
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2024, VOL. 70, NO. 4, PP. 849–853
Manuscript received January 30, 2024; revised October 2024. doi: 10.24425/ijet.2024.152069

MFCC-Based Sound Classification of Honey Bees
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,
Abstract—Smart beekeeping is a rapidly developing field.

Automated detection and classification of honey bees opens many
new opportunities for studies on their behavior. In this paper,
we focus on distinguishing between two classes of bees: female
workers and male drones. The classification is performed on
mel-frequency cepstral coefficients obtained for audio recordings
of their flights in a close proximity to an entrance to a beehive.
We compare the classification accuracy for several classifiers. We
investigate how partitioning of the frequency spectrum influences
the classification results. The study involves series of experiments
performed for different cepstral representations in the form of
5, 10, 15, 20 and 40 mel-frequency cepstral coefficients.

Keywords—Internet of Things (IoT); smart beekeeping; pat-
tern recognition; signal processing; mel-frequency cepstral coef-
ficients (MFCC)

I. INTRODUCTION

THIS paper investigates different divisions of the fre-
quency spectrum in a problem of classification of honey

bees based on audio signals represented by mel-frequency
cepstral coefficients (MFCC). The proper preprocessing of
audio signals is usually crucial for the success in a wide range
of pattern recognition tasks as speech recognition, music genre
classification, or anomaly detection of a mechanical system,
just to mention a few. The mentioned mel-frequency cepstrum
has been proven to be an effective feature extraction method.
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Fig. 1. Exemplary cepstrogram for audio signal from class: a) worker bee,
b) drone bee, represented by 15 MFCCs.

The cepstrum of the exemplary signals from classes: worker
bee and drone bee was generated by calculation of mel-
frequency cepstral coefficients (MFCCs). Presentation of the
frequency components on the Mel scale clearly shows that
class recognition should be possible for that signal prepro-
cessing.
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A. Internet of Things in beehive monitoring

In recent years, we observed a massive turn from manual
beehive monitoring by beekeepers to applying the Internet of
Things (IoT). The main goals are remote observation of the
state of the bee colony, ensuring the safety and health control
of the bees. Additionally, the more sophisticated methods for
bee colonies allow for collecting large data sets and, thanks
to that, studies on still mysterious honey bees’ behaviors.

As listed in [1], [2], there are many commercial IoT systems
and devices, for example:

• Beebot measures weight of a hive, as well as humidity
and temperature inside.

• Easy Bee Counter counts bees leaving and returning to a
hive using 48 IR sensors.

• Bee-Shop Camera Kit taking photos and video record-
ings, which can be stored on an SD card or sent to the
beekeeper’s mobile phone using the 3G/4G LTE network.

• EyeSon Hives with an image detection algorithm for
analyzing the flight direction of the swarm. EyeS on
Hives also uses 3G/4G LTE connectivity and allows real-
time video monitoring of a hive.

• Zygi measures temperature, humidity, and weight.
• Hive-Tech detects swarming based on IR and reflectance

sensors that detect real-time crowd conditions.
• HiveMind monitors the activity of bees using sound and

IR sensors.
Another exciting example is a self-powered SBMaCS system
[3] with temperature, humidity, weight, motion, and flame
sensors. A system presented in [4] counts bees using a thermal
camera. In that study, bees’ flights were extracted by the
4 popular classifiers: k-nearest neighbors, neural network,
random forest, and support vector machine. Bees classification
with the use of an autoencoder neural network trained by
MFCCs, as representations of audio samples, was proposed
in [5], [6].

The AppMAIS project [7] was designed to better understand
and effectively prevent colony collapse disorder, which leads
to a rapid loss of adult worker bees and sudden colony
mortality. The AppMAIS uses on the open-source IoT platform
known as Thingsboard, which allows one to generate alerts
after detection of a defined state of a colony. As pointed
out in the survey in [8], the energy consumption and non-
intrusiveness of the system are of essential importance.

The IoT is closely related to radio frequency identification
(RFID) technology. As [9] noted, RFID tags can be applied for
the continuous monitoring of individuals in a colony, which is
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less time consuming than watching video recordings. However,
it involves mounting RFID on the backs of individual bees,
which is problematic because of their size. Considering that
an average colony counts from 20,000 to 80,000 bees, it would
require a large number of RFID tags, and still we would
receive only information about entering or leaving by a bee a
specific area, defined by a location and parameters of an RFID
reader.

In the following part of the article, we present the theo-
retical description of the extraction of MFCCs (in Section II),
followed by the real-life signal classification results for several
well-known classification algorithms (in Section III).

II. THEORY

A. Mel-frequency cepstral coefficients

Mel-frequency cepstral coefficients (MFCCs) are very effec-
tive and widely applied, including the analysis of bee sounds
and the audio signal representation method [10]–[12]. The
extraction of MFCCs is performed in several steps. The steps
for calculating MFCCs are presented in the diagram in Fig. 2
and are described in detail below.
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Fig. 2. Calculation of mel-frequency cepstral coefficients.

In the first step, each input signal frame is multiplied by
a chosen window shape; in our case, it was the Hamming
window. The goal is to prevent frequency leakage during the
Fast Fourier Transform (FFT) calculation.

The energy spectrum Sm of a chosen frequency band is
calculated by convolution of filter bank Hm with the energy
spectral density (it is squared absolute value of power spectral
density X(f)) of a signal frame in the following way:

Sm =

K−1∑
f=0

|X(f)|2 ∗Hm(f), (1)

where K is the length of power spectral density X(f) of
a signal frame, calculated by Fast Fourier Transform (FFT),

(equal to the number of signal samples in the analyzed frame),
m = 1, . . . , 40 is a filter bank index.

The 40 filters Hm(f) participate in the calculation of Sm

by convolution with the square absolute value of the power
spectral density X(f) of a signal. The first 13 filters are
linearly-spaced, and the last 27 are log-spaced. In Fig. 3, we
present auditory filter banks Hm(f), m = 1, . . . , 40, for the
frequency bandwidth 22,050 Hz.
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Fig. 3. Auditory filter banks Hm for bandwidth 22,050 Hz.

The mel-frequency cepstral coefficients ci are obtained by
the following transformation:

ci =

√
2

M

M∑
m=1

log(Sm)cos

(
πi

M
(m− 0.5)

)
, (2)

where M = 40 is equal to the number of used filters and
i = 1, . . . , n is the MFCC index. The formula (2) applies
Discrete Cosine Transform (DCT) to logarithm of energy
spectrum Sm. The base functions of the DCT are presented
in Fig. 4. Each base function corresponding to the calculation
of ci, i = 1, . . . , n, MFCCs. In the experiment, we extract
n = 5, 10, 15, 20 and 40 MFCCs using the described method.
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Fig. 4. Discrete cosine transform (DCT) base functions corresponding to
calculation of ci, i = 1, . . . , n, MFCCs.
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B. Supervised learning

To investigate the optimal representation of audio signals
by MFCCs in the honey bee classification task, we applied
supervised learning [15], [16]. Supervised learning means that
the data set used for classifier training has to be labeled. In
other words, all signals have to be tagged with one of class
labels:

• worker bee,
• drone bee.

This approach allows for an easy check of classifier perfor-
mance where the original (true) labels are compared with
predicted (pointed out by a classifier) labels. Counting the
differences in the labels for all signals from a testing set,
one can estimate the predictive performance of the algorithm,
usually described by classification accuracy and classification
risk.

Input audio
frame

Classifier

MFCC

Performance
verification

Predicted class:
worker bee
drone bee

True class:
worker bee
drone bee

Fig. 5. Diagram of supervised learning.

In Fig. 5, a diagram is presented with particular stages of
supervised learning. The first stage concerns the preparation of
the data set. In the second stage, we perform signal preprocess-
ing, in that case the calculation of MFCCs, which represent
audio signals in the lower-dimensional feature space. The
extraction of proper features is often one of the most crucial
stages in pattern recognition. And a well-selected method can
significantly improve the classification performance, minimiz-
ing the risk of misclassification. The next step involved the
use of a chosen classifier. In the last step, we can verify the
performance of the algorithm thanks to the comparison of true
and predicted classes of signals.

Consider a sequence of independent random variables

(X,Y ) = {(X1, Y1), . . . , (Xp, Yp)}

with values in Rn × {0, 1} of a common distribution. In
our case, the vectors Xj ∈ Rn are n-dimensional vectors

of mel-frequency cepstral coefficients (MFCCs), and Yj are
class labels, Yj ∈ {0, 1}. Classification performance can be
presented by classification accuracy, which is equivalent to
a percent of correctly classified signals from both classes:
worker bees and drones. The complementary performance
indicator, the misclassification risk, is defined as the following
probability

R = P
(
Ŷ ̸= Y

)
, (3)

where Y is a sequence of true classes for test signals, and Ŷ
is a sequence of predicted classes for those test signals by a
classifier.

III. EXPERIMENT

A. Honey bee data set

We performed a series of numerical experiments on our data
set, available online [13], consisting of 10,000 audio samples
recorded for flying worker bees and 1700 audio samples
recorded for flying drones. The share of drones, male bees,
in the honey bee swarm is around 15% of all bees during
late spring and early summer. The remaining 85% are more
numerous worker bees, all females of smaller size compared
to drones. In a swarm, there is usually one queen, who’s
main task is laying eggs. The imbalanced data set mimics the
naturally occurring shares of workers and drones. The audio
samples have 1 second length. The bee sounds were recorded
in close proximity to an entrance to a beehive by a directional
microphone. All samples were tagged with one of the two
class labels: worker bee or drone bee.

All audio samples were pre-processed before the classifica-
tion stage to extract vectors of lower dimension consisting of
n MFCCs obtained for a fixed number n of base functions of
the discrete cosine transform (DCT).

B. Classification results

The data set was divided into training and testing sets in
proportion 70% to 30%. The calculated MFCCs, representing
sound samples, took part in supervised learning and testing of
the following classification algorithms:

• support vector machines (SVM) [14],
• linear discriminant analysis (LDA) [15], [16],
• random forest (RF) [17], [18],
• k-nearest neighbors (KNN) [20].
The support vector machine classifier aims to determine a

hyperplane separating, with a maximum margin, coefficient
vectors representing signals from two classes. Linear discrim-
inant analysis is another classification method that calculates,
similarly to SVM, a linear hyperplane by minimizing a dis-
criminant function. The LDA assumes that probability density
functions in classes are n-dimensional normal distributions
with equal covariance matrices in classes.

The random forest is created by a set of decision trees
whose majority vote points to the predicted class. At each
division of a tree, a different subset of features is selected. In
our experiments, we always randomly chose 4 features from n.
Depending on a case, the feature set (the set of MFCCs) counts
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n = 5, 10, 15, 20 or 40. There is also another popular approach
with random choice of around

√
n features for each division

in a tree, but we consciously decided to compare exactly the
same version of random forest classifier in all the cases, hence
a constant number of 4 random features.

The k-nearest neighbors (KNN) classifier assigns a class
label that occurs more times among an odd number k of
nearest neighbors.

The classification was performed for 5, 10, 15, 20 and 40
MFCCs. The results are presented in Table I.

TABLE I
CLASSIFICATION ACCURACY [%].

No. of MFCC SVM LDA RF KNN

5 92.62 92.70 99.88 99.68

10 94.21 93.76 99.82 99.68

15 94.55 94.33 99.85 99.68

20 94.92 94.67 99.08 99.68

40 95.32 95.44 93.33 99.68

The empirical misclassification risk obtained for the tested
classifier: linear support vector machines (SVM), linear dis-
criminant analysis (LDA), random forest (RF) of 10 trees with
4 features, and k-nearest neighbors (KNN) with k = 105 is
shown in Fig. 6.
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Fig. 6. Misclassification risk for classifiers trained on mel-frequency cepstral
coefficients.

The experiment results for the KNN classifier have a
constant accuracy value equal to 99.68%. The very small
misclassification risk RkNN = 0.32% for KNN is clearly
connected to the optimally minimal value of Bayesian risk R∗,
stated by the theorem given by Devroye, Györfi and Lugosi
in [21]:

Theorem 1: For all odd k and all distributions,

RkNN ≤ R∗
(
1 +

1√
ke

)
. (4)

Asymptotically, while the number k of nearest neighbors goes
to infinity, we have:

limk→∞RkNN ≤ R∗. (5)

Due to the fact that the Bayesian risk R∗ (also called the
Bayes probability of error [19]) is optimal, it means that R∗

is the lowest possible value of misclassification risk among all
classifier, including KNN, what can be denoted as:

R∗ ≤ RkNN . (6)

The direct conclusion of the theorem is that while k → ∞, the
risk for k-nearest neighbors classifier is asymptotically equal
to the Bayesian risk R∗, which for the full probabilistic infor-
mation about distributions in classes is minimal for all existing
classifiers. Since the theoretical distributions are unknown for
real-life problems, the Bayesian risk R∗ gives information
about separability of the classes. The close to zero risk values
for KNN, for a large number k = 105 of neighbors, can be
interpreted as very close to the theoretical optimal Bayesian
risk R∗, and show that, indeed, the representations of signals
by MFCCs discriminate the worker bee and drone classes.

The high performance of the random forest (RF) and k-
nearest neighbors (KNN) classifiers can be problematic in real-
life applications, due to the need for extensive calculations
for the large data set. The linear classification algorithms:
support vector machines (SVM) and linear discriminant anal-
ysis (LDA) performed very similar for different numbers of
MFCCs. The linear classifiers have an advantage in practice, as
the already trained classifier can be explicitly applied without
additional access to the data set. The trained classifier (SVM
and LDA) defines the decision areas divided into the two
classes by a linear hyperplane, calculated during the training
stage.

IV. CONCLUSION

All sets of MFCCs were calculated for the same frequency
band of 44.1 kHz. In each case, the frequency band was di-
vided into 40 subbands and transformed by a cosine transform,
which led to low-dimensional representations in the form of
5, 10, 15, 20 and 40 MFCCs. Each cosine base function
corresponds to the particular coefficient on the mel frequency
scale. The results of classification of honey bee sounds show
clearly that the number of MFCCs has an impact on the
performance of the classifiers.

From a practical point of view, we would recommend the
application of one of the linear classifiers: support vector
machines (SVM) or linear discriminant analysis (LDA). The
increase of the misclassification risk from higher-dimensional
representation for 40 MFCCs to lower-dimensional for 10
MFCCs is equal around 1.11% for SVM and 1.68% for LDA.
It means the drop in the classification performance is very low,
and in real-life application, it would be beneficial to base the
classification system on only 10 MFCCs, without a significant
change in the classifier performance. It is worth mentioning
that the LDA also had the shortest computation time.

Future work should focus on the creation of a smartphone
application that allows many beekeepers in a simple way to
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have access and the possibility to monitor their beehives in the
presented way. The proposed solution should be incorporated
into an IoT system to monitor the condition of a honey bee
colony. The recording of audio signals and their processing
would be performed on a device located near the beehive. At
times defined by a beekeeper, it would report expected events
using the cellular phone network. Moreover, the beekeeper
would be able to ’call’ the system at any time to get an update
on the hive status on demand. The proposed solution could be
extended by daily reports with additional data such as weather
conditions, temperature in a hive, etc.
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