between modes of speech for 

all analyzed languages. NRMSE allows us to quantify the 
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average difference in pixel values between the spectrograms. 

Based on the observed values for NRMSE, the distance between 

individual pixel values is significant for all. NRMSE, in 

comparison to MSSIM, has greater interlanguage variance. For the 

Arabic language, the “pixel-wise” similarity is highest compared 

to other languages while maintaining the same structural similarity 

on a level comparable to other languages. PSNR is a measure of 

the signal-to-noise ratio, helping evaluate the quality of 

spectrograms by considering both the presence of signal and the 

level of noise. In the task of image compression, PSNR below 20 

dB is considered to indicate a low-quality image. With PSNR 

being below 20 dB for all analyzed audio samples, whispered 

speech can be considered a poorly compressed audio signal.  
 

 
Fig. 5. Averaged distance metrics between normal (reference) and 

whispered (test) speech where a) shows MSSIM and NRMSE and b) 
shows PSNR with respect to speaker’s language (Arabic (AR), German 

(DE), English (EN), Spanish (ES), Persian-Farsi (FA)) 

IV. CONCLUDING REMARKS 

The techniques used to analyze and modify dysfunctional 

speech signals proved to be effective when applied to whispered 

speech. This suggests that the underlying methods for handling 

speech signals may be broadly applicable, regardless of the vocal 

effort or style. Moreover, the observation that the same speaker 

recorded multiple languages under identical environmental 

conditions highlights the robustness of whispered speech 

characteristics. This consistency supports the reliability of 

studies focusing on whispered speech and ensures that 

findings are attributable to the speech signal itself rather than 

external variables. 

In the study, whispered speech properties change not only 

with the speaker’s gender but also with the language spoken. 

This implies that both intrinsic (e.g., anatomical features of 

the speaker) and extrinsic (e.g., linguistic characteristics of 

the language) factors influence the acoustic properties of 

whispered speech. 

Given the variations in acoustic properties based on gender 

and language, further research might be needed to fully 

understand the mechanisms behind these variations and 

explore how these findings could be generalized across 

different populations and conditions. In particular, subjective 

tests should be undertaken to assess individual reactions to 

various ASMR triggers. These tests can provide insights into 

personal preferences and sensitivities, helping to elucidate 

how different people experience ASMR. By incorporating 

subjective measures, researchers can better capture the 

nuances of ASMR responses and develop a more 

comprehensive understanding of how acoustic properties 

influence the ASMR experience across diverse demographic 

groups. Such studies could ultimately inform the creation of 

more effective and universally appealing ASMR content. 
However, at this stage, these findings may have the 

potential to create advanced and, to some extent, standardized 
diagnostic tools. This nuanced understanding may have a 
significant impact on ASMRtists who create content aimed at 
reducing anxiety. Recognizing the importance of subjective 
experience in ASMR responses highlights the need for 

ASMRtists to consider individual preferences and 
sensitivities when producing their material. Future studies 
incorporating both subjective and objective analyses can 

 
Fig. 4. Comparison of whispered and normal speech of a male speaker in the form of mel spectrograms: a) mel spectrogram of normal speech; b) mel 

spectrogram of whispered speech; c) mel spectrogram of time stretched normal speech aligned to whispering; d) SSIM image 
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provide valuable guidelines for ASMRtists, enabling them to 
create more personalized and effective content for their audience. 
Ultimately, this approach could lead to better outcomes for 
individuals seeking anxiety relief through ASMR. For example, 

the ability to characterize whispered speech by changes in its 
acoustic properties opens the door for developing more refined 
diagnostic tools and therapeutic approaches for speech disorders, 
which could be tailored to individual characteristics such as gender 
and language. 

Finally, we should also address the limitations of our study, in 

which we focused on the acoustic properties of whispering sounds 
in different languages and the characteristics of speaking and 
whispering within these languages. As already said, objective 
analyses performed confirmed that the ASMR experience is highly 
influenced by subjective, personal factors. Although no subjective 
tests were conducted, the results underscore the inherently 

experiential nature of ASMR, suggesting that individual 
differences play a significant role in how certain sounds trigger 
specific brain waves. However, future research should incorporate 
subjective assessments to complement the objective findings, 
providing a more holistic understanding of the ASMR 
phenomenon and its variability across different populations and 

contexts. Such comprehensive studies will help to elucidate the 
intricate mechanisms behind ASMR and guide the development of 
more universally effective ASMR content. 
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